
No portion of this publication may be reproduced without written consent. 3

The Oracle Cost Based Optimizer (CBO) can be a powerful tool for deter-
mining the most efficient way to retrieve data from an Oracle database. The
CBO identifies ways to improve data-access time by considering resource
costs such as I/O, by accounting for statistical values and parameters, and
by selecting appropriate indexes. Compared to the Rule Based Optimizer1

(RBO), the CBO is more sophisticated and complex, but it also has a few
drawbacks.

Over the past few years, I’ve investigated dozens of performance
complaints related to CBO decisions to retrieve table data using access
paths that are not the fastest or most efficient. Often, I find that the statis-
tics and parameter settings available for the CBO (whether default or
administrator-specified settings) are not sufficient for making the best deci-
sions. A poor CBO decision can significantly affect the performance of
the database in particular and the system overall. For example, if the CBO
decides to scan a full table instead of using a selective index, retrieving
data can take a thousand times longer. To optimize data access and
improve database performance, you should understand how the CBO
works and what you can do to resolve performance problems caused by
CBO decisions.

This article is intended for Oracle database administrators who trouble-
shoot long-running Structured Query Language (SQL) statements and for
SAP developers who want to avoid potential SQL performance problems
with their programs. I begin by explaining the process and configuration
settings the CBO uses to determine its data access approach. Then I
describe the factors involved in making a CBO decision, and trace the
decision using sample data, identifying why a CBO decision sometimes

1 The RBO uses fixed rules to determine the access path, and does not take information such as data
clustering, selectivity estimations, or data distribution into account. Although a quick and straightfor-
ward approach, the results of an RBO analysis are not as reliable as a CBO analysis.

Improve data access in SAP
environments with the Oracle
Cost Based Optimizer (CBO)
by Martin Frauendorfer

Martin Frauendorfer
Platinum Support Consultant,
Active Global Support,
SAP AG

Martin Frauendorfer studied
computer science at the
University of Erlangen, Germany.
He joined SAP Support in 1999
and has focused on Oracle-
related problems since then.
Today he works as an Expert
Technical Support Consultant
in SAP Solution Operation
Support. His main tasks involve
supporting large, critical SAP
customers who use Oracle
databases. Key focus areas
are Oracle performance tuning
and Oracle administration. You
may reach him via email at
martin.frauendorfer@sap.com.

SAP Professional Journal • March/April 2008

4 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

provides unexpected results. This article also describes
essential troubleshooting techniques to diagnose and
solve performance problems, with a focus on prob-
lems particular to SAP environments.

Note!

This article is designed for people who have
experience analyzing Oracle SQL statements
and are familiar with the concepts of the Oracle
Cost Based Optimizer (CBO).

Basics of CBO cost
calculation
The following sections define the term “cost” as it
relates to database optimization, and explain the
factors that influence the cost calculation of the CBO.
They conclude with a concrete SQL example of a
CBO cost calculation.

Defining cost

Database administrators and users often measure the
success of a database in terms of access time — how
quickly they can retrieve data using a certain SQL
statement. Access time is closely related to the system
resources an SQL statement uses, including I/O,
memory, CPU, and locks. (Locks can be different
Oracle internal lock mechanisms such as enqueues,
latches, mutexes, or library cache locks.) Additionally,
the number of retrieved records influences the
network load between SAP and Oracle, which can
affect access time. You can consider these system
resources as costs in a database access transaction
because your system expends these resources when
retrieving data. The Oracle CBO enhances database
performance by improving data access time and by
identifying and reducing system costs.

The CBO calculates costs mainly in terms of I/O.
This means it first determines how many blocks of
data Oracle must read from disk, and then estimates
the costs as the number of blocks read. The typical
size of a block is 8,192 bytes, which is the default
Oracle block size in SAP environments.

Note!

Starting with Oracle 10g, SAP recommends
taking advantage of system statistics, which
reflect CPU use and the time it takes Oracle
to read a single block of data and a series of
consecutive blocks during cost calculation for
a particular system. As a consequence, CPU
consumption is also incorporated in the over-
all costs. However, because CPU costs are
typically responsible for only a minor fraction
of the total costs, this article does not consider
them in the CBO cost calculation for
simplification purposes. For more details
on system statistics, see SAP Note 927295.

Costs for typical database accesses

Consider the typical example of retrieving one record
using a fully qualified primary B*TREE index
access.2 The Oracle runtime engine performs the
following steps to retrieve a record:

1. Oracle enters the B*TREE index at the root
block.

2. Oracle scans the branch blocks. Depending on
the height of the index, the branch block can
have 0, 1, 2, or more layers. In each branch block

2 A B*TREE index, which is organized like a tree, is the typical index
type in SAP environments. A primary index is a dedicated, unique
index that is defined in SAP systems for almost every table. In a fully
qualified index, all index columns are specified with an “=” (equal to)
condition. As a consequence of the uniqueness and full qualification, a
B*TREE primary index returns a maximum of one record.

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 5

layer, Oracle must read exactly one block. The
branch blocks contain navigational information
and pointers to the blocks at the next lower level.

3. Oracle reads the leaf block with the requested
primary key record.

4. The leaf block also contains a pointer (called
the ROWID or row ID) that points to the related
record in the table. Using this pointer, Oracle
accesses the table block that contains the complete
data record.

Figure 1 shows a B*TREE index access for an
index consisting of three layers: root block, a branch
block layer, and a leaf block layer.

As you can see, the Oracle runtime engine must
read four blocks for a fully qualified primary index
access: the root block, one branch block, one leaf
block, and one table block. Figure 2 (on the next
page) shows the explain plan for this kind of access.

The explain plan shows total costs of 4 (line 1),
index access costs of 3 (line 7), and table access costs
of 1 (line 4). Although line 4 specifies “Estim. Costs
= 4,” this includes the index access costs of 3; the
pure table access costs are only 1. Furthermore, line 6
indicates that Oracle uses an INDEX UNIQUE SCAN
on index TAB1~0. An INDEX UNIQUE SCAN can
return a maximum of one record. You can use this
type of scan if you specify all columns of a unique
index with an equal sign (=) in the WHERE clause,
which means that the index is fully qualified. For
more information on explain plans, see the sidebar
on the next page.

B*TREE index

Table

Root block

Branch blocks

Leaf blocks

1

2

3

4

Figure 1 Retrieving a record using a fully qualified primary B*TREE index access

Note!

This article focuses on the most common
segment types in SAP environments: B*TREE
indexes and normal tables. It does not cover
other segment types such as bitmap indexes
and index-organized tables.

SAP Professional Journal • March/April 2008

6 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

1 SELECT STATEMENT (Estimated Costs = 4 , Estimated #Rows = 1)

2 |

3 --- 2 TABLE ACCESS BY INDEX ROWID TAB1

4 | (Estim. Costs = 4 , Estim. #Rows = 1)

5 |

6 ------1 INDEX UNIQUE SCAN TAB1~0

7 (Estim. Costs = 3 , Estim. #Rows = 1)

Figure 2 Explain plan for a fully qualified primary index access

Explain plans
An explain plan for an SQL statement is the result of the work of the CBO. It shows you the best access
path according to the CBO, and it provides you with the estimated costs and the estimated rows for each
step of the execution plan.

You can display an explain plan in SAP and Oracle in several ways:

In SAP transaction ST05, select Enter SQL Statement, enter the SQL statement, and then click on the
Explain button.

In SAP transaction ST04, explain currently running SQL statements in the Oracle Sessions overview
(ST04 Detailed Analysis Menu Oracle Session click on a particular session click on the
Explain button) or explain SQL statements from the shared cursor cache (ST04 Detailed Analysis
Menu SQL request Confirm popup click on one particular SQL statement click on the
Explain button).

Explain an SQL statement with Oracle tools such as SQLPLUS using the following commands:

 EXPLAIN PLAN FOR <sql_statement_text>;

 SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

In Oracle, the Oracle view V$SQL_PLAN contains the execution plans of previously executed SQL
statements.

Sometimes the output of an explain plan differs from the content in V$SQL_PLAN. (See the typical devi-
ation scenarios in SAP Note 723879.) In general, V$SQL_PLAN contains the execution plan that Oracle
uses, while explain functionalities can show incorrect accesses. Current versions of SAP Basis transaction
ST04 retrieve the information from V$SQL_PLAN whenever possible. (This is also indicated in the
output.)

•

•

•

•

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 7

Consider another similar example (see Figure 3)
that does not use a fully qualified primary index
access, and therefore retrieves several records.

In this case, the Oracle runtime engine finds seven
records in the index. It locates six records in the first
accessed leaf block (3). It finds the last record in the
next leaf block (10). In total, Oracle must read 11

blocks. The explain plan for this kind of access looks
similar to Figure 4.

You can see that the estimated costs are now
11 (line 4). Furthermore, line 6 specifies an INDEX
RANGE SCAN, not an INDEX UNIQUE SCAN.
For more information on index access types, see the
sidebar on the next page.

B*TREE index

Table

Root block

Branch blocks

Leaf blocks

1

2

3

7

10

6

8 54

119

Figure 3 Retrieving several records using a B*TREE index

Figure 4 Explain plan for a B*TREE index range scan

1 SELECT STATEMENT (Estimated Costs = 11 , Estimated #Rows = 7)

2 |

3 --- 2 TABLE ACCESS BY INDEX ROWID TAB1

4 | (Estim. Costs = 11 , Estim. #Rows = 7)

5 |

6 ------1 INDEX RANGE SCAN TAB1~0

7 (Estim. Costs = 4 , Estim. #Rows = 7)

SAP Professional Journal • March/April 2008

8 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

Factors influencing the CBO cost
calculation

Factors that influence the CBO cost calculation
include CBO statistics and Oracle parameters, patches,
and hints. Each of these factors is discussed in the
following sections.

CBO statistics
To estimate precise costs, the CBO must gather
details, called CBO statistics, such as the number
of distinct column values, the height of the index,
and the number of leaf blocks and table blocks. You
can find CBO statistics in the Oracle data dictionary
and can retrieve them from views including DBA_
TABLES, DBA_INDEXES, and DBA_TAB_
COLUMNS. Figure 5 outlines the CBO statistics
that have the most significant effect on calculating
data access costs.

In SAP Business Intelligence (BI) environments
and for a few other SAP tables, the CBO also creates
histogram statistics in DBA_TAB_HISTOGRAMS
views. Histogram statistics provide information on
how the column values are distributed. These statistics

are particularly useful with unevenly distributed
column values, but they don’t provide additional
benefits if a system parses statements with bind vari-
ables rather than literals, which is standard for SAP
Online Transaction Processing (OLTP) systems.

For more information on the clustering factor of
indexes, see the sidebar on the following page.

Note!

You need accurate, reliable CBO statistics to
make effective CBO decisions. You should
therefore make sure that you are using a proper
statistics update procedure. SAP recommends
you schedule a BRCONNECT statistics run
at least once a week using the following
command:

 brconnect –u / -c –f stats –t all

See SAP Note 588668 for more information
related to CBO statistics in SAP environments.

Index access types
B*TREE indexes can be accessed in the following ways:

INDEX UNIQUE SCAN: Accesses a fully qualified primary index; it returns a maximum of one
record.

INDEX RANGE SCAN: Includes all index accesses where Oracle reads a contiguous range of one
or more index leaf blocks; this is the most typical access type.

INDEX FULL SCAN: Reads all index leaf blocks in the order of appearance in the index tree
structure.

INDEX FAST FULL SCAN: Reads all index blocks in physical order (as they are stored on disk);
the advantage is that this index access type can read multiple consecutive blocks with one I/O request,
while the disadvantage is that it does not sort the result set like the index.

INDEX SKIP SCAN: Includes index accesses that skip columns specified within a range or not at all; a
skip scan is a set of INDEX RANGE SCANs (one range scan for each value of the skipped columns).

•

•

•

•

•

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 9

View Type of statistics Details

DBA_TABLES Table statistics • NUM_ROWS: Number of records in the table

BLOCKS: Blocks that the table allocated (up to the last block
ever filled, known as a “high-water mark”)

DBA_INDEXES Index statistics BLEVEL: Number of index root and branch block levels
(e.g., 2 as shown in Figure 1 and Figure 3)

LEAF_BLOCKS: Number of index leaf blocks

CLUSTERING_FACTOR: Clustering of the table data
compared to the index

DBA_TAB_COLUMNS Column statistics NUM_DISTINCT: Number of distinct values of the column

DENSITY: 1 / NUM_DISTINCT (if no histograms exist), or filter
factor for unpopular values (if histograms exist)

NUM_NULLS: Number of NULL values

The mystery of the clustering factor
The clustering factor of indexes is a statistic that influences CBO cost calculation and real execution times
and is calculated when Oracle creates statistics based on an internal function. The clustering factor indi-
cates how many table blocks have to be accessed if you scan all index leaf blocks and access the related
table blocks for each record. If two or more consecutive index records point to the same table block, these
block accesses only count as one for the clustering factor. When you have to switch to a different table
block, the clustering factor is increased by one. This means the clustering factor of an index can vary in
the following scenarios:

If the table is sorted in the same way as the index, subsequent index entries usually point to the same
table block and the database must read each table block only once. In this best-case scenario, the clus-
tering factor is close to the number of table blocks.

If the index records are spread across the table randomly, subsequent index entries usually point to
different table blocks. In this worst-case scenario, the clustering factor is close to the number of table
rows.

The following diagram summarizes how to interpret the clustering factor statistic:

To optimize the clustering factor of an index, you have to change the sort order of the table records.
See SAP Note 832343 for more details.

•

•

Figure 5 CBO statistics

Better Worse

SAP Professional Journal • March/April 2008

10 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

Oracle parameters
Some Oracle parameters affect the cost calculation of
the CBO. The most important ones are outlined in
Figure 6.

Online Analytical Processing (OLAP) defines
systems that use a significant amount of BI func-
tionality, e.g., BI and Advanced Planner and
Optimizer (APO) with Demand Planning. OLTP

Parameter Description SAP Recommendation Background

OPTIMIZER_MODE Controls which
optimizer mode
Oracle uses

CHOOSE (Oracle 9i)
ALL_ROWS (Oracle 10g)

With the setting of CHOOSE,
Oracle (versions 9i and earlier)
can choose to use the RBO or
CBO. Usually, Oracle uses the
RBO to process tables without
statistics, while it uses the CBO
to process tables with statistics.
Because Oracle 10g no longer
supports the RBO, in general it
uses the CBO. The target of the
CBO should be to return all rows
of the result set as quickly as
possible (OPTIMIZER_MODE =
ALL_ROWS).

OPTIMIZER_FEATURES_ENABLE Defines the CBO
features that
Oracle can use

Keep the default (current
Oracle patchset)

Because you should generally
use all CBO features, avoid
setting the parameter to a
previous Oracle release or
patchset.

OPTIMIZER_INDEX_COST_ADJ Percentage to
which Oracle
adapts the initially
calculated index
costs

100 (OLAP)
10 (OLTP on Oracle

9i)
20 (OLTP on Oracle 10g)

Without reducing the index costs
to 10% or 20% of the originally
calculated index costs, Oracle
performs too many table scans in
OLTP environments.

OPTIMIZER_INDEX_CACHING Percentage to
which Oracle
adapts the
initially calculated
costs for IN LIST
iterations and
nested loop joins
(0 default,
1 no or
minimum
reduction,
100 maximum
reduction)

0 (OLAP; OLTP on Oracle
9i)

50 (OLTP on Oracle 10g)

Oracle 10g does not always use
indexes supporting columns with
long IN LISTs or nested loop
joins in OLTP environments if the
costs for these accesses are not
adapted.

Figure 6 Oracle parameters

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 11

represents all systems with minor or no BI
functionality.

In addition to these important parameters, a
number of other parameters can also influence the
CBO, such as PGA_AGGREGATE_TARGET and
several underscore and event parameters. See SAP
Note 750631 for additional details.

Oracle patches
Release upgrades, patchset applications, and
bug fixes can significantly affect CBO decisions.
Particularly critical are CBO-related merge fixes:

Oracle 8.1.7.4: SAP Note 601668

Oracle 9.2.0.3: SAP Note 610445

Oracle 9.2.0.4: SAP Note 695080

Oracle 9.2.0.5: SAP Note 755629

Oracle 9.2.0.6: SAP Note 834100

Oracle 9.2.0.7: SAP Note 896903

Oracle 9.2.0.8: SAP Note 992261

Oracle 10.2.0.2: SAP Note 981875

•

•

•

•

•

•

•

•

Be sure to test the performance of the Oracle soft-
ware after making minor and major changes before
applying the changes in production environments.

Oracle hints
Specifying hints3 can influence the CBO cost calcula-
tion or the resulting access path. Some hints such as
INDEX or FULL affect the type of access, while
other hints such as FIRST_ROWS(1) or ALL_ROWS
influence the cost calculation.

CBO cost calculation example

A detailed example in an Oracle 10g OLTP environ-
ment can show how the CBO works. The following
Requests table contains information about 100,000
requests, as shown in Figure 7 (on the next page):

MANDT: Client
REQNO: Unique request number
QUEUE: Queue that processes the request

3 See SAP Note 772497 for more details regarding Oracle hints in SAP
environments.

•
•
•

Parameter Description SAP recommendation Background

DB_FILE_MULTIBLOCK_READ_COUNT Number of
contiguous blocks
that Oracle can
read with one I/O
request; relevant
for full table scans
and index fast full
scans

8 (OLTP on Oracle 9i)
32 (OLAP on Oracle

9i)
default of 128 (Oracle

 10g)

With Oracle 9i, higher
values for this parameter
resulted in reduced costs
for full table scans. To avoid
inappropriate full table scans,
the parameter value had to
remain low.

With Oracle 10g, DB_FILE_
MULTIBLOCK_READ_
COUNT no longer affects
the CBO as long as it is not
explicitly set.

_OPTIM_PEEK_USER_BINDS If set to TRUE (the
default), Oracle
reveals the values
behind the bind
variables during
parsing

FALSE Poor CBO decisions may
result as long as bind value
peeking is active.

Figure 6 (continued)

SAP Professional Journal • March/April 2008

12 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

STATE: Current state of the process

DEPREQ: Dependent request number (0 if no
dependent request exists)

We can add the following indexes to this table:

CREATE UNIQUE INDEX "REQUESTS~0"

 ON REQUESTS (MANDT, REQNO);

CREATE INDEX "REQUESTS~1"

 ON REQUESTS (MANDT, QUEUE, STATE);

CREATE INDEX "REQUESTS~2"

 ON REQUESTS (DEPREQ, QUEUE, STATE);

Now statistics are gathered for table, indexes,
and columns:

•

•
EXEC DBMS_STATS.GATHER_TABLE_STATS -

(USER, -

 'REQUESTS', -

 ESTIMATE_PERCENT=>100, -

 CASCADE=>TRUE, -

 METHOD_OPT=>'FOR ALL COLUMNS SIZE 1' -

);

Figure 8 shows how the important statistics
values now look. Be aware that the statistics
values can vary depending on factors such as
the Oracle release (Oracle 9i or 10g) and the
tablespace type.

CREATE TABLE REQUESTS

(MANDT VARCHAR2(3),

 REQNO VARCHAR2(10),

 QUEUE VARCHAR2(10),

 STATE VARCHAR2(10),

 DEPREQ VARCHAR2(10)

);

BEGIN

FOR I IN 1..100000 LOOP

 INSERT INTO REQUESTS VALUES

 ('100',

 I,

 MOD(I, 11),

 DECODE(MOD(I, 33), 0, 'NEW',

 1, 'IN PROCESS',

 2, 'ERROR',

'PROCESSED'),

 DECODE(TRUNC(I/10), 0, I, 0)

);

END LOOP;

COMMIT;

END;

/

Figure 7 Requests table containing information about 100,000 requests

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 13

Now let’s look at a sample query. A typical SAP
request could be to select all records belonging to a

certain queue with a certain state. Figure 9 shows an
explain plan for this SELECT statement.

TABLE_NAME NUM_ROWS BLOCKS

------------------------------ ---------- ----------

REQUESTS 100000 496

INDEX_NAME BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR

------------------------------ ---------- ----------- -----------------

REQUESTS~0 1 278 19292

REQUESTS~1 2 415 7093

REQUESTS~2 2 346 5545

COLUMN_NAME NUM_DISTINCT DENSITY NUM_NULLS

------------------------------ ------------ ---------- ----------

MANDT 1 1 0

REQNO 100000 .00001 0

QUEUE 11 .090909091 0

STATE 4 .25 0

DEPREQ 10 .1 0

Figure 8 CBO statistics for the table, its indexes, and its columns

SELECT

 *

FROM

 REQUESTS

WHERE

 MANDT = :A0 AND

 QUEUE = :A1 AND

 STATE = :A2;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 2273 | 59098 | 35 (0)|

| 1 | TABLE ACCESS BY INDEX ROWID| REQUESTS | 2273 | 59098 | 35 (0)|

| 2 | INDEX RANGE SCAN | REQUESTS~1 | 2273 | | 2 (0)|

Figure 9 Explain plan for a SELECT statement

SAP Professional Journal • March/April 2008

14 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

The CBO favors an access via index REQUESTS~1
and calculates costs of 35 for this access. To check
whether these costs are reasonable for the existing CBO
statistics, consider the following factors:

Root and branch block access costs: The costs
for root and branch block accesses should match
the BLEVEL because from each root and branch
block level, Oracle has to read only one block
while navigating to the leaf blocks. The root and
branch block access costs are two.

Leaf block access costs: Calculating the number
of leaf blocks that Oracle must read is more
complicated. Figure 8 shows a total of 415 leaf
blocks, but the SELECT statement only has to
read the range of leaf blocks that fulfills the
WHERE clause conditions. Here the CBO
assumes that the values are equally distributed
and that values in one column are independent
of values in another column. The 415 leaf blocks
are divided by the distinct values of the different
columns specified in the WHERE clause. The
costs for leaf block accesses are therefore 10
(rounded to ceiling):

LEAF_BLOCKS / NUM_DISTINCT(MANDT) /

 NUM_DISTINCT(QUEUE) /

 NUM_DISTINCT(STATE) =

415 / 1 / 11 / 4 =

10

Table block access costs: Calculating the number
of table blocks that Oracle must read is similar
to calculating the leaf blocks. Without any restric-
tion, the clustering factor of the index would
indicate the number of table block accesses, but in
this case, the clustering factor must be divided by
the distinct values of the specified columns, so
that the result is 161:

CLUSTERING_FACTOR /

 NUM_DISTINCT(MANDT) /

 NUM_DISTINCT(QUEUE) /

 NUM_DISTINCT(STATE) =

7093 / 1 / 11 / 4 =

161

•

•

•

 The total costs should be 2 + 10 + 161 = 173
according to this calculation. This is different from
the CBO costs of 35. The reason for the deviation
is that the CBO must account for the setting of
OPTIMIZER_INDEX_COST_ADJ = 20, which
Oracle 10g uses in OLTP environments. Using
this setting, 20% of 173 is 35, which reflects the
CBO costs.

Typical CBO problems in
SAP environments
This section examines CBO problems that are particu-
larly prevalent in SAP environments. It identifies the
circumstances in which these problems appear and
explains how you can resolve them.

The initial-value problem

SAP usually initializes every column with a default
value. Typically these default values are as follows:

' ' (one blank) for character columns

0 for number columns

'00…' for character columns containing numbers

When making CBO calculations, the CBO treats
default values in the same way as any other value. If
it uses bind variables during parsing, the CBO does
not know whether the data includes an SAP default
value. Default values can affect the CBO decision
in two ways:

• Underestimating4 selectivity and omitting an
index: Records often have a default value in one
column. Only a few records contain other values
for that column. If you search for all records with
a certain nondefault value, this condition is very
selective: It returns few records, if any. However,
the CBO assumes an equal distribution of column
values and that the cardinality of the default value

4 “Underestimating” in this context means that compared to the reality, a
higher fraction of records is expected. This means that the estimated
selectivity value is higher than in reality.

•

•

•

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 15

is identical to all other existing values. As a
consequence, it underestimates the selectivity of
the condition and might skip an existing index on
that column. See Figure 10. For more information
on cardinality and selectivity, see the sidebar on
the next page.

• Overestimating5 selectivity and using an index:

5 “Overestimating” in this context means that compared to the reality,
a lower fraction of records is expected. This means the estimated
selectivity value is lower than it is in reality.

The opposite problem is also possible: One
column has many nondefault values, but some
records still contain the default value. If you select
all columns with the default value, Oracle overes-
timates the selectivity and might use an existing
index on that column although other columns
might have better indexes (see Figure 11).

Consider the previous example of the Requests table.
Figure 12 (on the next page) compares the real and esti-
mated cardinality for a series of values. The dependent

initial 1 2 3 4

CBO estimation:

Real data proportion:

initial 1 2 3 4

Figure 10 Underestimating selectivity

initial

CBO estimation:

Real data proportion:

1

2 3 4 5 6 7 8 91

initial 7 8 965432

Figure 11 Overestimating selectivity

SAP Professional Journal • March/April 2008

16 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

request column DEPREQ is almost always initial (0), but
the CBO doesn’t know if you are searching for the initial
value or any other value. It assumes that the SQL state-
ment returns 10% of records for a certain value because
there are 10 distinct values.

If SAP now checks for requests with the depen-
dent request number 1234, the CBO assumes that
10,000 records meet the WHERE conditions, so index
REQUESTS~2 is not used, as shown in Figure 13.

A full table scan is shown, but often Oracle
uses other bad indexes instead because in OLTP
environments, the CBO is configured to use these
indexes with OPTIMIZER_INDEX_COST_ADJ,
DB_FILE_MULTIBLOCK_READ_COUNT, and
OPTIMIZER_INDEX_CACHING commands.
With the full table scan, Oracle must read all 496
table blocks. However, an index range scan on
REQUESTS~2 would finish after the third block
(BLEVEL + 1 leaf block) because Oracle recog-
nizes that no record fulfills the WHERE clause.

Cardinality and selectivity
The terms “cardinality” and “selectivity” are often used in the area of SQL tuning and CBO.

The cardinality defines the number of rows that are returned. For example, if 300 out of 5,000 records
are returned, the cardinality is 300. The “estimated rows” in the CBO explain plan contains the estimated
cardinality.

The selectivity defines the fraction of data that is returned. For example, if 300 out of 5,000 records are
returned, the selectivity is 6%. The lower the selectivity value, the fewer records are returned. Divide the
“estimated rows” of the explain plan by the total rows to determine the estimated selectivity.

You can check whether the CBO decision changes assuming a different cardinality or selectivity. To do
so, use the CARDINALITY or SELECTIVITY hint:

CARDINALITY(): Set the estimated rows for <table_name> to <rows>

SELECTIVITY(): Set the estimated selectivity for <table_name> to <selectivity>

See SAP Note 772497 for more information on Oracle hints.

Value Real cardinality Estimated cardinality
Default (0) 99.991 10.000

1 1 10.000
2 1 10.000
3 1 10.000
4 1 10.000
5 1 10.000
6 1 10.000
7 1 10.000
8 1 10.000
9 1 10.000

Any other value 0 10.000

Figure 12 Cardinalities for DEPREQ condition on REQUESTS table

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 17

See the sidebar above for more on good and bad
indexes.

In Oracle, the best solution for this kind of
problem is to use NULL as the default value.
Oracle treats NULL in a special way: It is not
comparable to any other value, so operators
such as less than (<) or equal to (=) do not work
with NULL values. Instead, you must use the
IS operator to check whether a value is NULL.
In addition, the CBO statistics contain informa-
tion about the number of NULL values in each
column (NUM_NULLS). As a result, the CBO
can exclude NULL values from cardinality and

selectivity considerations and estimate values that
are much closer to reality. See Figure 14 on the
next page.

To work around this problem in our concrete
example, you can set all DEPREQ values to NULL
rather than 0. Afterwards, create new statistics so
that the CBO is aware of this change, as shown in
Figure 15 on the next page.

After this change, the explain plan for the previous
example provides the best data-access path. As shown
in Figure 16 (on the next page), Oracle expects only
one row (the absolute minimum), decreases the costs
to 1, and uses the good index REQUESTS~2.

SELECT

 *

FROM

 REQUESTS

WHERE

 MANDT = :A0 AND

 DEPREQ = :A1;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 10000 | 253K| 105 (2)| 00:00:03 |

| 1 | TABLE ACCESS FULL| REQUESTS | 10000 | 253K| 105 (2)| 00:00:03 |

--

Figure 13 CBO decision of full table scan for DEPREQ selection

About good and bad indexes
In general, a good index for a certain set of column conditions is an index that can filter a high percentage
of the table records. This means the index is selective for that set of column conditions. You cannot easily
compare an index to a full table scan because several other factors affect the accesses in a table (e.g., clus-
tering factor, range and IN LIST conditions, multiblock read count, system-specific CPU, and I/O value or

records are already excluded in the index), the index is usually better than a full table scan.

SAP Professional Journal • March/April 2008

18 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

You can’t switch from a default value to NULL in
SAP environments for the following reasons:

You must change every ABAP table access with •

WHERE … <column> = <default_value>
to WHERE … <column> = <default_value>
OR <column> IS NULL.

Switching to NULL can affect other ABAP table •

NULL

NULL

1 2 3 4

CBO estimation:

Real data proportion:

1 2 3 4

Figure 14 Better CBO estimation if NULL values are used

UPDATE REQUESTS SET DEPREQ = NULL WHERE DEPREQ = '0';

COMMIT;

EXEC DBMS_STATS.GATHER_TABLE_STATS(USER, 'REQUESTS', ESTIMATE_PERCENT=>100, -

 CASCADE=>TRUE, METHOD_OPT=>'FOR ALL COLUMNS SIZE 1');

Figure 15 Setting DEPREQ values to NULL

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0| SELECT STATEMENT | | 1 | 22 | 1 (0)|00:00:01|

| 1| TABLE ACCESS BY INDEX ROWID| REQUESTS | 1 | 22 | 1 (0)|00:00:01|

| 2| INDEX RANGE SCAN | REQUESTS~2| 1 | | 1 (0)|00:00:01|

--

Figure 16 Results after using NULL values

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 19

accesses (e.g., with NOT EQUAL
conditions) so you need to add the IS NULL
condition.

SAP primary indexes rely on defining each
indexed column with NOT NULL. If you
specify indexed columns with NULL values,
you lose the primary key property.

A switch to NULL can be time consuming
with large tables, because you must update
each column individually.

Therefore, you need to use the following
solutions in SAP environments:

• Increase the statistic value (if a nondefault
value is specified and the selectivity is
underestimated): For the distinct value in
the critical column, increase the statistic value
according to SAP Note 724545:

EXEC DBMS_STATS.SET_COLUMN_STATS -

(USER, -

 '"<table_name>"', -

 '"<column_name>"', -

 DISTCNT=><new_value>, -

 NO_INVALIDATE=> FALSE –

);

The higher the distinct values for a column
are, the more attractive the column becomes.
Usually this change does not detract from other
transactions if it is related to an initial-value
problem. You should test the influence of the
change before applying it in production
environments.

If you specify a default value in the WHERE
clause, thereby overestimating the selectivity,
you could theoretically reduce the statistic
value for the distinct value to make the index
less attractive. Nevertheless, in this case side
effects are more likely because other transac-
tions may query the same column with
nondefault values.

•

•

• Specify a database hint: Use a database hint to
force the correct access. Depending on the data,
you can use one of the following hints:

INDEX("<table>" "<index>"): This hint forces
access via the specified index.

FIRST_ROWS(<n>): This hint instructs the
CBO to return the first rows of the result set as
quickly as possible. This is particularly useful
when you want to switch from a full table scan
to an index access.

&SUBSTITUTE VALUES& and
&SUBSTITUTE LITERALS&: With these
hints, you can instruct the SAP database inter-
face to use literals rather than bind variables
when sending an SQL statement to Oracle for
parsing. &SUBSTITUTE VALUES& doesn’t
use any bind variable, while &SUBSTITUTE
LITERALS& only has an effect on ABAP
literal values (such as constants). These hints
are SAP database interface hints, not Oracle
hints. In addition, you need to create histogram

-

-

-

Note!

In the following scenarios, increasing the
distinct values does not have the desired effect:

with EVENT 38060) the distinct keys
of an index also limit the selectivity estima-
tions; see SAP Note 176754 (36). In this
case you must additionally increase the
distinct keys using DBMS_STATS.SET_
INDEX_STATS.

If a column is specified with a range
condition and already has a significant
amount of distinct values, a further increase
doesn’t influence the cost calculation.

SAP already delivers “good” statistics for some
critical tables. Check whether the problem table
is mentioned in SAP Note 1020260 and apply
the script attached to the note.

•

•

SAP Professional Journal • March/April 2008

20 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

statistics on the columns because the CBO can
take full advantage of knowing the values
behind the bind variables only with histograms.
See SAP Note 797629 for more information
regarding histograms.

See SAP Note 772497 for more information
regarding database hints.

• Change the ABAP coding: In some cases,
changes to the ABAP coding can be considered,
such as the following:

Reduce the number of elements in the IN list
to make an index on the IN list column more
attractive.

Add further indexed conditions so that the
good index becomes more attractive for
the CBO.

If your problem concerns SAP standard coding,
SAP should provide a working solution. If your
problem involves customer-specific coding or
customer-specific selection variants, you will need
to find your own solution.

-

-

The timestamp problem

In SAP systems, dates and timestamps are often
stored in VARCHAR2 fields. For example, the date
02.15.2008 is stored as string 20080215. As long as
data uses bind variables, this representation doesn’t
cause problems for the CBO. Nevertheless, in some
SAP environments, data does not use bind variables and
so problems can occur, as with BI or Bank Analyzer.

In these environments, the system sends explicit
date conditions to the database during parsing and
creates histograms on the columns. To illustrate this
problem, consider the following simplified example.
The table ORDERDATE consists only of one column,
ORDDAT. In this column, every calendar day of
the years 2007 to 2010 is stored exactly once (not
including February 29, 2008). In this example,
ORDDAT has a NUMBER data type because the
histogram information for NUMBER columns
is stored in a format that is easier to read than
VARCHAR2 histograms. The effects for NUMBER
columns are comparable with those for VARCHAR2
columns. See Figure 17.

CREATE TABLE ORDERDATE (ORDDAT NUMBER);

BEGIN

 FOR I IN 1..31 LOOP

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 100 + I);

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 300 + I);

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 500 + I);

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 700 + I);

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 800 + I);

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 1000 + I);

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 1200 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 100 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 300 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 500 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 700 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 800 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 1000 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 1200 + I);

Figure 17 Sample ORDERDATE table

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 21

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 100 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 300 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 500 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 700 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 800 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 1000 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 1200 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 100 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 300 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 500 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 700 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 800 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 1000 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 1200 + I);

 END LOOP;

 FOR I IN 1..30 LOOP

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 400 + I);

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 600 + I);

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 900 + I);

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 1100 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 400 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 600 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 900 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 1100 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 400 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 600 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 900 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 1100 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 400 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 600 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 900 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 1100 + I);

 END LOOP;

 FOR I IN 1..28 LOOP

 INSERT INTO ORDERDATE VALUES (2007 * 10000 + 200 + I);

 INSERT INTO ORDERDATE VALUES (2008 * 10000 + 200 + I);

 INSERT INTO ORDERDATE VALUES (2009 * 10000 + 200 + I);

 INSERT INTO ORDERDATE VALUES (2010 * 10000 + 200 + I);

 END LOOP;

 COMMIT;

END;

/

Figure 17 (continued)

SAP Professional Journal • March/April 2008

22 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

The ORDERDATE table contains 1,460 records
with the following values:

 ORDDAT

 20070101

 20070102

 20070103

 20070104

 20070105

 20070106

 20070107

 20070108

 20070109

 20070110

...

Next, you can create statistics for this table
including histograms with 10 buckets:

EXEC DBMS_STATS.GATHER_TABLE_STATS -

(USER, -

 'ORDERDATE', -

 ESTIMATE_PERCENT=>100, -

 CASCADE=>TRUE, -

 METHOD_OPT=>'FOR ALL COLUMNS SIZE 10' –

);

The histogram statistics divide the sorted column
values into 10 distinct sets with the same number of
records (1460 / 10 = 146). You can retrieve the details
from USER_TAB_HISTOGRAMS, as shown in
Figure 18.

SELECT

 ENDPOINT_NUMBER,

 ENDPOINT_VALUE

FROM

 USER_TAB_HISTOGRAMS

WHERE

 TABLE_NAME = 'ORDERDATE' AND

 COLUMN_NAME = 'ORDDAT'

ORDER BY

ENDPOINT_NUMBER;

ENDPOINT_NUMBER ENDPOINT_VALUE

--------------- --------------

 0 20070101

 1 20070526

 2 20071019

 3 20080314

 4 20080807

 5 20081231

 6 20090526

 7 20091019

 8 20100314

 9 20100807

 10 20101231

Figure 18 Details retrieved from USER_TAB_HISTOGRAMS

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 23

This output indicates that every bucket
contains records of four to five months. The
first bucket consists of all dates between
01.01.2007 and 05.26.2007 (in dd.mm.yyyy
format), the second bucket contains all dates
between 05.26.2007 and 10.19.2007, and so on.
Based on this information, the CBO should be
aware of the data distribution and the number of
estimated rows should be close to the real data
proportion. You can write a test statement and
select all records of June 2008 (see Figure 19);
the expected cardinality is 30.

The CBO only expects nine rows from this
selection, which is surprising because this is
three times less than the reality although the
dates are perfectly distributed (the table includes
exactly one record for each calendar day). The
cardinality estimation is incorrect because of the
NUMBER data type. Because the CBO isn’t
aware that values like 20080683 or 20080699
are not valid dates, it assumes the table contains
records with this type of value. The cardinality
estimation of the CBO is simply based on the
relation of histogram endpoint values and the
BETWEEN range:

"Estimated Rows" =

<rows_per_bucket> * <between_range> /

 <bucket_range> =

(1460 / 10) * (20080630 – 20080601) /

 (20080807 – 20080314) =

146 * 29 / 493 =

9

The CBO calculates a high cardinality in other
constellations for the same reason. The SELECT
statement shown in Figure 20 (on the next page)
should return only two records (06.30.2008 and
07.01.2008), but the CBO assumes a cardinality of 21.

This estimation is a result of the following
formula, which is similar to the preceding calculation:

"Estimated Rows" =

<rows_per_bucket> * <between_range> /

 <bucket_range> =

(1460 / 10) * (20080701 – 20080630) /

 (20080807 – 20080314) =

146 * 71 / 493 =

21

SELECT

 *

FROM

 ORDERDATE

WHERE

 ORDDAT BETWEEN 20080601 AND 20080630;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 9 | 54 | 3 (0)| 00:00:01 |

|* 1 | TABLE ACCESS FULL| ORDERDATE | 9 | 54 | 3 (0)| 00:00:01 |

Figure 19 Selecting all records in June 2008

SAP Professional Journal • March/April 2008

24 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

Ranges and buckets that contain a year or a decade
change can exacerbate the problem. The following
two selections return 31 records and the date range
is almost identical. The rows the CBO estimated are
different (1 vs. 140) because the CBO considers
values like 20095678 or 20099999 as valid (see
Figure 21).

Erroneous cardinality estimations don’t matter for
single table accesses, but they can critically affect the
join order in multitable joins. Experience has shown
that an incorrect cardinality estimation causes a signif-
icant number of BI and Bank Analyzer performance
problems (due to many reasons). Therefore, the esti-
mated cardinality must be close to the real cardinality.

Unfortunately, to avoid cardinality problems in
this case, you cannot easily change the data type of
the column from NUMBER to TIMESTAMP or
DATE. Furthermore, it is often difficult to recognize
this problem because of the complexity of BI and
Bank Analyzer selections. Specifying hints, using
literals, and changing ABAP coding are usually not
options in these environments. Instead, consider the
following solutions:

• Create histograms with a higher bucket count:
By default, SAP creates histograms with 75
buckets. Starting with BRCONNECT 7.00, you
can now configure a different number of buckets

using the -b option or the STATS_BUCKET_
COUNT BRCONNECT parameter. The maximum
bucket number is 254.

Be aware that a higher number of buckets requires
more storage space in the Oracle data dictionary.
Therefore, you should only increase the bucket
count for specific tables that suffer from the
described problems.

• Adapt CBO statistics: To make the optimal
access more attractive, adapt the CBO statistics
as described in SAP Note 724545. Which changes
are necessary to the statistics depend on the indi-
vidual case.

The CHAR vs. VARCHAR2 problem

The CHAR vs. VARCHAR2 problem causes very
serious overall performance problems for SAP
customers. In fact, it is currently the most critical
Oracle performance issue in SAP environments. The
root cause of the problem is harmless: the SAP data-
base interface can use the CHAR data type internally,
while Oracle uses the slightly different VARCHAR2
data type (with a variable length). This deviation
should not affect the CBO cost calculation, but some-
times it does. The example in Figure 22 (on page 26)
simulates the problem.

Figure 20 SELECT statement that should retrieve two records

SELECT

 *

FROM

 ORDERDATE

WHERE

ORDDAT BETWEEN 20080630 AND 20080701;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 21 | 126 | 3 (0)| 00:00:01 |

|* 1 | TABLE ACCESS FULL| ORDERDATE | 21 | 126 | 3 (0)| 00:00:01 |

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 25

The Orders table contains 30,000 order
numbers with three positions each. Additionally,
the table has one index on the MANDT column
(which is not selective) and one index on the very
selective BELNR column.

You can perform a selection with the condi-
tions MANDT = '100' and BELNR = '22222'
using a CHAR data type for the MANDT column
in the SQL statement. See Figure 23 on the next
page. You would expect that the CBO would use
index ORDERS_2 on BELNR and that the
number of estimated rows is three (because all
BELNRs contain three positions).

Looking into V$SQL_PLAN to retrieve the

execution plan, the CBO surprisingly decides to
use the unselective MANDT index ORDERS_1.
Both estimated costs and estimated rows are 1. See
Figure 24 on page 27.

When executing the same selection with variable
A0 defined as the VARCHAR2 rather than the
CHAR data type, the CBO behaves as expected (see
Figure 25 on page 27).

Why does the CBO react incorrectly when
converting a CHAR to VARCHAR2? In fact, this
is Oracle bug 4752814. This bug is SAP-specific
because the SAP database interface internally
uses CHAR data types, so only a few other Oracle
customers experience this problem. The good news

SELECT

 *

FROM

 ORDERDATE

WHERE

 ORDDAT BETWEEN 20091201 AND 20091231;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 6 | 3 (0)| 00:00:01 |

|* 1 | TABLE ACCESS FULL| ORDERDATE | 1 | 6 | 3 (0)| 00:00:01 |

SELECT

 *

FROM

 ORDERDATE

WHERE

 ORDDAT BETWEEN 20091202 AND 20100101;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 140 | 840 | 3 (0)| 00:00:01 |

|* 1 | TABLE ACCESS FULL| ORDERDATE | 140 | 840 | 3 (0)| 00:00:01 |

Figure 21 Datestamp problems

SAP Professional Journal • March/April 2008

26 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

is that this bug applies only to Oracle 9.2.0.7 and
10.2.0.2 (it also applies to 10.2.0.3, which is not
supported in SAP environments) and SAP kernels

and 10.2.0.4 fix this problem. What can be done
apart from upgrading to a later patchset? The best
workaround is to set the Oracle parameter _OPTIM_
PEEK_USER_BINDS to FALSE. The bug only
occurs in combination with bind value peeking and so
deactivating this feature resolves the issue. For more
information, see the sidebar on page 28.

Conclusion
Many SAP design decisions were made before the
introduction of the CBO. SAP could not therefore
take CBO factors into account in its software
design. Some performance problems can be traced
to SAP design details such as default values and
data types. Because they are central components of
the SAP system, you need to use workarounds and
alternative optimizations to solve these problems.

This article highlighted the most important

CREATE TABLE ORDERS (MANDT VARCHAR2(3), BELNR VARCHAR2(10), POSITION

VARCHAR2(10));

BEGIN

 FOR I IN 1..30000 LOOP

 INSERT INTO ORDERS VALUES('100',I, 1);

 INSERT INTO ORDERS VALUES('100',I, 2);

 INSERT INTO ORDERS VALUES('100',I, 3);

 END LOOP;

 COMMIT;

END;

/

EXEC DBMS_STATS.GATHER_TABLE_STATS(USER, 'ORDERS', ESTIMATE_PERCENT=>100, -

 CASCADE=>TRUE, METHOD_OPT=>'FOR ALL COLUMNS SIZE 1');

CREATE INDEX ORDERS_1 ON ORDERS (MANDT);

CREATE INDEX ORDERS_2 ON ORDERS (BELNR);

Figure 22 Orders table with 30,000 order numbers

VAR A0 CHAR(3);

VAR A1 VARCHAR2(10);

EXEC :A0 := '100'; :A1 := '22222';

SELECT /* TEST1_MARKER */ * FROM ORDERS WHERE MANDT = :A0 AND BELNR = :A1;

Figure 23 Selecting records using a CHAR data type

Improve data access in SAP environments with the Oracle Cost Based Optimizer (CBO)

No portion of this publication may be reproduced without written consent. 27

COLUMN ACTION FORMAT A50

SELECT

 LPAD(' ', DEPTH) || OPERATION || ' ' || OPTIONS ||

 DECODE(OBJECT_NAME, NULL, NULL, ' (' || OBJECT_NAME || ')') ACTION,

 COST,

 CARDINALITY

FROM

 V$SQL_PLAN SP, V$SQL S

WHERE

 S.SQL_TEXT LIKE 'S%TEST1_MARKER%' AND

 S.ADDRESS = SP.ADDRESS AND

 S.HASH_VALUE = SP.HASH_VALUE;

ACTION COST CARDINALITY

-- ---------- -----------

SELECT STATEMENT 1 1

 TABLE ACCESS BY INDEX ROWID (ORDERS) 0 1

 INDEX RANGE SCAN (ORDERS_1) 0 1

Figure 24 Costs and rows incorrectly estimated as 1

VAR A0 VARCHAR2(3);

EXEC :A0 := '100';

SELECT /* TEST2_MARKER */ * FROM ORDERS WHERE MANDT = :A0 AND BELNR = :A1;

COLUMN ACTION FORMAT A50

SELECT

 LPAD(' ', DEPTH) || OPERATION || ' ' || OPTIONS ||

 DECODE(OBJECT_NAME, NULL, NULL, ' (' || OBJECT_NAME || ')') ACTION,

 COST,

 CARDINALITY

FROM

 V$SQL_PLAN SP, V$SQL S

WHERE

 S.SQL_TEXT LIKE 'S%TEST2_MARKER%' AND

 S.ADDRESS = SP.ADDRESS AND

 S.HASH_VALUE = SP.HASH_VALUE;

ACTION COST CARDINALITY

-- ---------- -----------

SELECT STATEMENT 1 3

 TABLE ACCESS BY INDEX ROWID (ORDERS) 0 3

 INDEX RANGE SCAN (ORDERS_2) 0 3

Figure 25 Correct cost estimation after defining the A0 variable as VARCHAR2

SAP Professional Journal • March/April 2008

28 www.SAPpro.com ©2008 SAP Professional Journal. All rights reserved.

Keep in mind that many unexpected CBO
decisions are influenced by Oracle limitations, CBO
features, and bugs; you should therefore understand
these factors through further study.

CBO problems caused by the SAP design details,
and provided possible solutions to these problems. It
also demonstrated why CBO assumptions sometimes
differ from the real data, which can help you select
the appropriate optimization for a specific context.

Bind value peeking
If bind value peeking is active, the CBO can examine the concrete values behind the bind variables that
pass to the database during parsing. Based on these values, the CBO can sometimes select a better access
path instead of using only anonymous bind variables. This is particularly true if you are also using histo-
gram statistics.

In theory, bind value peeking can improve performance, but in the past, many users found a significant
number of problems and bugs when using this feature. As a consequence, you should deactivate the
feature by setting the Oracle parameter _OPTIM_PEEK_USER_BINDS = FALSE.

Bind value peeking often causes different execution plans in V$SQL_PLAN and the standard explain
functionality. For example, the normal explain functionality would have always shown an access via
ORDERS_2 as shown in Figure 25.

