[bookmark: _GoBack]The source code of JSONXMLModuleBean.java
package com.sapagscoe.pi.adaptermodule;
//Classes for EJB
import javax.ejb.Stateless;
import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
//Classes for Module development & Trace
import com.sap.aii.af.lib.mp.module.*;
import com.sap.engine.interfaces.messaging.api.*;
import com.sap.engine.interfaces.messaging.api.auditlog.*;
import com.sap.tc.logging.*;
//JSON classes
import org.json.*;

/**
 * Session Bean implementation class JSONXMLModuleBean
 */

@Stateless

public class JSONXMLModuleBean implements SessionBean, Module {

	/**
	 *
	 */
	public static final long serialVersionUID = -6483898936979631095L;
	public static final String VERSION_ID = "$Id://tc/aii/30_REL/src/_adapters/_sample/java/user/module/GetHostName.java#1 $";

	private SessionContext myContext;

	public void ejbRemove() {
	}

	public void ejbActivate() {
	}

	public void ejbPassivate() {
	}

	public void setSessionContext(SessionContext context) {
		myContext = context;
	}

	public void ejbCreate() throws CreateException {
	}

	public ModuleData process(ModuleContext moduleContext,
			ModuleData inputModuleData) throws ModuleException {

		// Preparing for trace and audit logs
		String SIGNATURE = "process(ModuleContext moduleContext, ModuleData inputModuleData)";
		Location location = null;
		AuditAccess audit = null;
		
		try {
			location = Location.getLocation(this.getClass().getName());
		} catch (Exception t) {
			t.printStackTrace();
			ModuleException modex = new ModuleException(
					"Unable to create trace location", t);
			throw modex;
		}

		// Prepare for message
		Object obj = null;
		Message msg = null;
		MessageKey key = null;
		try {
			obj = inputModuleData.getPrincipalData();
			msg = (Message) obj;
			key = new MessageKey(msg.getMessageId(), msg.getMessageDirection());
			audit = PublicAPIAccessFactory.getPublicAPIAccess()
					.getAuditAccess();
			audit.addAuditLogEntry(key, AuditLogStatus.SUCCESS, this.getClass()
					.getName()
					+ ": Module called");
		} catch (Exception e) {
			e.printStackTrace();
			ModuleException me = new ModuleException(e);
			throw me;
		}

		// Read module configurable parameters
		String xmlRootTagName = null; //Optional
		String convertDirection = null; //Mandatory
		String msg_type = null; //Mandatory
		String msg_namespace = null; //Optional
		String xmlEncoding = null; //Optional
		
		try {
			//begin:Get module configurable parameters

			xmlRootTagName = (String) moduleContext.getContextData("xmlRootTagName");
			convertDirection = (String) moduleContext.getContextData("convertDirection");
			msg_type = (String)moduleContext.getContextData("msg_type");
			msg_namespace = (String)moduleContext.getContextData("msg_namespace");
			xmlEncoding = (String)moduleContext.getContextData("xmlEncoding");
			//END:Get module configurable parameters
			
			// begin:check mandatory parameters.
			if (convertDirection == null||!(convertDirection.equalsIgnoreCase("JSON2XML")||convertDirection.equalsIgnoreCase("XML2JSON"))) {
				location.debugT(SIGNATURE,
								"Error: convertDirection is not set properly.");
				audit.addAuditLogEntry(key, AuditLogStatus.ERROR,
								"JSON2XML or XML2JSON must be set for the module processor.");
				throw new Exception("Error: convertDirection is not set properly.");
			}
						
			location.debugT(SIGNATURE, "convertDirection is set to {0}",
					new Object[] { convertDirection });
			audit.addAuditLogEntry(key, AuditLogStatus.SUCCESS,
					"convertDirection is set to {0}",
					new Object[] { convertDirection });
			
			if(msg_type == null){
				location.errorT("Error:msg_type parameter is not set for JSONXMLModuleBean.");
				audit.addAuditLogEntry(key, AuditLogStatus.ERROR,
				"msg_type parameter is not set for JSONXMLModuleBean in your channel");
				throw new Exception("Error:msg_type parameter is not set for JSONXMLModuleBean.");
			}
			audit.addAuditLogEntry(key, AuditLogStatus.SUCCESS,
					"msg_type is set to {0}",
					new Object[] { msg_type });
			// end:check mandatory parameters.
			
		} catch (Exception e) {
			e.printStackTrace();
			location.catching(SIGNATURE, e);
			location.errorT(SIGNATURE,
					"Cannot read the module context and configuration data");
			audit.addAuditLogEntry(key, AuditLogStatus.ERROR,
					"Cannot read the module context and configuration data");
			ModuleException me = new ModuleException(e);
			location.throwing(SIGNATURE, me);
			throw me;
		}

		try {
			XMLPayload xmlpayload = msg.getDocument();
			audit.addAuditLogEntry(key, AuditLogStatus.SUCCESS,
					"Start converting message payload {0}", new Object[] { convertDirection });
			
			if(convertDirection.equalsIgnoreCase("JSON2XML")){
				xmlpayload=Json2XML(xmlpayload, xmlRootTagName, msg_type, msg_namespace,xmlEncoding,location, SIGNATURE);
			}else if(convertDirection.equalsIgnoreCase("XML2JSON")){
				xmlpayload=XML2Json(xmlpayload, location, SIGNATURE);
			}			
						
			audit.addAuditLogEntry(key, AuditLogStatus.SUCCESS,
					"Complete converting message payload {0}", new Object[] { convertDirection });
			
			msg.setDocument(xmlpayload);
			inputModuleData.setPrincipalData(msg);

		} catch (Exception e) {
			e.printStackTrace();
			ModuleException me = new ModuleException(e);
			throw me;
		}

		return inputModuleData;

	}

private XMLPayload Json2XML(XMLPayload myXmlPayload, String XmlRootTagName, String msg_type, String msg_namespace,String xmlEncoding,Location location, String signature) throws Exception{
		
		String jsonStr = myXmlPayload.getText();
		location.debugT(signature, "converting Json String {0}",new Object[] { jsonStr });
		JSONObject jsonObj = new JSONObject(jsonStr);
		String cnvXML = XML.toString(jsonObj, XmlRootTagName);
		location.debugT(signature, "request xml root tag {0}",new Object[] { XmlRootTagName });
		location.debugT(signature, "converted xml String {0}",new Object[] { cnvXML });
		//change XML root element as per PI Message Type.
		StringBuffer msgXML = new StringBuffer();
		//Add starting lines as per PI message
		if (xmlEncoding != null){
			msgXML.append("<?xml version=\"1.0\" encoding=\"");
			msgXML.append(xmlEncoding);
			msgXML.append("\"?>");
		}else{
			msgXML.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
		}
		//set open root tag as per PI Message type
		if(msg_namespace !=null){
			msgXML.append("<ns0:");
			msgXML.append(msg_type);
			msgXML.append(" xmlns:ns0=\"");
			msgXML.append(msg_namespace);
			msgXML.append("\">");
			
		}else{
			msgXML.append("<");
			msgXML.append(msg_type);
			msgXML.append(">");
			
		}
		//Removing root element created by JSON LIB
		int idx_endOfStartRoot = cnvXML.indexOf(">")+1;
		int idx_startOfEndRoot = cnvXML.lastIndexOf("</");
		msgXML.append(cnvXML.substring(idx_endOfStartRoot, idx_startOfEndRoot));
		
		//Set close root tag as per PI Message type
		if(msg_namespace !=null){
			msgXML.append("</ns0:");
			msgXML.append(msg_type);
			msgXML.append(">");
		
		}
		else{
			msgXML.append("</");
			msgXML.append(msg_type);
			msgXML.append(">");
		}
		
		
		myXmlPayload.setText(msgXML.toString());		
		return myXmlPayload;
		
	}
	
private XMLPayload XML2Json(XMLPayload myXmlPayload, Location location, String signature) throws Exception{
		
		String xmlStr = myXmlPayload.getText();
		location.debugT(signature, "converting xml String {0}",new Object[] { xmlStr });
		JSONObject jsonObj = XML.toJSONObject(xmlStr);
		String jsonString = jsonObj.toString();		
		location.debugT(signature, "converted json String {0}",new Object[] { jsonString });
		myXmlPayload.setText(jsonString);		
		return myXmlPayload;
		
	}

}

The source code of ejb-jar.xml
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:ejb="http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd" version="3.0">
 <display-name>
JSONXMLUserModule </display-name>
 <enterprise-beans>
 	<session>
 		<ejb-name>JSONXMLCustomAdapterModule</ejb-name>
 		<home>com.sap.aii.af.lib.mp.module.ModuleHome</home>
 		<remote>com.sap.aii.af.lib.mp.module.ModuleRemote</remote>
 		<local-home>com.sap.aii.af.lib.mp.module.ModuleLocalHome</local-home>
 		<local>com.sap.aii.af.lib.mp.module.ModuleLocal</local>
 		<ejb-class>com.sapagscoe.pi.adaptermodule.JSONXMLModuleBean</ejb-class>
 		<session-type>Stateless</session-type>
 		<transaction-type>Container</transaction-type>
 	</session>
 </enterprise-beans>
</ejb-jar>

The source code of ejb-j2ee-engine.xml
<?xml version="1.0" encoding="UTF-8"?>
<ejb-j2ee-engine xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ejb-j2ee-engine_3_0.xsd">
	<enterprise-beans>
		<enterprise-bean>
			<ejb-name>JSONXMLCustomAdapterModule</ejb-name>
			<jndi-name>JSONXMLCustomAdapterModule</jndi-name>
		</enterprise-bean>
	</enterprise-beans>
</ejb-j2ee-engine>

The source code of application.xml
<?xml version="1.0" encoding="UTF-8"?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:application="http://java.sun.com/xml/ns/javaee/application_5.xsd" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/application_5.xsd" version="5">
 <display-name>JSONXMLUserModuleEAR</display-name>
 <module>
 <ejb>JSONXMLUserModule.jar</ejb>
 </module>
</application>

The source code of application-j2ee-engine.xml
<?xml version="1.0" encoding="UTF-8"?>
<application-j2ee-engine xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="application-j2ee-engine.xsd">
	<reference reference-type="hard">
 <reference-target target-type="library" provider-name="sap.com">engine.jee5.facade</reference-target>
 </reference>
 <reference reference-type="hard">
 <reference-target target-type="service" provider-name="sap.com">engine.security.facade</reference-target>
 </reference>
 <reference reference-type="hard">
 <reference-target target-type="library" provider-name="sap.com">com.sap.base.technology.facade</reference-target>
 </reference>
 <reference reference-type="weak">
 <reference-target target-type="interface" provider-name="sap.com">com.sap.aii.af.ifc.facade</reference-target>
 </reference>
 <reference reference-type="hard">
 <reference-target target-type="service" provider-name="sap.com">com.sap.aii.af.svc.facade</reference-target>
 </reference>
 <reference reference-type="hard">
 <reference-target target-type="library" provider-name="sap.com">com.sap.aii.af.lib.facade</reference-target>
 </reference>
 <modules-additional>
 <module>
 <entry-name></entry-name> <!-- com.xxx.war. you do not need to add ejb module here. -->
 <container-type></container-type> <!--WebContainer-->
 </module>
 </modules-additional>

 <start-up mode="always"/>
</application-j2ee-engine>
