
No portion of this publication may be reproduced without written consent. 29

Web Dynpro is SAP’s standard toolset for developing user interfaces (UIs)
for business applications. It is a powerful development tool that allows
you to construct efficient, low-maintenance business applications. SAP has
designed Web Dynpro to be the standard UI development tool for all future
applications, whether written in Java or ABAP.

Since 2005, I have performed many code reviews of Web Dynpro
implementations at customer sites. The purpose of these reviews was both
to assess the quality of the coding and to determine the cause of implemen-
tation difficulties. As I performed these reviews, I observed that quite
independently, both customers and implementation partners were making
the same mistakes over and over again, resulting in poor-quality Web
Dynpro implementations and applications that were time consuming and
costly (or in some cases, impossible) to maintain.

As I analyzed why these mistakes should be so widespread, I noticed
a common thread running though all of the projects: the developers often
had little or no specific Web Dynpro training. Consequently, they assumed
Web Dynpro to be “just like all the other Web development toolsets” and
tried to use it as if it were some other product with which they were already
familiar. Unfortunately, using Web Dynpro with this mindset always
produces poor-quality results — with some pretty ugly outcomes in some
cases. In one instance, the implementation was so poor it had to be thrown
away and rewritten!

With a correct understanding of Web Dynpro, you can easily avoid
the difficulties I have observed and ensure a smooth implementation in
your own organization. The purpose of this article is to correct the misun-
derstandings at the root of Web Dynpro implementation problems and to
explain the principles of good Web Dynpro design so that you will be able
to write high-quality applications that will, in turn, help reduce your main-
tenance and support costs.

How to avoid Web Dynpro Java
implementation nightmares

by Chris Whealy

Chris Whealy
RIG Expert, (Web Dynpro)
SAP NetWeaver Regional
Implementation Group (RIG)
EMEA, Walldorf, Germany

Chris Whealy joined SAP in 1995
as a Basis consultant and ABAP
programmer. Shortly thereafter, he
turned his attention to Web-based
interfaces into SAP and began
working with the earliest versions
of the Internet Transaction Server
(ITS). Since then, Chris has focused
his attention on Web-based front
ends for SAP functionality. In 2003,
Chris began working with Web
Dynpro and has worked closely
with the development team, both
learning the product and writing
proof-of-concept applications.

(Full bio appears on page 58.)

SAP Professional Journal • March/April 2008

30 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

The article is divided into three main sections. In
the first section, I describe what can go wrong during
a Web Dynpro implementation, why these mistakes
occur, and how to avoid them. In the second section,
I move on to describe the high-level design principles
that you should follow during the design phase of
a Web Dynpro implementation, which is where the
overall architecture of the application is planned.
Finally, in the third section, I describe the lower-
level design principles that you should follow when
building individual Web Dynpro components. While
this article is aimed primarily at project managers,
anyone involved in Web Dynpro implementations
will benefit from reading it.

This article focuses on the Java version of Web
Dynpro,1 and has been written with the SAP NetWeaver
Composition Environment (CE) version of Web Dynpro
in mind. However, almost all the principles described
here are applicable to the SAP NetWeaver ’04 and SAP
NetWeaver 7.0 (formerly 2004s) versions. Where the
differences between CE and earlier releases affect the
design principles, I will make a specific comment.
Otherwise, you can assume that the design principles
in this article are version independent.

Readers would probably also be interested to read
a previous SAP Professional Journal article I have
written entitled “Web Dynpro — what it is, what it
does, why it exists, and how to get the best results
from it: An introduction to the fundamental principles
of Web Dynpro.” This article focuses on the SAP
NetWeaver ’04 and 7.0 versions of Web Dynpro
and appeared in the January/February 2007 issue.

Let’s first tackle the main reasons why Web
Dynpro implementations can end up in trouble.

Misunderstanding the
purpose of Web Dynpro
To explain why the purpose of Web Dynpro is so

1 For more on the ABAP version of Web Dynpro, see the article “Get
started developing Web-native custom SAP applications with Web
Dynpro for ABAP” (SAP Professional Journal, July/August 2007).

often misunderstood, I must first explain two different
things. The first is SAP’s design criteria for Web
Dynpro, and the second are the expectations people
from a Web development background tend to bring
with them when using Web Dynpro for the first time.
Once these two things are explained, you’ll see that
the misunderstandings are caused by a mismatch
between SAP’s design criteria and people’s
expectations.

SAP’s design criteria for Web Dynpro

To be somewhat pedantic, Web Dynpro is not really
a “Web” development toolset — although it is
frequently used as if this is its only capability. In
reality, Web Dynpro is a toolset for building business
applications that have a medium- to long-term life
span and are aimed at a generic audience. This means
that there is no strict requirement that the client device
be a browser running on a desktop computer. It could
be a mobile device such as a Pocket PC, a Nokia
Communicator, or a barcode/RFID scanner. This
immediately places Web Dynpro outside the realms
of “traditional” Web development toolsets.

Back in late 2001, when the need for a suitable
application development toolset emerged, SAP laid
down a definitive set of criteria that this new product,
whatever it was, would have to fulfill. SAP evaluated
various commercial and open source products for
suitability, but none met all of the design criteria.
Therefore it was decided that an internally developed
product was required. The criteria that had to be
fulfilled are the following:

1. Create a UI programming paradigm that would
become the de facto standard for all future SAP
software.

2. Eliminate the repetitive coding tasks currently
experienced by Web developers. Most impor-
tantly, the fewer lines of handwritten code there
are in the UI, the better.

3. Create a fundamental unit of software reuse that
exists at a business level rather than at some
lower, technical level.

4. Use a declarative approach to application design.

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 31

5. Make full use of abstract modeling. Web Dynpro
applications should not need to care about:

a. The communication technology required to
access a back-end system

b. The client technology being used to render
the screens

6. Make full use of generic services. Functionality
that is frequently required should be made avail-
able from a standard library of services.

The first three points are the most important.

The overarching goal of Web Dynpro is summa-
rized in the first point — SAP wanted to get away
from multiple UI development tools and rationalize
development down to a single UI toolset.

The second point aims to tackle the time-
consuming and repetitive task of writing UI coding.
Anyone who has been involved in a Web development
project will be fully aware that the largest proportion
of the implementation timescale is spent fiddling
around with HTML, JavaScript, and Cascading
Style Sheets (CSS).

Even now, Web developers still feel the pain of
having to write and rewrite the same type of code
every time they create a new business application.
Even Google states on its Web Toolkit page2 that

Writing dynamic web applications today is a
tedious and error-prone process; you spend
90% of your time working around subtle
incompatibilities between web browsers and
platforms, and JavaScript’s lack of modularity
makes sharing, testing, and reusing AJAX
components difficult and fragile.

Therefore, any toolset that can remove the tedious
and error-prone nature of Web development will
provide developers with a major boost in speed and
efficiency. The Web Dynpro tools within the SAP
NetWeaver Developer Studio (NWDS) do exactly
this by generating the UI layer coding for you.

2 From http://code.google.com/webtoolkit/ (accessed November 19,
2007).

In addition to wanting to remove the need for
developers to write any browser-specific coding,
SAP also wanted Web Dynpro applications to be not
just client independent, but client device independent.
This criterion means that when a Web Dynpro screen
is being developed, it is not important to know exactly
which type of device will act as the client.3 This
means that all Web Dynpro screens have to be defined
in a client-independent manner. However, the conse-
quences of this feature are poorly appreciated, and
it is this lack of awareness that has led to many of
the Web Dynpro implementation problems I
have observed.

The third point comes from the fact that the soft-
ware architects at SAP have the benefit of some 30
years experience in the ERP software market. This
experience gave them the foresight to see that if a
software developer’s attention is not realigned to
focus on the business process, then they will be
forever stuck down at the nuts-and-bolts level. So
SAP stated that the fundamental unit of software
reuse within Web Dynpro development should be
made equal to a discrete step of the business process.

Taken together, all these requirements combine to
produce a Web development toolset that is unlike any
other on the market. When people with no Web Dynpro
experience use this toolset for the first time, they natu-
rally bring with them all their previous experiences and
expectations — and herein lies the problem.

People’s expectations of a “Web
development toolset”

Anyone who has used products that fall into the broad
category of “Web development toolset” will have a set
of expectations based on their use of those products.
These people then, often unconsciously, expect Web
Dynpro to operate and behave in the same way as the
other products with which they are already familiar.

The problem is that Web Dynpro cannot be used as
if it is Struts, Spring MVC, Tapestry, or Ruby on Rails.

3 The only restrictions here are that mobile devices have less available
real estate on the screen, and certain mobile devices do not support a
small subset of UI elements.

SAP Professional Journal • March/April 2008

32 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

Although there is no concrete definition of a
Web development toolset, there is a set of criteria
that such a product is generally expected to

provide. Broadly speaking, a Web development
toolset will provide most, if not all of the following
features:

One specific issue concerning the Web Dynpro UI
I have encountered more than one person who has formed a negative opinion of Web Dynpro because it
lacks the ability to position UI elements explicitly on the screen. This feature is referred to as a “pixel-
perfect” alignment of UI elements and is available in most other Web development toolsets. I mention this
specific topic here because it is representative of many people’s opinions.

Let’s say you have a business application that will be run in both German and English. As you would
expect, your screens will have labels and input fields on them. Web Dynpro has been designed to support
multiple languages automatically, and does not require the developer to write language-specific coding.*

The screenshot to the right is an example of an English label and
input field that could occur on the screen.

Now let’s say that you were able to position these UI elements
precisely on the screen. So, for instance, you have specified that
the input field will be located 65 pixels from the left-hand edge of
the screen, as shown in the screenshot to the right.

This is all fine — or is it?

Now let’s run the application in German and see what would
happen to the display if everything except the language were left
unchanged. The screenshot to the right shows the result — as you
can see, the label has been truncated because the input field is at a
fixed location.

This is obviously not a good situation. What we are
expecting to see is the screenshot to the right, where the
input field is correctly positioned according to the
natural length of the label.

If Web Dynpro were to allow the developer to position UI elements exactly on the screen, then such infor-
mation would immediately become language specific because of the simple fact that words change length
(and possibly direction) when translated from one language to another.

Translation is an awkward enough process as it is without adding UI element placement into the mix.
Therefore, SAP took the deliberate design decision to have all UI elements positioned automatically by
the Web Dynpro Framework.

* It is, however, possible to write language-specific code in Web Dynpro should you need to.

65 pixels

65 pixels

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 33

A strong focus on the flexibility of the UI layer

A library of UI objects

General adherence to the Model-View-Controller
(MVC) design pattern

Some type of “component” concept

Management of the application’s state

Business object persistence

A library of generic services

 A “page at a time” approach to client
communication

The most strongly expected feature is the first —
flexibility of the UI layer. This feature is so pervasive

•

•

•

•

•

•

•

•

amongst other Web development tools, that it is
widely regarded as a requirement rather than a feature.
See the sidebar above to understand why SAP has not
implemented this feature.

So where’s the mismatch?

The problem comes from the fact that Web Dynpro
is assumed to be a Web development toolset; there-
fore it is expected to fulfill all the expectations just
listed. However, it does not. This is not because SAP
decided they weren’t important, but rather because it
had to meet its own set of design criteria.

Figure 1 and Figure 2 show the contrasts: firstly,
whether Web Dynpro matches people’s expectations

Figure 1 Does Web Dynpro meet the general expectations for a Web development toolset?

Expectations Met by Web Dynpro?

A strong focus on the flexibility of the UI layer No — the stability and reliability of the business application is
considered a higher priority than specific features of the UI

A library of UI objects Yes

General adherence to the MVC design pattern MVC has been implemented in an SAP-specific manner

Some type of “component” concept Yes

Management of the application’s state Yes

Business object persistence Yes

A library of generic services Yes

A “page at a time” approach to client communication No

Features of Web Dynpro Expected by an untrained developer?

Serve as the de facto UI programming toolset for all future
SAP software products

No, and probably not considered important

Eliminate the repetitive coding tasks currently
experienced by Web developers

Yes, but not to the extent implemented by Web Dynpro

Create a fundamental unit of software reuse that exists at
a business level rather than at some lower, technical level

Probably not

Use a declarative approach to application design Yes, but would depend largely on previous experience

Use abstract modeling for communication with a back-
end system

Yes

Use abstract modeling to create client device-
independent screen layouts

No

Make full use of generic services Yes

Figure 2 Would an untrained developer expect the features provided by Web Dynpro?

SAP Professional Journal • March/April 2008

34 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

for a Web development toolset, and secondly, whether
the features provided by Web Dynpro are expected.

As you can see from Figure 1, SAP has deliber-
ately shifted the focus away from UI flexibility and
onto application stability and reliability. Then from
Figure 2, you can see that an untrained developer
using Web Dynpro for the first time would not expect
to find the unit of software reuse at the business
process level rather than at the technical level.

The other unexpected feature is the use of abstract
modeling to create client device-independent screen
layouts instead of directly using HTML, JavaScript,
or CSS. Web Dynpro does not allow you to use these
markup and scripting languages — if you did, then
you would immediately have created client-dependent
screens, and in doing so, violated a fundamental
design requirement of Web Dynpro. However, some
developers are so used to having this level of control
they believe that without it, Web Dynpro could not
possibly work successfully.

These factors — software reuse at the business
level and using abstract modeling to create client
device-independent screen layouts — are the key
differentiators between Web Dynpro and other Web
development toolset. As a result of this shift in design
priorities, SAP has created a Web development toolset
that has a strong focus on:

1. Code reuse at the business process level: The
unspoken principle here is coding is bad … if
you have to write the same piece of code twice.

2. Code maintainability: The easier an application’s
architecture is to understand, the easier it is
to maintain. This has a significant impact on
lowering an application’s total cost of ownership
(TCO).

3. Separation of concerns: The different software
units within a Web Dynpro application are divided
into those that generate data and those that con-
sume data. It is very important that you do not
blur the functional boundaries between these
different units; otherwise you will create an
application that is very difficult to maintain.

The bottom line is that as a result of the natural

tendency for people to think that the new product
(Web Dynpro) ought to behave in a way they are used
to, they often try to press-fit Web Dynpro into their
expectations — and when it doesn’t fit, they adopt
one (or both) of the following stances:

They feel justified in condemning the product.

They force Web Dynpro to behave according
to their expectations.4

If the second stance is adopted, the result is an
application that may well be functional, but is exces-
sively complex, difficult to maintain, and will probably
experience performance and scalability problems.

OK, can anything else go wrong?

Unfortunately, yes: a couple of things in fact.

These problems actually have nothing to do with
the Web Dynpro product, but rather are related to the
way in which SAP implementation projects are often
managed. I will mention them in this article only in
summary form because they are tangential to the main
subject of Web Dynpro for Java.

I recommend that you download a more detailed
description of these problems from the SAP
Professional Journal Web site at http://www.sappro.
com/downloads.cfm. This will give you a greater
insight into the problems that can be created when a
poor understanding of Web Dynpro and poor project
management coincide. Of particular importance is the
diagram in the “Vicious Circle” section. Warning:
It gets ugly!

In short, the purpose of Web Dynpro was misun-
derstood and this led to a variety of problems:

• Developers trying to work from ambiguous
functional specifications: If a functional specifica-
tion does not describe the required processes with
clarity, then there will be room for “interpretation”
of the specification’s meaning. The developers then
write, test, and deliver what they think the specifi-
cation means, only to find that the program fails

4 A square peg will fit into a round hole if you hit it hard enough….

•

•

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 35

user acceptance testing. I have worked on projects
where the specification meant one thing to the
business users, but a different thing to the devel-
opers. Needless to say, a lot of time, effort, and
money was wasted during extended periods going
around the test-reject-fix cycle.

• Allowing the planned functional scope of a
project to flex when “spur-of-the-moment”
ideas are thought up: There are always situations
during an implementation where you find that the
original plans were not comprehensive enough,
and so some in-flight adjustments must be made
to the scope of the delivered product. However,
a balance is required here between dogmatically
sticking to the plans, and letting spontaneity run
riot. When the scope is allowed to expand without
a corresponding increase in project resources or
an extension of the time frame, then the quality
of the delivered application will necessarily drop.

• Ending up in the “Vicious Circle”: If all the
problems described here coincide, then you will
probably end up in what I describe as the “Vicious
Circle” scenario. This is not a nice place to be
at all, but when I conducted a quick straw-poll
during one of my SAP Tech Ed 2007 sessions,
I asked the attendees if they could identify with
this situation — at least 1/3 of the people in the
room put their hands up.

Avoiding the pitfalls

I’ve spent quite a long time describing what can go
wrong during Web Dynpro implementations, and if
I were to stop here, you could easily go away thinking
that any project you attempt would turn into
Nightmare on Web Dynpro Street. However, the best
way to avoid falling into these traps is to go into a
Web Dynpro implementation with your eyes open,
fully understanding the purpose of Web Dynpro,
understanding the mistakes made during other imple-
mentations, and then ensuring they are not repeated.

So now let’s look at the positive side, and we’ll
see that as long as you are correctly prepared, a Web
Dynpro implementation can run smoothly and result in
software that is easy both to understand and maintain.

I have divided the following design principles into
the broad categories of “high level” and “low level,”
the difference being that high-level design principles
apply to the construction of the overall application
where your building block is the Web Dynpro compo-
nent, while the low-level principles apply to the
internal design of a single component.

In the following sections, I have spent more time
focusing on the high-level design topics than the low-
level ones. This is partly because the low-level design
information is already covered in the standard SAP
training courses for Web Dynpro Java (JA310 and
JA312), and also because the consequences of a poor
overall application architecture are far harder to
correct than correcting a single, poorly written Web
Dynpro component.

High-level Web Dynpro design
principles
Let’s now put all those mistakes behind us and look at
how to do things correctly.

First, we will look at the most fundamental or core
principles.

SAP has modified the MVC design pattern.

Java developers think in classes; Web Dynpro
developers think in components, where one Web
Dynpro component = one business task.

Next, we will look at the design principles for
constructing a business application from multiple Web
Dynpro components.

Create Web Dynpro components to perform
specific business tasks.

For traditional Web development, the main design
priority is specific features of the UI. For Web
Dynpro development, the main design priority is
the stability and reliability of the business process.

Use development components of type “Web
Dynpro” to group together related Web Dynpro
components.

•

•

•

•

•

SAP Professional Journal • March/April 2008

36 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

Use standalone component interface definitions
(SCIDs) to increase design flexibility.

These fundamental principles create consequences
that have a profound knock-on effect throughout
the whole of Web Dynpro design and architecture.
Therefore, if you understand these principles, you
will understand why SAP recommends certain
coding styles and architectural structures.

How SAP has modified the MVC
design pattern

The MVC design pattern has been in use since 1978
and, like any other design pattern, there is no single
“correct” way of implementing it. However, a typical
implementation is shown in Figure 3.

In this scenario, the following sequence of events
is typical:

1. A controller receives a request directly from the
client — typically a browser.

• 2. After analyzing the data in the request, the
controller then decides what action to take. This
could involve passing information to a model to
retrieve data from a back-end system.

3. The model retrieves the data from the back-end
system. The original MVC specification regarded
views as “presentation filters” through which to
display the model’s data. The consequence of this
feature is that models often raise events to which
the views directly subscribe.

4. Once the model has retrieved the data, it is distrib-
uted to the various controllers and views in the
application. In this scenario, views can receive
data directly from models.

5. The view then creates the output suitable for the
client device and returns the response.

There are several key differences here between the
way a typical MVC application is constructed, and the
design criteria laid out by SAP for Web Dynpro.

1

E d i t o r

Controller
Request

Response

User
Interaction

Layer

Business
Interaction

Layer

Event
subscription

Data
transfer

ModelModel

ViewView

Communication
Layer

Data
transfer

Data
transfer

Business
System

1

2

4

4

4

5

3

Figure 3 A typical MVC implementation

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 37

Firstly, the above implementation does not natu-
rally allow for client independence. This immediately
forces the coding in both the controller and view to be
client dependent. As I mentioned earlier, this is where
as much as 90% (according to Google) of the develop-
er’s effort can be swallowed up on a Web project.

Secondly, notice the units of reuse. Models, views,
and controllers are all reusable individually and inde-
pendently of each other. This puts the level of reuse
granularity at too low a level. A single view or
controller is very unlikely to represent a single step
of the business process; therefore, in a typical MVC
application, code reuse occurs at a lower technical
level, rather than at the business level. This immedi-
ately complicates reuse efficiency because multiple
units of code now need to be referenced in order to
complete a single step of the business process. SAP’s
design criterion explicitly states that Web Dynpro
applications should be based on units of code reuse
that represent distinct steps of the business process,
not lower, technical units of code.

Thirdly, there is no concept of abstract modeling.
The controller that receives the incoming request
must understand how the specific client devices will
communicate with it. Also, the views must be able to
generate output that is specific for the range of clients
acting as front-end devices. The consequence of this
situation is that if ever you wanted to support a new
type of client device, you would have to modify the
coding in all your business applications. SAP decided
that Web Dynpro should not care about the specific
requirements of either the client device or the back-
end server. Therefore all Web Dynpro applications
have been designed so that their UIs are specified in
a client-neutral manner and all model objects look the
same irrespective of the protocol required to commu-
nicate with the back-end server.

Remember SAP’s design criteria listed on page
30. You can see that the traditional implementation of
MVC does not meet these criteria; therefore SAP had
to implement the MVC design pattern in a modified
manner. As you can see in Figure 4, a Web Dynpro

Figure 4 How SAP has implemented MVC in Web Dynpro

Web Dynpro Framework

E d i t o rWeb Dynpro Component

Non-visual
Controller

Request

Response

User
Interaction

Layer

Business
Interaction

Layer

Data
transfer

Visual
Controller

Communication
Layer

C
lie

n
t

A
b

st
ra

ct
io

n
La

ye
r

Se
rv

er
si

de
S

er
ve

r
si

d
e

re
nd

er
in

g
re

nd
er

in
g

Server
Abstraction
Layer

Data
transfer

CommonCommon
ModelModel

InterfaceInterface

Business
System

ModelModel

1

7

2

3

6

5

4

SAP Professional Journal • March/April 2008

38 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

application looks somewhat different from that seen
in Figure 3.

The Web Dynpro implementation of MVC
includes all of SAP’s design criteria, without losing
the fundamental concept (more on this in the next
section).

1. When an incoming request arrives at the Java
server running Web Dynpro, the Client
Abstraction Layer (CAL) first converts the infor-
mation into a client-neutral format known simply
as a “data container.”

2. The client-neutral data container is then passed
to the relevant instance of the Web Dynpro
component responsible for the running application.
Notice here that the unit of software being invoked
is a component, not an individual controller or
view.

3. When data is required from a back-end system,
the consequences of SAP’s requirement for
abstract modeling can be seen in action. Instead
of the Web Dynpro component communicating
directly with the model, it communicates with the
Server Abstraction Layer, which in turn hides the
model object behind the Common Model Interface
(CMI). The purpose of the CMI is to make all
model objects look the same irrespective of the
protocol5 required to communicate with the back-
end server.

4. The model now communicates with the back-end
system and the data is returned to the Web
Dynpro component.

5. In a Web Dynpro component, instead of having
distinct entities called controllers and views, SAP
has modified the MVC concept so that there are
two basic categories of controller. The difference
between these categories is simply whether the
controller has a visual interface or not. A Web
Dynpro view is simply regarded as a controller
that has a visual interface. This architectural
change is the direct consequence of SAP’s

5 The back-end access protocols currently supported by Web Dynpro are
Remote Function Call (RFC), Simple Object Access Protocol (SOAP),
and Remote Method Invocation (RMI).

requirement for Web Dynpro to be client
device-independent.

Notice the arrow under step 5. It is only single
headed. This is because a non-visual controller
always acts as a supplier of data to the visual
controller. This is another fundamental principle
in Web Dynpro, but more on that later.

6. Once the business processing has completed for
the current roundtrip, the Web Dynpro component
sends its output back to the CAL. The Web
Dynpro component does not know (neither does it
care) about the precise implementation details of
the client. Consequently, it does not need to worry
about generating any HTML or JavaScript. This
task is performed by the server-side rendering
within the CAL.

7. The client-specific output is now returned to the
client, and the current roundtrip comes to an end.

As you can see from the diagram in Figure 4, all
of these processing steps take place within the Web
Dynpro Framework. This is the runtime environment
within which all Web Dynpro components are
executed, and it exists because of the design require-
ments for both client independence and abstract
modeling. The Web Dynpro Framework automates
all aspects of:

Client communication — through the CAL

UI rendering — through server-side rendering
within the CAL

Back-end communication — through the Server
Abstraction Layer

Taken together, these factors will eliminate at
least 50% of your implementation development effort.
However, these benefits come with the realization
that Web Dynpro cannot be used as if it were Ruby on
Rails or Struts. Since Web Dynpro’s primary focus is
the implementation of business processes in an effi-
cient, reliable, and reusable manner, the flexibility of
the UI to which people have become accustomed6 is
treated as a secondary priority.

6 And therefore regard as “indispensable.”

•

•

•

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 39

Think in components, not classes:
one component = one business task

The next mental shift developers need to make is to
think of the Web Dynpro component as both their
fundamental unit of development and reuse — not

an individual Java class. This is essential in order to
be able to create low TCO Web Dynpro applications.

As before, the importance of this point can be
illustrated by showing what happens if it is not
followed. In Figure 5 and Figure 6 (on page 40), you

Figure 5 The navigation window of a monolithic component

SAP Professional Journal • March/April 2008

40 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

can see what happens if you try to put all your func-
tionality into a single component.

Not a pretty sight!

There are several distinct problems with monolithic
Web Dynpro applications (these problems are in fact
not specific to Web Dynpro, but to software applica-
tions in general). As the component grows in size:

The coding it contains becomes less reusable.

The coding becomes harder to maintain as layer
upon layer of fixes or enhancements are added.

The developers who work on the fixes and
enhancements gain specialist application knowl-
edge that becomes increasingly important to the
company. If these developers leave (taking their

•

•

•

knowledge with them), then a new developer will
require a significant block of time to study the
code before they can safely modify it.

Eventually, the TCO of such a piece of software
becomes disproportionately large when compared
with the benefits it provides. When you reach this
point, it’s time to throw the application away and
start again; however, it’s better not to end up in
this situation in the first place (for an insight into
how this can happen, see the download available
at http://www.sappro.com/downloads.cfm).

There’s no simple answer to the question,
“How large should a Web Dynpro component be?”
However, you should find a balance that is based on
optimal reusability. This is illustrated in Figure 7.

•

Figure 6 The component editor window of a monolithic component

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 41

If you make your Web Dynpro components too
large, their reusability suffers because they contain
too much functionality. On the other hand, if you
make the components too small, then the reuse
scenarios become too complex, and the SAP Java
Server will have a greatly increased workload due
to the increased number of component instances
needed for each application instance at runtime.
This leads directly to the design principle that
one component = one business task.

The component has been designed to act as the
building block for all Web Dynpro applications.
Within this design concept, you should always design
a component to have the maximum level of reuse:
Having said that, a component’s position in a hier-
archy will also determine its level of individual reuse.

As shown in Figure 8 (on the next page), the
components at the bottom of the hierarchy will

typically contain highly reusable units of function-
ality. This would include such tasks as access to a
back-end system or managing error or help messages.
These low-levels components have been specifically
designed for maximum reuse and are generally
referred to as “utility” components.

As we move up the component hierarchy, the
reusability of individual components decreases
because they are designed to bring the functionality
of the lower level or “child” components together in
such a way as to perform a specific business task.
The component at the top of the hierarchy is known
as the “root” component and has the specific task of
bringing the functionality of all the child components
together into a working application.7 Even though the
root component is not reusable individually, it is

7 See my article in the January/February 2007 issue of SAP Professional
Journal for more on how components function within a hierarchy.

Highly Fragmented
Reuse level too small.

Higher system overheads

1 Component = 1 business task
Best level of reuse

Monolithic
Very poor reusability

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

Bad Good Bad

Figure 7 Component granularity is a balance between two extremes

SAP Professional Journal • March/April 2008

42 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

completely reusable if you treat your unit of reuse
as the entire hierarchy.

Create Web Dynpro components to
perform specific tasks

All Web Dynpro components are constructed from the
same basic units arranged in the same way, as shown
in Figure 9. As you can see, the component has a
vertical dashed line down the middle that separates the
visual entities on the left from the non-visual entities
on the right. This means that there are entities within
the component that are responsible for placing UI
elements on the screen and populating them with infor-
mation, and entities that take no direct part in the
management of these UI elements. The non-visual
entities generate the business data and manage the flow
of information through the application (i.e., they are
data generators); the visual entities are responsible for
handling user interaction and are consumers of data —
either from the user or from a non-visual entity.

The horizontal dashed line across the top of the
diagram divides the component into those parts that
can be seen outside the scope of the component (i.e.,
that are externally visible) and those that are hidden
from view. It is important to understand that a Web
Dynpro component presents two interfaces (i.e., two
externally visible entities). One is programmatic and
the other is visual. Figure 10 provides more details on
the controllers found in a Web Dynpro component.

You might wonder why the vertical dashed line
cuts through the interface view, window, and view
controllers; it might seem from my description above
that the entire view controller is a visual entity. This is
not quite true.

In the case of a view controller, the “visual entity”
is the view layout. This is the only part of a view
controller that is responsible for the presentation of
data on the screen. The view layout, however, is inte-
gral to and cannot exist outside of a view controller.
The coding in the view controller acts upon the UI
elements, but does so in a way that is decoupled from

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

Root
Component

Intermediate
Components

Utility/Model
Components

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

R
eu

sa
b

ili
ty

o
f

in
d

iv
id

u
al

co
m

p
o

n
en

ts

High

Low

Figure 8 The reusability of a component varies according to its position within the hierarchy

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 43

the actual UI element objects. This is achieved via
“data binding.” See the section “Manually setting or

getting UI element property values instead of using
data binding” on page 54 for more details on this.

Figure 9 The architecture of a Web Dynpro component in SAP NetWeaver CE

W e b D y n p r o C o m p o n e n tW e b D y n p r o C o m p o n e n t

Window
Controller

Externally
Visible

Internally
Visible

Interface
View

Controller

Custom
Controller

View
Controller

Component
ControllerWindow

View
Layout

Visual Entities Programmatic Entities

Interface
View

Interface
Controller

Component
Controller

Custom
Controller

View Assembly

Window

View Layout

Model

Entity within a component Type Description

Component controller Non-visual Acts as the central point of control for all processing within the component.
In effect, this controller is the component.

Interface controller Non-visual In SAP NetWeaver CE, this controller is a true interface implemented by the
component controller. In SAP NetWeaver ’04 and 7.0, this controller is a
distinct class containing its own coding.

Custom controller Non-visual Created only when explicitly required by the developer. Used to
encapsulate functionality such as that required for an Object Value
Selector.

View controller Visual Responsible for the display of information on the client and for user
interaction.

Window controller Visual Handles the processing related to an aggregation of view controllers. This
controller does not exist in the SAP NetWeaver ’04 and 7.0 versions of Web
Dynpro.

Interface view controller Visual Acts as the component’s visual interface at runtime and is implemented by
the window controller.

Figure 10 Description of each controller’s role within a component

SAP Professional Journal • March/April 2008

44 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

As you design your application, you will find that
certain units of functionality are frequently required
and become natural candidates for encapsulation as
Web Dynpro components. Such units of functionality
would be things like simplifying the access to a back-
end system if a particularly complex interface must be
used, or standardizing the handling of error messages,
or defining an abstract screen layout that is only popu-
lated at runtime. These types of tasks fall into one or
more of the following general categories:

• Model components: Access to back-end systems,
particularly if the interface is complex or large

• Utility components: General purpose tasks such
as error message management

• Faceless components: Any component that makes
no contribution to the application’s visual appear-
ance (both model and utility components could
also be faceless components)

• Visual components: Define an abstract screen
layout that is dynamically populated at runtime

Model components

The interface to a model object is often large and
complex. For instance, take the BAPI used to create
purchase order documents. It has a large and complex
interface, and the business scenario being imple-
mented often does not require access to all the
parameters in the interface. Therefore, it makes no
sense to build complex interface coding into every
component that uses this model object. It is far more
efficient to encapsulate the interface logic into a Web
Dynpro component and reuse that. This is where the
creation of a model component is recommended
(remember, a model component is simply a regular
Web Dynpro component that has been written to
simplify the interface to a model object).

Into this model component, you place any special-
ized coding needed to perform pre- or post-processing
on the business data as it passes into and out of the
model object. You then add various methods to the
component’s interface to provide easy access to the
model object’s otherwise complex interface.

Once you have developed a model component,
the business application component requiring the
model’s functionality declares a usage of it, thus
gaining access to the simplified interface.

Utility components

A utility component is a regular Web Dynpro
component that has been written to perform a
widely used and frequently required task. Examples
of such components are those that handle error
messages or that perform user authentication. These
components will occupy the lowest levels of a
component hierarchy and will be widely used by
multiple applications (see Figure 8). Often, these
utility tasks will require no interaction with the
user; therefore, utility components will often have
no need for a visual interface. Such components
are known as “faceless” components.

Faceless components

A faceless component is any component that makes
no contribution to the business application’s visual
interface. In most cases, utility components will not
be required to present information directly to the
screen; therefore it is generally true that a utility
component will also be a faceless component.

However, you should understand that even if
a component has a visual interface, it can still be
considered “faceless” if it makes no contribution
to the business application’s visual interface. For
instance, a model component is required when
access to a back-end system is performed through a
large or complex interface. In this case, the model
component presents the rest of the application with
a simplified interface to the back-end system.

As far as the business application is concerned,
the model component behaves simply as a special
kind of utility component that operates in the back-
ground. However, the model component will
probably need to have a visual interface for the
purposes of unit testing and administration. So in
this case, even though the model component has a
visual interface, it would still be described as “face-

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 45

less” because that visual interface is not required for
the business application’s user interface.

Visual components

It should be no surprise that a visual component is
the opposite of a faceless component! A faceless
component contains functionality, but no visual
interface; a visual component has a well-defined
visual interface, but contains little or no function-
ality. The purpose of such a component is to create
an abstract screen layout definition, without being

concerned for the exact content. Such components
are used to define floorplan manager components.

Focus on the reliability and stability
of the business process, not UI
features

You should now have a good understanding of why
Web Dynpro does not provide the same degree of
flexibility in the UI found in other toolsets (though
future releases will include some enhanced capabili-
ties; see the sidebar below). This is simply because

Future enhancements to Web Dynpro UI capabilities
Now that Web Dynpro is a stable product, SAP has turned its attention to its more cosmetic aspects.
Therefore, in future releases you will see two major additions to Web Dynpro’s UI capability:

Java Server Face (JSF) bridge: For those situations in which you really need to implement some
highly customized UI elements, you will soon be able to embed JSF applications within Web Dynpro
views. This will then allow you to create whatever custom UI functionality you require, but treat it as
a generic UI element within the Web Dynpro view controller (Figure 9 on page 43 shows the position
of a view controller within the Web Dynpro component). The screenshot below shows a UI mashup
created using Web Dynpro and JSF.

•

Continues on next page

SAP Professional Journal • March/April 2008

46 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

if it were provided, then Web Dynpro would have
failed to meet one of its fundamental design require-
ments: namely, client device independence. At the end
of the day, it’s far more important that your software
is functional and reliable. Making it look snazzy is
fine, but if it keeps falling over, or can’t scale to meet
usage requirements, where’s the benefit?

Use development components to group
related Web Dynpro components

We now have to deal with a clash of terminology. The
word “component” is used in different situations with

different meanings. Within the scope of Web Dynpro,
the word component means the basic unit of software
development and reuse. However, within the scope of
the SAP NetWeaver Development Infrastructure
(NWDI), the phrase “development component” is used.8

A development component (DC) is a metadata
wrapper that contains information on:

8 For a detailed introduction to the NWDI, see SAP Professional Journal
articles “A guided tour of Java software development lifecycle manage-
ment with SAP NetWeaver Development Infrastructure (NWDI): Part 1
— Fundamental concepts” (July/August 2007) and “A guided tour of
Java software development lifecycle management with SAP NetWeaver
Development Infrastructure (NWDI): Part 2 — The development
process” (September/October 2007).

Adobe Flash islands: In addition to the JSF bridge, a GenericFlash UI element will be delivered that
will allow you to use Adobe Flash controls to provide things like transition effects and drag-and-drop
capability. The screenshot below shows an Adobe Flash island embedded into a Web Dynpro screen.

•

Continued from previous page

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 47

How the contained software entities should be
compiled

The transport path through the system landscape

Functionality exposed by means of “public parts”

Usage dependencies on the public parts of
other DCs

DCs come in a variety of types; for instance,
Dictionary, J2EE Enterprise Application, Portal
Content, and Web Dynpro. The problem comes from
the fact that people confuse Web Dynpro components
with DCs of type Web Dynpro. The Web Dynpro
component is a unit of software, whereas a DC of type
Web Dynpro is a container for compilation and trans-
port. A DC of type Web Dynpro will typically contain
multiple Web Dynpro components.

SAP strongly recommends that Web Dynpro
development should not be performed without a
correctly installed and configured NWDI. Without
NWDI, Web Dynpro development becomes an
awkward and error-prone undertaking — particularly
when several developers are working together on the
same application.

The next question that people ask here is, “What
should I put into my DCs of type Web Dynpro?”

Since a DC is a collection of software entities that
are all compiled in the same way and all need to be
transported around the system landscape together, you
should group your models or Web Dynpro compo-
nents together according to their overall functional
relationship. For example, all the components that
handle interaction with a particular type of business
object in a back-end SAP system could be grouped
together into a single DC.

Save development time by grouping related model
objects into a DC
One time-saving tip is to place related Web Dynpro
model objects into a single DC of type Web Dynpro.
This DC will not contain anything other than model
objects for the following reasons:

•

•

•

•

Model objects tend to be large

Model objects are time consuming to compile

Model object do not change very often

Now consider what would happen to your rate
of development if your Web Dynpro model objects
and Web Dynpro component live together in the
same DC. Every time you want to test a change to
the business application, you must recompile and
redeploy the coding. Is it necessary to recompile all
the model objects every time you change the busi-
ness application? Obviously not!

The whole point of this recommendation is to
speed up development time by separating those
parts of the code that change frequently from those
parts that change rarely. If a unit of code changes
only rarely, then don’t package it together with
coding that changes frequently.

To gain access to the model objects inside the
model DC, each model object should be exposed to
the outside world by adding it to a “public part.”
Then you only need to perform a “DC build” and
your model DC is ready for use by other DCs.

Once the model DC has been created, it will
remain relatively static — that is, you compile,
build, and deploy it once, and thereafter, it will
hardly ever change. Then the DC containing the
Web Dynpro model components provides the
simplified interface to the models. Together,
these two DCs form a single reusable unit of
functionality.

Figure 11 illustrates this principle (on page 48).

Use standalone component interface
definitions (SCIDs) to increase
design flexibility

In a typical business application of any complexity,
you will have multiple Web Dynpro components
functioning together in a hierarchy. The component
at the top of the hierarchy, known as the “root”
component, will need to have detailed knowledge of
functionality provided by the lower level compo-

•

•

•

SAP Professional Journal • March/April 2008

48 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

nents (generally known as “child” components).
Conversely, a well-designed child component
need not know anything about the root component
acting as its parent.

However, if you tie a parent component too
closely to its child components, you lose a signifi-
cant degree of design flexibility. This is known as
tight coupling and is illustrated on the right side
of Figure 12. The parent (or root) component is
tightly coupled to child component B. This is not
necessarily a problem, but if you wanted to swap
out a component for some other suitable compo-
nent, as the relationship currently stands, you
would have to make changes to the definition of
the root component, even though no coding there
needs to change.

Web Dynpro components can therefore imple-

ment something known as a standalone component
interface definition (SCID), which is illustrated on the
left side of Figure 12. The purpose of the SCID is to
define a generic interface that can then be imple-
mented by multiple components. As far as the parent
component is concerned, it implements the SCID, and
need not concern itself with exactly which child
component supplies the delivered functionality. As
long as the child component instantiated at runtime
implements the same SCID, then any child component
could be used at that point in the hierarchy.

This facility allows you to develop flexible,
polymorphic applications that can dynamically swap
different component instances in and out of the child
component’s position without affecting anything in
the parent component.

Figure 11 Two DCs of type Web Dynpro function together as a reusable pair

DC containing Model ComponentsDC containing Model Components

DC
Metadata

WD Model Component 1WD Model Component 1

Public
Parts

DC containingDC containing
only Modelsonly Models

Component
Controller

doMethod1()

doMethod2()
View
Controller

View
Controller

Interface
View
Controller

DC
Metadata

Public
Parts

Used
DCs

Model 1

Model 2

Model 3

Model 4

Model 5

WD Model Component 2

Component
Controller

doMethod1()

doMethod2()
View
Controller

View
Controller

Interface
View
Controller

Interface Controller
doMethod1() doMethod2()

Interface Controller
doMethod1() doMethod2()

Used
DCs

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 49

Lower-level Web Dynpro
design principles
Now that you have had a brief overview of the
high-level principles, we should turn our attention
to the lower-level design principles that apply to the
internal design of a single Web Dynpro component.
In the next sections, we will take a closer look at the
following two key areas that can make or break your
Web Dynpro components:

The separation of data generators from data
consumers

The role of view controllers — and how to avoid
abusing them

•

•

The separation of data generators
from data consumers

The MVC design pattern is frequently cited as
the best pattern for separating data presentation
from data processing — and this is certainly true.
However, the separation of data presentation from
data processing is just one use case of a much more
fundamental principle: namely, the separation of
those parts of the program that generate data from
those parts that consume data.

In order to get the best from Web Dynpro, you
need to have a firm grasp of how this fundamental
concept has been implemented within Web Dynpro.
Once you understand this, you will then have a

Figure 12 Tight coupling vs. loose coupling with a child component

Web Dynpro Application

Root Component
Tig

htco
up

ling
w

ith
child

co
m

po
nent

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

Standalone Component
Interface Definition

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

WindowWindow

View AssemblyView Assembly

View LayoutView Layout

Any Suitable
Child Component

Child Component B

Loose
coup

ling
possible

w
ith

a
S

C
ID

SAP Professional Journal • March/April 2008

50 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

common thread that ties together all the design prin-
ciples that follow.

When I explained earlier how SAP modified the
MVC design pattern, I said there are two basic cate-
gories of controller within a Web Dynpro
component. The difference between them is simply
whether the controller has a visual interface or not.
This change to the standard MVC implementation
was made necessary by the requirement that all
Web Dynpro screens be developed in a client
device-independent manner. However, you can also
see the data generator-data consumer principle at
work here.

Models

In Figure 9 you can see that a model stands outside
the scope of the Web Dynpro component. This is
so that model functionality can be reused indepen-
dently of the component functionality. In this
architecture, a model is always considered to be
a data generator. Even though the model requires
input data to function, its role in life is to act as the
interface to some back-end system.

Say, for instance, you want to create a purchase
order document. A large quantity of information
must be supplied to the model in order for this
process to complete successfully. However, even
though a large quantity of data is consumed and a
small quantity of data is generated, the sole purpose
of that input data is to complete a step of the busi-
ness process. We know this step is complete when
we receive the small quantity of data containing
(amongst other things) the purchase order document
number.

The data required by a model is used to drive
each step of the business process, and we know
whether the step completed successfully or not
by looking at the data the model generates. When
you look at the situation from the business process
point of view, you will understand why models are
always considered to be generators of data in spite
of the fact that they frequently consume more data
than they generate. In other words, an entity within
Web Dynpro is judged to be a consumer or gener-

ator of data, not on the basis of the quantity of
information that passes into or out of it, but on the
basis of the role it plays within the business process.

Visual controllers
On the other hand, the visual controllers in a Web
Dynpro component are always considered to be data
consumers: they consume data either from a non-
visual controller or from the user via the keyboard
and mouse. The purpose of the visual controller is
two-fold:

To present information on the screen that has
been generated by some other non-visual
controller within the component

To consume information from the user in
response to the presented information

It is most important that the role of a visual
controller is not abused — because this is one of the
most frequently violated design principles I have
seen in Web Dynpro implementations. (I will
address this topic in the next section.)

Non-visual controllers
The role of a non-visual controller is to act as a
middleman between the model and the visual
controller. This means that with respect to the
model, the non-visual controller acts as a consumer
of data generated by the model, but with respect to
the visual controller, it acts as a generator.

Separation of concerns
The distinction between these three fundamental
units of coding9 has a profound impact on the way a
Web Dynpro component should be written. The best
way to illustrate the correct design here is to look at
the abuses of this principle.

For instance, if a visual controller should only
ever act as a consumer of data, should it be written
in such a way that it takes responses from the user,

9 That is: models, visual controllers, and non-visual controllers.

•

•

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 51

directly interacts with the model, and then places
the results on the screen?

Hopefully, you answered “no” to that question!
The reason is that a visual controller is not respon-
sible for generating the data it displays. When a
Web Dynpro controller makes use of a model, then
that usage is considered internal to the controller.
Hence, if a visual controller were to interact directly
with a model, then as far as the other controllers in
the component are concerned it is behaving as if it
were the generator of that data.

To enforce adherence to this design principle,
SAP has designed visual controllers such that they
are unable to share the data they contain with other
controllers in the component. In other words, a
visual controller may not act as a data source
from which another controller can consume data.
Consequently, the direct interaction between a
visual controller and a model object is considered
very poor design. To understand this better,
consider the reuse case for data within a visual
controller. If you were to code a visual controller
such that it could interact directly with the model,
what could you do with that data once it arrived
within the visual controller?

Answer: very little.

Since a visual controller should never act as a
data source (or data generator), it would be difficult
(at least without breaking even more rules) to
supply the information it contains to the rest of
the Web Dynpro component.

The outworking of this principle means that a
visual controller should never contain the coding
to perform the actual business logic, because any
data received from a model cannot be legitimately
shared with other controllers in the component.

Unfortunately, many developers fail to under-
stand this principle! I reviewed one customer
project where the implementation partner’s devel-
opers had no specific Web Dynpro training and
were implementing their first Web Dynpro applica-
tion. Without knowing any better, they had written
it using a Java Server Pages (JSP) architecture style.
They placed a copy of the database access coding

(including the schema) into each of the 18 view
controllers — and then they complained that the
application was very difficult to maintain!

It should be pretty easy to spot the mistake
here. As a consequence of having no specific Web
Dynpro training, the developers assumed they
could use a Web Dynpro view controller as if it
were a regular JSP page. This was not their fault,
but it did become their fight!

The resulting application was functional, but
eventually became more costly to maintain than it
was to write: consequently, it had to be scrapped
and rewritten!

Do not abuse the role of view
controllers!

As I stated earlier, the MVC design pattern does
much more than separate the processing layer from
the presentation layer: It separates those parts of
the program that generate data, from those parts
of the program that consume data. This is a
fundamental principle that has a big impact on the
internal structure of a Web Dynpro component.
The most frequent example of a violation of this
principle is found in the way people code view
controllers.

Untrained developers tend to put their coding
into whichever controller they can to obtain the
required result. Consequently, they never maintain
any functional distinction between visual and non-
visual controllers — the coding is placed wherever
it works!

A view controller should be written such that
it is only ever a consumer of data — never a
generator. This means that view controllers should
never contain coding to interact with a back-end
system.

This is really dangerous because the problems
created by this type of abuse often do not become
visible until it is too late to do anything about it.
Just because a program is functional does not
mean it has been well written!

SAP Professional Journal • March/April 2008

52 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

We will now take a quick look at the three main
areas in which the role of a view controller is abused:

Placing business logic within them

Using the wdDoModifyView() method for anything
other than UI element manipulation

Manually setting or getting UI element property
values instead of using data binding

Placing business logic into a view controller

First of all, I must explain exactly what is meant by
“business logic.” By “business logic,” I am referring
to coding that, having received information from the
user, uses it to initiate the next step of the business
process. This includes the pre-processing prior to
invoking the business process and the post-processing

•

•

•

required before the received data is presented to
the user. In Web Dynpro development, initiation
of the next step of a business process almost always
adds up to invoking the functionality found in a
model object.

The bottom line here is that Web Dynpro view
controllers should never need to interact directly
with a model object. From a technical perspective,
it is perfectly possible to write such coding, and that
coding will be functional. However, this is consid-
ered to be a very poor coding style because it
creates a muddled architecture that rapidly becomes
difficult and time-consuming to maintain.

Figure 13 shows a typical business scenario in
which view controllers can be abused:

1. The user is looking at a table of sales orders on

Figure 13 How a client-side event is processed by the Web Dynpro Framework

Web Dynpro Client

Web Dynpro Framework

WD Application

WD Component

View Controller
Action

onLeadSelect

1 HTTP Post
2

Raise event

3

public void onAction${act}(IWDCustomEvent wdEvent) {
//@@begin onAction${act}(ServerEvent)

// Q: Should the backend access coding go here?
// A: Not if you want to write a low TCO application!

//@@end
}

Implementation of the Action associated with the onLeadSelect event

Invoke action event handler

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 53

the screen. To see the line items that belong to a
particular order, the user selects that row of the
table. This causes an event to be raised in the
client. In this particular case, that event is called
onLeadSelect.

2. As a result of this client-side event being raised,
the Web Dynpro coding embedded within the
Web page now starts a roundtrip to the server
and passes across all the relevant information.

3. During the development process, the onLeadSe-

lect event has been associated with something
called an “action.” An action is a runtime object
that contains the coding that will be invoked
when the associated client-side event is raised.

This is all fine and dandy, but this is where so
many developers end up writing poor-quality code.

Technically speaking, there is no reason why the
call to the model could not be placed directly in the
view controller. Doing so will not cause any failure
of your software from a technical or even functional
perspective. However, it will create an application
architecture that rapidly becomes very difficult to
maintain.

SAP describes this split of functionality as a
“separation of concerns” (see page 34).

When the coding within the Web Dynpro
component follows the correct design principles,
you will see the style of architecture shown in
Figure 14.

1. Step 1 in Figure 14 represents all three steps
described in Figure 13.

2. Once control has been passed to the action event

Figure 14 The correct architecture for back-end interaction in response to a client-side event

WD Component

Component
Controller

View Controller

readLineItems()

2

3

onActionDoRowSelect()

The line item information
is made available to the

view controller using
context mapping from the

non-visual controller

4

1
Model

SAP Professional Journal • March/April 2008

54 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

handler method in the view controller, this
method should delegate all interaction with the
back-end system to a non-visual controller.
Hence the call to a method in the component
controller. In this example, this method happens
to live in the component controller and be called
readLineItems().

3. The readLineItems() method then interacts
with the back-end system via the model object.
Another reason for recommending this architec-
ture is that once the model object has returned
the data to the non-visual controller, that
controller can then share that information
with any other controller in the component.

4. The data returned from the model object is
passed from the component controller to the
view controller through a data-sharing technique
known as context mapping.

This architecture is much cleaner because there
is now a single point of access from the entire Web
Dynpro component to the back-end system via that
particular model object. If you were to move the
logic contained in the readLineItems() method
into a view controller, then each view controller
would require its own copy of the coding. Not only
will this add redundant coding to the application, it
will increase the overall system complexity and thus
lead to an increased chance of error during mainte-
nance. All in all, you do not want to find yourself
in this situation. Fortunately, it is one that can easily
be avoided.

Abusing a view controller’s wdDoModifyView()
method

As I stated earlier, a view controller is a Web
Dynpro controller that has associated with it a visual
interface. However, because of SAP’s requirement
to support client independence, a Web Dynpro
visual interface cannot be defined using HTML,
CSS, and JavaScript. This is simply because you
cannot guarantee that all clients will understand your
particular markup definition. Therefore, the UI
elements present in a view controller’s visual inter-
face are specified in an abstract manner.

When the application is running, the only point
in time during a roundtrip at which you can gain
access to these abstract UI element objects is during
the invocation of the view controller method wdDo-

ModifyView(). Unfortunately, I have come across
all manner of bizarre coding in this method!

By the time the Web Dynpro Framework has
invoked this method, all the business processing for
that roundtrip should have been completed.10 All
data received from the back-end system should have
been processed and be in a state ready for presenta-
tion. The wdDoModifyView() method exists solely
for the purpose of allowing dynamic modifications
to the UI element hierarchy (see Figure 15). So, for
instance, if some new data arrives from the back-end
system whose structure has been defined dynami-
cally, the wdDoModifyView() method can parse the
structure and dynamically create UI elements suit-
able for its display.

Manually setting or getting UI element property
values instead of using data binding

The principle of separating data generators from data
consumers applies not only to models and control-
lers, but also at a smaller scale within an individual
view controller. Since all UI elements within the
view controller are specified in an abstract manner,
there is a significant degree of decoupling between
the coding found in the view controller and the UI
element object.

Therefore, to present information on the screen
in a reliable manner, Web Dynpro treats a property
of a UI element as a data consumer, and
an individual value held in the view controller’s
memory11 as the data generator. This technique is
called “data binding.”

10 For more details on how the Web Dynpro Framework handles stan-
dard methods such as wdDoModifyView(), see chapter 4 of my
book Inside Web Dynpro for Java (Second Edition), available from
SAP PRESS.

11 I have not used the correct Web Dynpro terminology here since at no
prior time in this article have I mentioned how Web Dynpro control-
lers manage local data storage. The correct terminology here is to use
the term “context” instead of “memory.”

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 55

Once you have placed a UI element on the
screen, the properties of that UI element will need
to obtain data from somewhere. This is where the
declarative process of data binding comes in.

Let’s say you have an input field that will some-
times be open to receive a value from the user, and
sometimes be read only. In this case, data binding
must be performed for two properties of the
InputField UI element:

The first is the value property. The UI element
must have a defined location in which to store
whatever the user types in; consequently, binding
this property is mandatory. Failure to bind this
property causes the input field to be completely
non-functional and would lead to a runtime error.

The second is the readOnly property. Binding
this property is not mandatory. If you wished,
you could leave it set to the hard-coded, default
value of false. However, since we want to
exert programmatic control over its value, this

•

•

property should be bound to a Boolean value
in memory12.

Now that the data binding declarations have
been made, the Web Dynpro Framework handles
everything else for you. To find out what the user
typed into the field, you do not need to interrogate
the value property of the UI element object itself.
Instead, all you need to do is read the variable13 to
which the value property is bound. In this manner,
your application coding is decoupled from the specific
implementation details of the UI.

If you want to prevent the user from typing into
that particular input field, all you need do is set the
variable to which the readOnly property is bound to
true, and immediately the input field will be disabled.

12 Or, to use the correct Web Dynpro terminology, “this property should
be bound to a Boolean context attribute.”

13 Again for the sake of simplicity, I have not used the correct Web
Dynpro terminology here. The value property of an InputField should
always be bound to a context attribute of type string.

public static void wdDoModifyView(
IPrivate${nv} wdThis,
IPrivate${nv}.IContextNode wdContext,
IWDView view,
boolean firstTime) {

//@@begin wdDoModifyView
if (firstTime) {

// Dynamic UI manipulation code goes here

// Do not put any business logic coding here!

// Do not obtain references to UI elements in order to
// set or get their property values!

// Use context binding instead!
}
//@@end

}

Stub coding for the wdDoModifyView() method

Figure 15 Use wdDoModifyView() only for dynamic changes to the UI element hierarchy

SAP Professional Journal • March/April 2008

56 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

The power of the data binding principle lies in
its simplicity. There is no reason why multiple UI
elements could not have their readOnly properties
bound to the same Boolean value. In this manner,
using just a single line of code, you can enable or
disable a whole set of UI elements without needing
to access each UI element object individually.

In Figure 16, you can see how the UI elements
have been decoupled from the application coding
by means of the view controller’s data storage area,
known as the “context.” The application coding on
the left interacts with the context, and the UI elements
on the right have their various properties bound to the
nodes and attributes found in the context.

Unfortunately, many developers fail to understand
this principle, and so add coding directly into the
wdDoModifyView() method to manually set or get UI
element property values. This coding is not “wrong”
insomuch as it is functional and achieves the desired
result. But it is considered very poor style because it
is quite redundant and therefore does little more than
add unnecessary complexity to the application.

Conclusion
I trust that by now, you understand what can go wrong
during a Web Dynpro implementation and, more impor-
tantly, why things go wrong and how to avoid them.

Before embarking on a Web Dynpro implementa-
tion, please take every reasonable step to ensure that
you avoid making the mistakes described here. Here’s
a quick checklist.

Tackle the misunderstandings!

Web Dynpro is not “just like any other MVC-based
development toolset.”

Due to SAP’s specific design criteria for Web
Dynpro, certain flexibilities present in other UI devel-
opment toolsets have been removed — such as
pixel-perfect placement of UI elements.

Web Dynpro has been designed to create business
applications that:

Figure 16 The view controller context decouples the application coding from the UI elements

View Controller

UI LayoutImplementation

Navigation
Plugs

Standard
Hook

Methods

Instance
Methods

Actions

Context

Root Node

In
te

ra
ct

s
w

ith
In

te
ra

ct
s

w
ith

In
te

ra
ct

s
w

it
h

2-way, automatic
data transport

How to avoid Web Dynpro Java implementation nightmares

No portion of this publication may be reproduced without written consent. 57

Have a medium- to long-term life expectancy

Are aimed at a generic or loosely defined target
audience

Offer a high degree of business process
flexibility

Place the highest priority on stability and reli-
ability of the business process

Place a lower priority on specific features of
the UI

Education, education, education!

Make sure all the developers on the project have
attended the standard SAP training courses for Web
Dynpro for Java.14 Also, make sure that there is at
least one copy of the SAP PRESS books on Web
Dynpro generally available to all project members.
These are Inside Web Dynpro for Java (Second
Edition)15 and Maximizing Web Dynpro for Java.16

Web Dynpro implementation costs are directly
related to the developer’s level of understanding:

Little or no training = increased TCO due to
excessive and/or redundant coding complexity.
In extreme cases, the maintenance costs can
become so high that it is cheaper to throw the
entire application away and rewrite it.

Well trained = significantly lower TCO due
to the application containing only the coding
required to achieve the business purpose.
This in turns lowers the most significant cost
incurred during the lifespan of a piece of
software — maintenance.

Do not abuse view controllers!

A view controller should only ever act as a
consumer of data — either from a non-visual

14 These courses are JA310 (“Introduction to Web Dynpro for Java”)
and JA312 (“Advanced Web Dynpro for Java”).

15 Available in English only.
16 Available in English and German.

•

•

•

•

•

•

•

•

controller or the user (via the keyboard and
mouse).

If you are writing code in a view controller
that interacts with a back-end system, it will
probably work — but you are not following
good Web Dynpro design principles.

Coding to interact with back-end systems
belongs only in non-visual controllers.

Practice good project management!

Make sure the implementation project is
managed by someone who has already been
through at least one Web Dynpro
implementation.

Flexibility of scope is fine as long as it does
not happen in an uncontrolled manner. If the
project’s scope needs to be altered, then make
sure that senior project management has
reviewed and signed off on the variation, and
that the project’s resources and time factors
have been adjusted accordingly to ensure the
required quality levels can still be delivered.

Plan for periodic code reviews.17

Carefully scrutinize your intended implemen-
tation partner’s capabilities, and don’t be
persuaded by a smooth sales pitch. Ask for
customer references and do your own research.

When used correctly, Web Dynpro is an effi-
cient and powerful tool for building robust and
reliable business applications. If you are about to
embark on your first Web Dynpro implementation,
then I trust that you now have enough knowledge to
enter the situation with confidence and clarity of
understanding.

All the best and enjoy using Web Dynpro
(correctly)!

17 For more on how to perform code reviews, see the article “Put Better
Programs into Production in Less Time with Code Reviews: What
They Are, How to Conduct Them, and Why” (SAP Professional
Journal, July/August 2003).

•

•

•

•

•

•

SAP Professional Journal • March/April 2008

58 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

Chris Whealy started working with SAP software in 1993
making assembler modifications to the RF and RV modules
of R/2. He then went on to work as a Basis consultant
installing and upgrading R/3 systems, starting with R/3
version 2.0B.

In May 1995, he joined SAP (UK) as a Basis Consultant
and ABAP programmer; however, when the first Internet
boom started in 1996, he turned his attention to Web-based
interfaces into SAP. This led to him working with the
earliest versions of the Internet Transaction Server (ITS),
and consequently, he taught the first course on this subject
in January 1997. Since then, Web- based front ends for SAP
functionality have been the main focus of Chris’ attention.

In January 2003, he started working with Web Dynpro and
has worked closely with the development team in Walldorf,
both learning the product and writing proof-of-concept
applications. The knowledge gained while working with the
developers became the foundation for the book “Inside Web
Dynpro for Java” published by SAP PRESS in November
2004. This book is now in its second edition (September
2007).

Chris lives in the UK and works as the Web Dynpro Java
expert for the SAP NetWeaver Regional Implementation
Group (RIG) EMEA in Walldorf, Germany.

You may reach him at chris.whealy@sap.com.

