
111

4 Things You Need to Know to Become an
Expert in SAP Build Apps

Las Vegas

2024
Mark Wright, Director Technical Product Marketing, SAP

2

Agenda

EXTERNAL© 2023 SAP SE or an SAP affiliate company. All rights reserved. ǀ

1. Learn the principles of good app development
2. Best practices for designing your app
3. Best practices for developing your app
4. Collaboration and teamwork

3

Is SAP Build Apps right for your project?

▪ Check that SAP Build Apps meets your
security requirements.

▪ Verify that you can access the data
you need with SAP Build Apps or if you
will need additional services.

▪ Determine which features are critical
and what is available in SAP Build
Apps.

Pro tip: Use the resources in your organization and find out who the stakeholders of your application are. Is there an IT administrator who
can provide you with the required access rights and perhaps a new BTP destination you would need? Are there designers who could
collaborate to make a good user experience?

Define your needs
Define your

requirements

▪ Who are the users of your app?

▪ What tasks are they trying to
accomplish?

▪ What are they currently using to do
this?

▪ What steps are needed to accomplish
it?

4

Learn the Principles of Good
App Development

5

The principles of good app development

Usefulness

Useability

Maintainability

DRY (Don’t Repeat Yourself)

Dynamic vs. Static Content

6

Usefulness: Is this app effective at solving a problem the users have?

Achieving usefulness: When first developing your application, aim for a minimum viable product (MVP) instead
of adding functionalities the users may not need or use. More functionalities can be added later if necessary.

A useful app provides an effective way
for the users to solve a problem or
concern they have.

Effectiveness

Don't try to solve too many problems
in one application, as it will grow huge
and more likely to become difficult to
use and maintain.

Keep it simple

7

Usability: Is this app easier to use than what they’re currently doing?

Achieving usability: Implement error prevention and handling as you go. Prevent users from taking actions that
would cause them to end up in erroneous states in the app, but if there's an error, communicate about it clearly.

A usable app is easy and intuitive for
the user to use to complete the task
they have.

Usable

If usability and user experience are
unfamiliar topics to you, it’s
recommended to get a designer or
consultant involved in designing the
experience for the application.

Consult

8

Maintainability: Is the app maintainable by other people in your organization?

Achieving maintainability: Consistency is key in maintainability, and consistency requires a plan of how the app
functionality is structured.

If not, it will grow outdated quickly or
never be taken into use.

Future-Proof

A maintainable app is structured and
named in an understandable way, and
fellow developers can easily know
where to look when they need to
change something. It also follows the
DRY (Don’t Repeat Yourself) principle.

Structured

9

SAP Build Apps

Collaborative work on
the apps

Easy creation of user
interfaces with drag

& drop

Multi-channel
support:

mobile & web

Visual Cloud functions for creating full-stack apps with
backend, data models and business logic

Integration with SAP or non-
SAP systems via REST-APIs &

OData

Stand-alone &
SAP App

extensions

Choose a Solution That Delivers
Enterprise-grade apps with an intuitive visual drag-and-drop experience, regardless of skill level

Use of SAP BTP
authentication and
destination

10

DRY (Don’t Repeat Yourself)

Don’t Repeat Yourself (DRY) is a core principle of all software development. Its aim in traditional pro-
code development is to reduce duplicated code or functionality. When there's duplicated code or
functionality, there may be bugs or inconsistencies in the application if one implementation of the
functionality slightly differs from another.

▪ Whenever changes are made to the application, these need to be applied in all the spots where the
duplicated code exists.

▪ The same principle applies to no-code development: If functionality is duplicated in different parts
of the application, it becomes more error-prone and difficult to maintain.

▪ In SAP Build Apps, DRY is especially relevant for the logic of the application (See ‘Developing your
app’)

11

Dynamic vs. Static Content

To understand this concept, consider this example:

Imagine an app that has a catalogue of products. You want the app to show a list of products, and when the user clicks or taps on
a specific product name, they're taken to a page where more information about the product is given. Let’s say that you have 100
products in your catalogue.

With static content: You would create a separate page for each of the products and manually type or copy-paste content for each
product on their page. You would have 100 product details pages in your app, and one list page. This app would very quickly
become unmaintainable, as to change the information of some of the products or the layout for all the product details pages, you
would have to do a lot of manual work on separate pages to do this.

With dynamic content: You would store the information of the products in a database and show that in the application
dynamically. You would have one list page and one product details page. When the user would click or tap on a product name on
the list, you would pass the identifier of that product onto the product details page, and then fetch the information for that
product onto the product details page and show it dynamically.

This way you would be able to maintain the information about your products in one place (your database) and any layout changes
would only need to be done once.

12

Designing your app

13

Why does good design matter?

Taking the time to properly design
your application before jumping into
the implementation is crucial for long-
term success.

Take Your Time

Without a plan and a design for your
application, there's a risk that you end up

with something unusable and
unmaintainable.

Plan

14

Best practices for designing your app

▪ Too many pages will likely cause usability and performance issues.

▪ Good rule of thumb: If you have much more than 20 pages planned, it is likely that you are trying to do too many
things in one app.

▪ Use dynamic rather than static content. If you still have more than 20 pages, consider reducing features or splitting
functionality into several applications.

▪ Goo

Gather requirements from potential users and plan a rough
structure for your application.

Once you have pages planned, make sure your app is not
growing too large.

▪ What pages are needed, what happens on each page, how does the user move through the app?
▪ You might study existing applications that do similar things and note their design and flow for ideas for your own

application

15

16

Keep in mind: App development isn't a linear process. Users may discover new
requirements that you weren't previously aware of. It's a good idea to keep validating
your designs with your users so that you can make small adjustments early in the
process instead of major changes later.

Whenever there are some new requirements, evaluate their importance: which are
crucial and which would be nice to have, but the app would still be functional without.
Once this is done, check that SAP Build Apps still meets the crucial requirements of
your app.

17

Developing your app

18

Best practices for development with SAP Build Apps

In the previous sections, we discussed app development from a high level. Now we’ll dive into
how to put those topics into practice using:

▪ Variables, application state and scope

▪ Navigation in mobile apps

▪ Logic

▪ Error handling and debugging

▪ User interface

19

Variables: Crucial for dynamic content

SAP Build Apps offer
various types of variables:
data, theme, translation,
system, page parameters,
and component’s internal
variables

Variety

Some types of variables come
pre-defined and pre-

populated, such as system
variables with information

about the user’s device and
theme variables with

information of how the
current theme affects all the

shown components.

Pre-defined

Pre-Populated

Some variable types have

very specific purposes – i.e. a

translation variable contains

text content in various

languages and a page

parameter is used to pass a

value, usually an identifier for

data, between two pages.

Purpose

Variables are values that change based on logic or user input. Understanding how to use variables will improve
the development experience and the app’s overall maintainability.

Pro-tip: Naming variables descriptively enhances app maintainability. For example, if you have a variable that
determines if a spinner is visible, naming it showSpinner will make it easier to understand what it’s used for.

20

Variables: Key for managing app state & scope

Distinguish between app
and page variables, using
app variables across all
pages and restricting
page variables to
individual pages.

Distinguish

This defines the scope that

the information is needed in,

either on the scope of a page

or of the whole app.

Scope

Over-reliance on app

variables can lead to

confusion and inefficiency.

Determine which information

isn’t needed on every page.

Determination

The purpose of variables is to store the state of the application, which contains all information the app has
available on the end-user’s device and what happens in the app while it is used.

Pro-tip: Instead of creating separate app variables, consider storing information in an Object or List type app
variable, which can hold multiple properties. Their settings are more complex than a simple variable such as Text,
Number or True/False.

21

Navigation in Mobile Apps

Consider the effect of
navigation on page
variables, especially in
scenarios involving back-
and-forth navigation or
opening the same page
multiple times

Effect

Familiarity with the navigation stack concept is necessary to

comprehend variable behavior in different navigation

scenarios

▪ A navigation stack can best be described as a pile of

pages. Example: The user enters the app on page A,

then taps a button to open page B, e.g. a list of

expenses.

▪ Pages in the navigation stack retain their existing state,

affecting variable values.

Familiarity

Effective navigation is crucial for user experience in applications with multiple pages.

Pro-tip: Pay attention to events triggered when opening or returning to pages for app logic. Opening a page in
the stack multiple times creates separate instances of page and data variables for each instance.

22

Logic

Placing logic in relevant
and easy-to-find places

Easy to find

Using events to follow the

DRY principle

DRY

Implementing error handling

Error Handling

Your application’s logic defines how your app works and reacts to being interacted with. Here are some

best practices for implementing logic that will make the app more maintainable and less prone to errors

Pro-tip: The type of variables needed and where to place logic events depends on whether you need to

use the same logic on one page or several pages. For example, you should always place reusable logic

on a page’s main logic canvas.

23

Error Handling & Debugging

Use your browser’s
developer tools to
diagnose problems and
error messages.

Tools

The pre-built Debug logic

function in SAP Build Apps

also creates custom debug

logs that can help with

debugging complex logic

and increasing

maintainability.

Debug Logs

The debugging logic function

can produce different types

of logs (info, warn, error, etc.)

Logic

When implementing logic in your app, the best practice is to take any possible error states into account

as you go. Proper error handling is essential for user understanding and data consistency in app

development.

Debugging is the process of troubleshooting app logic when it's not working as expected. Here are

some best practices to follow for error handling debugging:

24

User Interfaces

Whenever you make
changes, consider the
long-term maintainability
and consistency of your
application.

Maintainability

To keep your app

maintainable and consistent,

utilize theme variables and

style classes appropriately in

SAP Build Apps.

Theme & Style

Primitive components and

composite components are

the two types used to

construct UIs.

Components

A basic understanding about UX/UI design or design thinking concepts can be valuable in creating user interfaces
in SAP Build Apps. Here are some best practices to follow

Pro-tip: UI building is quicker by using existing components than building everything from scratch with

primitive components. Creating your own composite components is also possible, though it's

recommended for more advanced users.

25

Visual application logic

with flow functions

Customizable design themes and

navigation

Simplified UI creation with

drag-and-drop functionality

Rich library of components and

400+ built-in formula functions

Powerful features for full-stack no-code development
Key frontend capabilities

26

Collaboration & teamwork

27

Why does teamwork matter in SAP Build Apps?

When developing an application that is
intended to be used for a long time, its
maintainability is key. Even if you're
working on an app alone, in the long
run other members of your team will
maintain the app as well.

Maintainability is Key

In addition to getting your technical
requirements right, it’s essential to

design an app that you can collaborate
on with your team.

Collaborate

28

Best Practices for Teamwork & Collaboration

Decide on the naming
conventions that you'll use in
your app for variables and
components. Use descriptive
names, such as “Submit
button” or “Header container”
or “showSpinner” (i.e. using
camel case for variables).

Naming

Establish a shared place

where you make notes and

share information about the

application’s on-going

development, any known

issues or blockers, and any

work-arounds implemented.

Use this place to share

original designs and plans for

the app, decisions made on

naming conventions, etc

Shared Place

Make sure that everyone is

familiar and agrees with the

principles of good

application development.

Check-in regularly with team

members and keep the place

where you share information

up to date.

Principles

Here are some tips for enabling multiple developers to work on one application efficiently

29

Easy access to all SAP

Build projects

Powerful features for full-stack no-code development
Visual user experience from the start

Create and collaborate on

projects

Centralized lifecycle management,

monitoring, and governance

30

Q&A

EXTERNAL© 2023 SAP SE or an SAP affiliate company. All rights reserved. ǀ

31

SAP Build Apps

SAP.com/Build-Apps

https://www.sap.com/assetdetail/2023/10/563306b2-947e-0010-bca6-c68f7e60039b.html

© 2023 SAP SE or an SAP affiliate company. All rights reserved. See Legal Notice on www.sap.com/legal-notice for use terms, disclaimers, disclosures, or restrictions related to this material.

Thank you.

Mark Wright Director Product Marketing – App Dev, Business Technology Platform
mark.wright@sap.com

mailto:mark.wright@sap.com

33

SAPinsider
comprises the
largest and fastest
growing SAP
membership group
with more than
800,000 members
worldwide.

SAPinsider.org
PO Box 982Hampstead, NH 03841

Copyright © 2024 Wellesley Information Services.

All rights reserved.

SAP and other SAP products and services

mentioned herein as well as their respective logos

are trademarks or registered trademarks of SAP SE

(or an SAP affiliate company) in Germany and other

countries. All other product and service names

mentioned are the trademarks of their respective

companies. Wellesley Information Services is

neither owned nor controlled by SAP SE.

	Default Section
	Slide 1

	Intro
	Slide 2: Agenda
	Slide 3: Is SAP Build Apps right for your project?

	1. Principles of good app dev
	Slide 4: Learn the Principles of Good App Development
	Slide 5: The principles of good app development
	Slide 6: Usefulness: Is this app effective at solving a problem the users have?
	Slide 7: Usability: Is this app easier to use than what they’re currently doing?
	Slide 8: Maintainability: Is the app maintainable by other people in your organization?
	Slide 9: Choose a Solution That Delivers Enterprise-grade apps with an intuitive visual drag-and-drop experience, regardless of skill level
	Slide 10: DRY (Don’t Repeat Yourself)
	Slide 11: Dynamic vs. Static Content

	2. Designing your app
	Slide 12: Designing your app
	Slide 13: Why does good design matter?
	Slide 14: Best practices for designing your app
	Slide 15: Simplify the Design Process with the UI Canvas
	Slide 16

	3. Developing your app
	Slide 17: Developing your app
	Slide 18: Best practices for development with SAP Build Apps
	Slide 19: Variables: Crucial for dynamic content
	Slide 20: Variables: Key for managing app state & scope
	Slide 21: Navigation in Mobile Apps
	Slide 22: Logic
	Slide 23: Error Handling & Debugging
	Slide 24: User Interfaces
	Slide 25: Powerful features for full-stack no-code development Key frontend capabilities

	4. Collaboration and teamwork
	Slide 26: Collaboration & teamwork
	Slide 27: Why does teamwork matter in SAP Build Apps?
	Slide 28: Best Practices for Teamwork & Collaboration
	Slide 29: Powerful features for full-stack no-code development Visual user experience from the start
	Slide 30: Q&A
	Slide 31
	Slide 32: Thank you.
	Slide 33

