
No portion of this publication may be reproduced without written consent.	 111

As part of SAP NetWeaver 7.1, a name that refers to a series of
products to be released over the next year or so, SAP is introducing a
new software development kit (SDK) for remote function call (RFC)
communications: SAP NetWeaver RFC SDK. It is the successor to
the well-known “classic” RFC SDK for SAP R/3, and you can use it
in C/C++-based applications to communicate with SAP back-end
systems ranging from SAP R/3 4.0B to the latest SAP NetWeaver
systems. This article takes a deeper look at the design of SAP
NetWeaver RFC SDK and explains the ideas behind it.

We found that many problems with RFC communications come
from misunderstanding the existing API, therefore, we hope that a
clear understanding of the concepts of SAP NetWeaver RFC SDK
will help you to write efficient, robust RFC programs and avoid
potential pitfalls.

This is the first installment in a series of three articles that will
explore the advanced features of SAP NetWeaver RFC SDK, in
particular, and RFC communications between an SAP system and an
external C program, in general. If you are a developer or consultant
who needs to access legacy applications (written in C or in any
language with a C interface, such as COBOL or FORTRAN) from
within ABAP applications, or to access ABAP functionality from
within legacy applications, then this series of articles is for you.
If you need to provide adapters or add-on software for SAP systems —
even if you have an existing solution based on the classic RFC SDK
— then it’s for you, too.

However, if your external software is written in Java or in a
language from the Microsoft .NET Framework, then you shouldn’t use
SAP NetWeaver RFC SDK. Instead, you should use SAP Java Connector
(JCo) or SAP .NET Connector, which you can download from the

Improve communication between
your C/C++ applications and
SAP systems with SAP NetWeaver
RFC SDK
Part 1: RFC client programs

by Ulrich Schmidt and Guangwei Li

Ulrich Schmidt
Senior Developer,
SAP AG

Guangwei Li
Senior Developer,
SAP AG

(full bios appear on page 128)

SAP Professional Journal • November/December 2007

112	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

SAP Service Marketplace.� If you are using
scripting languages, such as Perl, Python, or Ruby,
then you will find free third-party connectors for
these languages on the SDN.�

This article is not a comparison between
classic RFC SDK and SAP NetWeaver RFC SDK.
However, if you are already familiar with classic
RFC SDK, we will point out a few noteworthy
differences along the way,� including:

New functionality that was not available in the
classic RFC SDK

Special communication features (e.g., nested
structures, Unicode communication, or excep-
tions) that were difficult to accomplish with
the classic RFC SDK, but can now be done
easily using SAP NetWeaver RFC SDK

Areas in which the architecture was changed
completely, so that a “rethinking” is necessary
to avoid pitfalls

Although the basics of SAP NetWeaver RFC
SDK are not covered in this series of articles, this
first article provides a detailed explanation of two
basic concepts used throughout SAP NetWeaver
RFC SDK: metadata descriptions and data
containers. These concepts did not exist in the
same form in the classic RFC SDK, so a thorough
understanding of them is critical to understanding
how SAP NetWeaver RFC SDK works. The rest
of this article and the two remaining articles in the
series will put this knowledge to use.

Proceeding from this foundation, we will
explore the finer points of RFC client program-
ming (i.e., writing C programs that call ABAP

�	 Logon credentials are required to access the information in the
SAP Service Marketplace at http://service.sap.com/connectors.

�	 Logon credentials are required to access the information in the
SDN at https://www.sdn.sap.com/irj/sdn.

�	 There is a sidebar at the end of the article on pages 126 and 127,
which is divided into sections. I refer to the different sections in
the sidebar throughout the article.

•

•

•

function modules in an SAP system). Then we’ll
build a generic client, step-by-step, that can call
any remote-enabled function module in the back-
end system. To do this, we’ll use nearly every
feature in SAP NetWeaver RFC SDK. This way,
you can see them in action and learn how to use
them in your own programs. These features include
retrieving and caching structure information (meta-
data descriptions), traversing nested input or output
parameters, automatic code-page-handling, and
working with exceptions (ABAP exceptions,
ABAP messages, and system failures).

The second installment of this three-article
series (to be published in an upcoming SAP
Professional Journal) will take a detailed look at
RFC server programming (i.e., writing C programs
that ABAP programs can call). We will also
develop a generic server program that can receive
and process any arbitrary function call from the
back-end system.

The final article will look at some special
features, such as transactional RFC (tRFC) and
queued RFC (qRFC), hard-coded metadata
descriptions, RFC callbacks, and single sign-on
(SSO), or Secure Network Communications (SNC).

You can download the source code examples
contained in this article from www.sappro.com/
downloads.cfm. See the download section corre-
sponding to this issue of SAP Professional Journal.
We recommend having the source code available
as you read the article, because only portions of the
code appear in print.

Also, to compile and run the sample programs,
you need to download SAP NetWeaver RFC SDK
from the SAP Service Marketplace. SAP Note
1025361 tells you where to find this SDK for
various operating-system (OS) platforms. Make
sure that you have at least patch level 1 of the
SDK because a few of the functions mentioned
in this article weren’t available at patch level 0.

We have a lot to cover, so let’s get started.

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK: Part 1

No portion of this publication may be reproduced without written consent.	 113

Prerequisites

We assume that you have a basic
understanding of how RFC communications
work from the ABAP point of view. That is,
you should be familiar with the concepts of a
remote-enabled function module and BAPIs
(to call ABAP functionality from external
C/C++ programs) and with the CALL
FUNCTION ... DESTINATION statement (to
call external functionality from ABAP
programs). If necessary, refer to the
corresponding chapters of the online SAP
Library. You should also take a detailed look
at the API documentation that comes with
SAP NetWeaver RFC SDK: the sapnwrfc.h
header file and a programming guide in PDF
form. You don’t need to have previous
knowledge of the classic RFC SDK.

Metadata descriptions and
data containers
As previously mentioned, there are two new SAP
NetWeaver RFC SDK concepts, which are basic
ingredients of the programming model used in client
and server applications alike: metadata description and
data containers. They are complementary to each
other; therefore, it may not be easy, at first, to see the
differences between them and why they are both

necessary. This article will help you to clearly sepa-
rate the concepts and to know when to use each.

Metadata descriptions

Metadata is a high-level description of data structures
(in the way that a city map describes a city). SAP
NetWeaver RFC SDK has two types of metadata
descriptions: structure definitions (C-type RFC_
TYPE_DESC_HANDLE) and function descriptions
(C-type RFC_FUNCTION_DESC_HANDLE).

A structure definition gives detailed information
about all the fields of a STRUCTURE or TABLE:
their names, data types, and lengths. If one field is
also a structure (or even a table), then a structure
definition may contain other structure definitions
as sub-descriptions.

A function description gives detailed information
about all the IMPORTING, EXPORTING,
CHANGING, and TABLES parameters of a
remote-enabled function module (RFM). It also
gives a complete list of the ABAP exceptions
that the function module may throw. For scalar
parameters, a function description is similar to a
structure definition: It simply gives their names,
data types, and lengths. However, if a field
contains a structure or table, then the function
description has a structure definition as a
sub-description.

To illustrate this concept, let’s look at an
example, the function description of STFC_STRUCTURE.
Figure 1 shows the essential portions of the metadata

•

•

Name Type Direction NUC* length UC length Decimals Type description

IMPORTSTRUCT STRUCTURE IMPORT 144 264 0 Pointer to RFCTEST

ECHOSTRUCT STRUCTURE EXPORT 144 264 0 Pointer to RFCTEST

RESPTEXT CHAR EXPORT 255 510 0 NULL

RFCTABLE TABLE TABLES 144 264 0 Pointer to RFCTEST

* “NUC” stands for Non-Unicode and “UC” stands for Unicode.

Figure 1	 Metadata description for function module STFC_STRUCTURE

SAP Professional Journal • November/December 2007

114	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

description for this function module. In your
programs, this would correspond to an RFC_
FUNCTION_DESC_HANDLE.

In this metadata description, three of the four
parameters are of type STRUCTURE or TABLE
and have the same structure definition: RFCTEST.
But the description of RFCTEST is kept in memory
only once and is referred to by pointer from within
the function description.

Figure 2 shows the metadata description for the
structure RFCTEST, to which the function module
STFC_STRUCTURE (and possibly other function
modules using the same structure in their importing/
exporting or table parameters) refers. In your
programs, this would correspond to an RFC_
STRUCTURE_DESC_HANDLE.

Note that the offset isn’t just the sum of the
lengths of the previous fields because integer (INT)
and floating-point (FLOAT) types have restrictions
on possible start addresses (e.g., an INT4 needs to
start at an address divisible by 4 and a FLOAT
must start at an address divisible by 8); the field
RFCINT4 has an offset of 20 (24 in a Unicode
system) instead of the expected 17 (22 in Unicode).
Character (CHAR) types, on the other hand, may

start at any address in Non-Unicode systems and at
any even address in Unicode systems.

All this should demonstrate that it might be a
bit tricky to get complicated structure definitions
correct. Therefore, use SAP NetWeaver RFC
SDK’s automatic lookup features (described below)
whenever possible. If you construct your metadata
descriptions manually and get them wrong, you will
corrupt your data. Our third article will explore the
only scenarios where manual construction of meta-
data descriptions may be unavoidable.

Metadata descriptions have two purposes:

As tools to dynamically explore the parameters
of a function module — e.g., for a generic user
interface (UI) that automatically construct
forms to collect the inputs and display the
outputs

As blueprints to create the corresponding
data containers needed to process the actual
function calls (see the section “Data containers”
on page 116)

SAP NetWeaver RFC SDK offers two
convenient functions for looking up metadata
descriptions: RfcGetTypeDesc() and

•

•

Figure 2	 Metadata description for structure RFCTEST

Name Type NUC length NUC offset UC length UC offset Decimals Type description

RFCFLOAT FLOAT 8 0 8 0 16 NULL

RFCCHAR1 CHAR 1 8 2 8 0 NULL

RFCINT2 INT2 2 10 2 10 0 NULL

RFCINT1 INT1 1 12 1 12 0 NULL

RFCCHAR4 CHAR 4 13 8 14 0 NULL

RFCINT4 INT 4 20 4 24 0 NULL

RFCHEX3 BYTE 3 24 3 28 0 NULL

RFCCHAR2 CHAR 2 27 4 32 0 NULL

RFCTIME TIME 6 29 12 36 0 NULL

RFCDATE DATE 8 35 16 48 0 NULL

RFCDATA1 CHAR 50 43 100 64 0 NULL

RFCDATA2 CHAR 50 93 100 164 0 NULL

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK: Part 1

No portion of this publication may be reproduced without written consent.	 115

RfcGetFunctionDesc(). You only need to give
them an open RFC connection into the back-end
system and the name of the function module or
structure you want, and they will look up the
complete function module or structure definition
in the back-end system’s data dictionary (DDIC)
and return the information in a format you can
use — i.e., as C structures of type RFC_
STRUCTURE_DESC_HANDLE and RFC_
FUNCTION_DESC_HANDLE.

This DDIC lookup is rather expensive perfor-
mance-wise, so the SAP NetWeaver RFC library
has a built-in cache for these metadata descriptions.
The actual lookup is only done the first time. If you
need the same function module or structure again,
you will get the cached result.

One important feature of this cache is that it
uses the system ID of the corresponding back-end
system as a key. The idea is: If your program
communicates with two different back-end systems
during its lifetime, let’s say system ABC of release
4.6C and system XYZ of release 6.20, then the

function module HUGO may have additional fields
in the newer back-end release. So, to process func-
tion calls to both systems correctly without losing
data or causing data corruption, you need two
different metadata descriptions: HUGO/ABC and
HUGO/XYZ.

The two structures RFC_PARAMETER_DESC
(used in function descriptions) and RFC_FIELD_
DESC (used in structure definitions) contain one
more member variable: void* extendedDescription.
The RFC library doesn’t use this parameter. It’s for
application programmers who want to store addi-
tional information about various fields within the
metadata. For example, for structures used in UIs,
the application could retrieve a list of allowed input
values (F4-Help values) and store it within the
structure definition.

A scalar importing parameter of a function
module may also have a default value, a value that
the function module works with if the caller doesn’t
specify a value. RfcGetFunctionDesc() retrieves
this default value and stores it in RFC_
PARAMETER_DESC.defaultValue. The field
RFC_PARAMETER_DESC.parameterText will
contain the documentation for that parameter, as
defined in the back-end system at SE37.

For information on some of the differences
between the classic RFC SDK and SAP NetWeaver
RFC SDK regarding the concepts of metadata
representation, see the section “Metadata descrip-
tions” in the sidebar on page 126.

Let’s look at a practical example. Open
the file printDescription.c from the samples you
downloaded. This program opens a connection
to the back end, (see the section “A generic RFC
client program” on page 119 for a more detailed
discussion of how this can be done). It looks up
the description of the function module W3_GET_
MINIAPP_TEXTS and prints out the result. You
need at least an SAP R/3 4.6C back end to run this
example, since the function module didn’t exist in
earlier releases. Just change the logon parameters
in lines 14-19 of printDescription.c, compile the
program, and then run it.

Note!

The concept of using the system ID of the
back-end system as a key has been employed
in the SAP Business Connector, and we have
seen the following tricky problem occur at a
number of customer locations. If two different
SAP systems within a system landscape share
the same system ID, the DDIC cache can’t
distinguish between the two. The system to
which the SAP Business Connector connected
first wins, and calls to the other system will be
done with cached structure information from
the first system. This may result in a possible
loss of data or data corruption for those
function modules whose metadata differs
across the two systems. This is why SAP
requires that no two systems within the same
landscape have the same system ID.

SAP Professional Journal • November/December 2007

116	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Tip!

On Linux and Windows, certain minimum
releases of the C runtime are required to
execute the programs. See SAP Notes
1021236 (for Linux) and 684106 (for
Windows). The compiler and linker options
needed to compile programs using the SAP
NetWeaver RFC SDK are listed in SAP
Note 1056696.

In addition, for Windows users using
Microsoft Visual Studio, this is a description
of how to set the Visual Studio project
properties:

General section: Make sure the
CharacterSet field is set to “Use Unicode
Character Set.”

Debugging section: Under Environment,
add something like
Path=%Path%;nwrfcsdk\lib.

C/C++ section:

General: Add the nwrfcsdk\include
directory under Additional Include
Directories.

Preprocessor: Add the two
preprocessor definitions SAPonNT
and SAPwithUNICODE.

Code Generation: Choose “Multi-
threaded DLL (/MD)” as the Runtime
Library; selecting “Multi-threaded
Debug DLL (/MDd)” may lead to
strange problems.

Linker section:

General: Add the nwrfcsdk\lib directory
under Additional Library Directories.

Input: Under Additional Dependencies,
add libsapucum.lib, sapnwrfc.lib, and
sapdecfICUlib.lib (if you are using the
DecFloat data types).

•

•

•

-

-

-

•

-

-

Data containers

A data container is an actual piece of memory into
which you can write the values of the parameters and
fields to be sent to the back-end system, and from
which you can read the values that the back end sends
to you. Both client and server use the same data
containers. The only differences are:

When your program acts as a client, you create
the container, fill in the imports, and submit the
container to the RFC library. The RFC library
serializes the data, sends it to the back end,
receives the response from the back end, deserial-
izes the data, and fills in the export parameters
of the data container. Afterwards, you can read
the exports from the container. In the end, you
have to destroy the container to release the
memory.

When your application plays the role of server,
the RFC library receives the call from the back-
end system, creates a data container, fills in the
import parameters, and passes it to you. You can
then read the imports and set the values for the
exports. When you are finished, you simply return
from your implementation of the server function.
The RFC library then takes care of sending the
exports to the back-end system and destroying the
data container.

A data container is always created from a meta-
data description, either via RfcCreateFunction()
for a complete function module (including the
necessary sub-containers for structures and tables)
or via RfcCreateStructure() or RfcCreateTable()
for a single structure or table. The second possibility
is almost never necessary. We can think of one
example: When you need to keep some of the function
module’s data after its corresponding data container
has been destroyed. In that case, you should create
a separate container for the structure or table of
interest and copy the data into it before destroying
the container for the function module. However,
you can also conveniently achieve this result via the
function RfcCloneStructure() or RfcCloneTable().

At this point, we should mention one feature
that might be good to know for memory-intensive

•

•

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK: Part 1

No portion of this publication may be reproduced without written consent.	 117

applications: The RFC library uses a kind of “lazy”
memory allocation. For example, sometimes a func-
tion module has a lot of large import structures, but
you only want to fill a few of them; the others are
optional and remain empty so it would be a waste of
memory if the RFC library allocated space for all of
them. For this reason, sub-containers are allocated
only when you actually access them. (The same rule
applies to tables.) This is possible because the data
container keeps a pointer to the metadata description
— the blueprint — from which it was originally
created.

To illustrate, Figure 3 is a code snippet for the
function module STFC_STRUCTURE.

A similar concept can also reduce the amount of
data in the RFC response. Let’s assume a function
module or a BAPI has several tables that the back-
end system usually fills with thousands of lines
of data, but you’re only interested in one of these
tables. You can use the following code to deactivate
the table A_TABLE for the function module
funcHandle. The back-end system is notified that
the client isn’t interested in this particular param-
eter, and it won’t even return the data for
A_TABLE. This not only prevents your program

from allocating memory for this unnecessary table,
but also reduces the amount of data sent over the
network.

RfcSetParameterActive(funcHandle,

 cU("A_TABLE"), 0, NULL);

The fields of a data container are read and set,
respectively, via the family of RfcGet<type>()/
RfcSet<type>() functions. We won’t elaborate
on them — because they’re self-explanatory — but
we just want to point out two useful features:

You can use the same functions for all three
types of data containers: function handles (type
RFC_FUNCTION_HANDLE), structure handles
(type RFC_STRUCTURE_HANDLE), and table
handles (type RFC_TABLE_HANDLE). For
the table handles, you only need to make sure
that you position the row cursor to the appropriate
line before accessing the fields:

RfcMoveTo(tableHandle, 42, &errorInfo);

RfcGetString(tableHandle,

 cU("A_STRING_FIELD"), buffer,

 bufLen, &strLen, &errorInfo);

•

 1 RFC_FUNCTION_DESC_HANDLE aFunctionDesc;

 2 RFC_FUNCTION_HANDLE aFunction;

 3 RFC_STRUCTURE_HANDLE aStructure;

 4

 5 aFunctionDesc = RfcGetFunctionDesc(connectionHandle, cU("STFC_STRUCTURE"), NULL);

 6 aFunction = RfcCreateFunction(aFunctionDesc, NULL);

 7 /* The previous line only allocated the following memory (on a 32bit platform):

 8 4 bytes to hold a pointer to a future IMPORTSTRUCT (=NULL)

 9 4 bytes to hold a pointer to a future ECHOSTRUCT (=NULL)

10 510 bytes to hold the value of the export parameter RESPTEXT

11 4 bytes to hold a pointer to a future RFCTABLE (=NULL) */

12

13 RfcGetStructure(aFunction, cU("IMPORTSTRUCT"), &aStructure, NULL);

14 /* Now the 144 bytes for the 12 fields of the structure IMPORTSTRUCT have

15 been allocated, and the corresponding pointer in aFunction has been

16 initialized to point to that structure. */

Figure 3	 Code snippet to illustrate when memory is allocated

SAP Professional Journal • November/December 2007

118	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

	 This code fills the buffer with the value that
table field A_STRING_FIELD has in line 42.
(Of course, you should check the return codes of
RfcMoveTo() and RfcGetString() to make sure
the table really has a line 42 and a field named
A_STRING_FIELD.)

Tip!

In the SAP NetWeaver RFC SDK, table lines
are numbered from 0 to n-1, as is customary in
C. In ABAP and in the classic RFC SDK, lines
are numbered from 1 to n.

The RfcGet<type>()/RfcSet<type>() functions
perform an automatic data-type conversion,
where possible. For example, if a structure has
an INT field and you have a value for it in
string form (from a UI, for example), you can
simply use:

RfcSetString(structHandle,

 cU("AN_INT_FIELD"), stringValue,

 &errorInfo);

	 The RFC library will then convert the string value
(stringValue) to an integer value before setting the
field. Or if you want to get the value of a FLOAT
field in string form, you can use:

RfcGetString(structHandle,

 cU("A_FLOAT_FIELD"), buffer, bufLen,

 &strLen, &errorInfo);

	 If you attempt an impossible conversion (such as
trying to assign the value “XYZ” to an integer
field), you get the return code RFC_CONVERSION_
FAILURE and the field remains unchanged.

You need to be careful when you release memory.
You can free the memory allocated for functions,
structures, and tables via RfcDestroyFunction(),
RfcDestroyStructure(), and RfcDestroyTable().

•

However, first let’s continue the above code snippet
for STFC_STRUCTURE (Figure 3). If you call:

RfcDestroyStructure(aStructure, NULL);

and then continue working with aFunction, you risk
getting a segmentation fault, because the pointer for
IMPORTSTRUCT within aFunction now points to an
invalid address. The following code will definitely
lead to a crash:

RfcDestroyStructure(aStructure, NULL);

RfcDestroyFunction(aFunction, NULL);

because RfcDestroyFunction() frees the memory for
all associated sub-containers. Since the pointer to

Tip!

You can reuse an RFC_FUNCTION_HANDLE
for several calls to the back-end system. But
you should be extremely careful to avoid the
following two pitfalls:

An importing field doesn’t get a new value
before a second call is executed using the
same function handle. The value from the
previous call is still present in the function
handle and will be sent to the back end
again in the second call.

In the second call, the back end doesn’t
return a value for an exporting parameter
for which it returned a value in the previous
call. The value from the previous call is still
stored in that field, and you may mistakenly
believe that it is a part of the current call’s
response.

When in doubt as to whether a certain
parameter is correctly overwritten with a new
value, it’s better to manually set it to the initial
value before reusing the function handle. For
table parameters, use RfcDeleteAllRows() to
clear the table before the next call.

•

•

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK: Part 1

No portion of this publication may be reproduced without written consent.	 119

IMPORTSTRUCT within aFunction is not NULL, the
code will try again to free aStructure, which was
already freed in the previous line.

In general, you need to call RfcDestroyX()
for those containers that you created yourself via
RfcCreateX(). You should never delete the
containers that you got from RfcGetStructure()/
RfcGetTable() or from a table via
RfcGetCurrentRow()/RfcAppendNewRow()/

RfcInsertNewRow(). Nor should you ever delete the
function handle (RFC_FUNCTION_HANDLE),
which the RFC library passes to you when your
application plays the role of server.

For a summary of the differences between the
classic RFC SDK and SAP NetWeaver RFC SDK in
the way function module parameters are represented
and exchanged between your program and the RFC
library, refer to the section “Data containers” in the
sidebar on page 126.

After so much theory, next we’ll put the two
concepts we learned — metadata descriptions and data
containers — into action. The data containers are used
for executing function modules, and the metadata
description is used for doing this dynamically — i.e.,
without knowing at compile time which function
modules are going to be executed.

A generic RFC client program
Let’s develop an RFC client program to dynamically
execute any given function module. The program will
perform the following steps:

1.	 Log on to the back-end system.

2.	 Ask the user for the name of a remote-enabled
function module.

3.	 Look up the function description in the back-end
system’s DDIC, and then ask the user for input
values for the function module’s IMPORTING,
CHANGING, and TABLES parameters.

4.	 Execute the function module in the back end.

5.	 Display either of the following:

The values of the EXPORTING, CHANGING,
and TABLES parameters if the call ended
successfully.

The error information if the call ended with
an ABAP exception, an ABAP E-, A-, or X-
message, or a system failure.

Note!

For the rest of the article, you should have
the two sample files demoClient.c and
helperFunctions.c open in your favorite
C editor.

To begin, we need to consider how our program is
going to get the necessary logon parameters for
accessing the back-end system. This is an important
point to think about, because the logon credentials
should be both easy to maintain during the lifetime of
the program and at the same time securely protected
against unauthorized access.

Log on to the back-end system

In our first example (printDescription.c) the logon
parameters had been given to RfcOpenConnection()
in an RFC_LOGON_PARAMS array. Of course,
hard-coding the logon parameters into the program is
a terrible idea. Direct usage of the parameters “user,”
“ashost,” “mshost,” and so on, only makes sense if
you get them dynamically (i.e., from a UI or from a
Lightweight Directory Access Protocol — LDAP —
directory). If they are hard-coded into the program,
then the program will have to be recompiled whenever
one of the parameters changes. This may be quite
often because some security policies require the pass-
word to be changed regularly. In those cases where
the logon data remains more or less static (except for
periodical password changes), using the parameter
“dest” with the sapnwrfc.ini file is a convenient way

-

-

SAP Professional Journal • November/December 2007

120	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

to organize logon data. We’ll do that for the rest of the
examples. We’ll program against the destination “SPJ,”
and you only have to fill the logon parameters of your
back-end system into the sapnwrfc.ini file included in
the examples. If you put the completed file in the
current working directory of the demoClient program,
it should work at your site without any code changes.
In a real-life scenario you would use the operating
system’s file system protection and encryption mecha-
nisms to ensure that the sapnwrfc.ini file can only be
accessed by the client program and an administrator.

After logging on (see demoClient.c, line 90), we
perform the first important error-handling routine. A
detailed explanation of the four possible error types
follows in the discussion of the RfcInvoke() step in
the “Error-handling” section on page 122. For now,
suffice it to say that only two errors can occur at this
point in the code:

1.	 Any kind of problem with network communica-
tions (unknown host, back end currently down,
etc.), which is indicated by a value of
errorInfo.code = RFC_COMMUNICATION

_FAILURE

2.	 Any kind of problem with the user (wrong pass-
word, user locked, insufficient authorization for
executing RFCs, etc.), which is indicated by
errorInfo.code = RFC_LOGON_FAILURE

In these cases, the field errorInfo.message gives a
detailed description of what went wrong.

You may wonder what kind of minimum authori-
zations a user needs in production environments so
the program can log in and execute the function
modules it needs. In a production situation, it’s not
advisable to run programs with a user who has the
SAP_ALL authorization. SAP Note 460089 discusses
this in much detail. We’d like to add a few more
thoughts about the concepts outlined in that note.

To comprehend SAP Note 460089 properly, you
need to understand the concept that there are basically
four different kinds of authorization objects:

a)	 The bare technical authorization for performing
RFC calls (This is a special authorization neces-
sary to log in to SAP R/3 via RFC. Even if a user

has permission to execute function module A and
can do so while being logged in via SAPGUI, that
user won’t be able to execute module A via RFC
without the “technical authorization” to use RFC.)

b)	 The authorization to make metadata lookups in
the back-end system’s DDIC (This is not needed
when using hard-coded metadata.)

c)	 The permission to call the function module (or
function group) that you want to call

d)	 The authorization object on the application level,
which the function module may check internally

Based on these different types of authorization
objects, the back-end system performs a complicated
sequence of authority checks when an RFC client
program tries to execute a function module. Let’s
illustrate this process with an example of a client
program trying to execute the function module BAPI_
USER_CREATE. In this case, the interaction between
back-end system and client program runs through the
following phases:

1.	 At logon time while RfcOpenConnection() is
still running, the system checks whether the user
has the permission to execute RFCs (authorization
object S_RFC with a number of technical func-
tion groups as outlined in SAP Note 460089).
Some authorization checks on the kernel level
make sure the user is allowed to use RFC in the
first place, though this is more of a “technical”
question as opposed to the “business logic”
authorizations.

2.	 The client program looks up the metadata for
BAPI_USER_CREATE, and the system checks
permissions to access the DDIC (S_RFC with a
number of function groups that access the DDIC).
This happens during RfcGetFunctionDesc().

3.	 RfcInvoke() is called and the back-end system’s
RFC runtime module first checks whether the user
has the authorization to execute the function
module BAPI_USER_CREATE (again authoriza-
tion object S_RFC with function group
SU_USER). If so, the system starts that function
module on behalf of the user; if not, the call is
aborted with a SYSTEM_FAILURE.

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK: Part 1

No portion of this publication may be reproduced without written consent.	 121

4.	 The ABAP code of BAPI_USER_CREATE
begins executing, and within the innards of that
function module an authority check against the
authorization object S_USER_SAS is performed.
If the check fails, the BAPI appends a corre-
sponding error message to its RETURN table
and exits. From the RFC point of view, the call
has ended successfully in that case, but BAPIs
are not allowed to throw exceptions. Therefore,
the BAPI needs to use its RETURN structure or
table to indicate an error situation. (Other function
modules may throw an exception if their internal
authority check fails.)

In the demo examples accompanying this article
and in smaller applications, it is okay to use one user
for everything. However, if you are creating more
complex systems, you’ll probably want to use one
designated user with authorizations a and b for the
metadata lookups (repository user) and one or more
other users with authorizations a, c, and d for the
actual function calls (application user).

After RfcGetFunctionDesc(), another error check
is due as the function module the user requested may
not exist in the back-end system.

Now everything is prepared for collecting the
values for the function module’s input parameters,
whatever these may be. In the helper functions of
the following section you can see how the metadata
descriptions “intertwine” with the data containers in
order to achieve this end. These functions use the
metadata descriptions for finding out what parameters
there actually are, and the data container for storing
the values for each of these parameters.

Setting the input parameters

Let’s take a look at how the demoClient program
asks the user for input. The basic principle for looping
over the parameters has already been shown in
printDescription.c. In that example we knew that W3_
GET_MINIAPP_TEXTS only had flat structures, so a
simple loop over the fields is sufficient. In general,
however, a function module may have “nested” struc-
tures and tables, so we need a recursive approach
here. This is accomplished via the helper functions

fillStructure() and fillTable(), which recur-
sively call each other.

The entry point into the recursion is the function
fillImports(), which is called in line 123 of
demoClient.c and implemented in helperFunctions.c.
It loops over the list of parameters, once each for the
IMPORTING, CHANGING, and TABLES parame-
ters, and calls fillParameter() for each parameter.
This function then decides whether a parameter is a
scalar type that can be read directly, or if that param-
eter is a structured type that needs another loop
over its sub-fields. If another loop is required, it is
performed in fillStructure(), which distinguishes
between scalar and structured sub-fields and calls
itself recursively for the structured fields.

The function fillTable() is just a loop that calls
fillStructure() once for every line to be appended
to the table. The same kind of mechanism is also used
when printing the outputs of the function module. The
family of functions where fill is replaced by print
basically works in the same manner, except instead of
reading a value from the console and setting it in the
data container, these functions read the value from the
data container and print it to the console.

The convenient feature of automatic data-
type conversion (mentioned in the section “Data
containers” on page 116) is used to set values in the
data containers. No matter whether the parameter is
of type character, integer, floating-point, or raw binary
data, you can use RfcSetString() to set its value.
The RFC library internally converts the string into
the correct data type before filling it into the RFC
buffers. However, when using this feature, you need
to make an error check after every RfcSetString().
(Normally, when you are certain that a field exists and
that you have the correct data type for it, you can omit
the error check.) Here, however, the user might enter
non-convertible values. In particular, you need to
know that the values must be entered in hexadecimal
string format for binary types. You can enter floating-
point values as decimal numbers or in scientific
notation.

If you already have the value in the correct format
in your programs, you can (and should) use the corre-
sponding functions RfcSetInt(), RfcSetFloat(),

SAP Professional Journal • November/December 2007

122	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

and so on. But RfcSetString() is convenient in those
cases where you get the values from user input, XML
documents, and so on.

Tip!

The SAP NetWeaver RFC library takes all
character input in the form of SAP_UC, which
is basically a UTF-16LE representation. (If
interested, please refer to www.unicode.org
for an explanation of the Unicode standard
and its various technical representations, such
as UTF-8 and UTF-16.) To simplify working
with this data type, the sapuc.h header and the
libsapucum library provide a set of functions
and macros for processing SAP_UC. For
example, the macro cU() turns a char string
literal into an SAP_UC string literal.

Most important for any function from the
standard C library dealing with strings, you can
obtain a corresponding SAP_UC version by
simply adding a “U” to the end of the function
name. For example, the sample programs show
the use of printfU(); there are also functions
such as getenvU() and fopenU().

In Windows, SAP_UC is equivalent to the
wchar_t type, so you can immediately pass the
values to any Windows w-functions without
problems. On most Unix/Linux platforms,
however, the wchar_t type is implemented
in a different way. The two functions
RfcSAPUCToUTF8() and RfcUTF8ToSAPUC()
may be handy; they convert SAP_UC to and
from UTF-8. Functions for processing UTF-8
data should also be available on most
platforms.

After the program collected all the values for
IMPORTING, CHANGING, and TABLES parame-
ters, it can finally execute the function module on the
back-end system using RfcInvoke().

Error-handling

RfcInvoke() is the critical point where all kinds
of different errors may happen. Basically, the different
types of errors correspond to the different locations in
the execution stack where an error can occur:

An ABAP exception can be thought of as
an “error on application level.” An ABAP
exception is raised in the application’s ABAP
code. It usually means that the function module
you called doesn’t quite know what to do with the
inputs you gave it. For example, if you called a
(hypothetical) function module READ_ORDER_
DETAIL with an invalid or non-existent order
number, it would throw the ABAP exception
ORDER_NOT_FOUND. From the perspective
of RFC communications, this isn’t a problem.
The RFC connection, as well as the user context
in the back end, remain alive and can be used for
further function calls.

A system failure can be thought of as an “error
on kernel level.” A system failure comes from
the SAP R/3 kernel and indicates a low-level
technical problem. For example, while executing
a (hypothetical) function module, the SAP R/3
work process may have run out of memory or an
unexpected division by zero may have occurred.
In these cases the work process would abort
execution and generate an ABAP short dump,
which can later be analyzed with transaction
ST22. As a consequence, the back-end system
closes the RFC connection and you need to open
a new one, if you wish to execute further calls.

ABAP messages are somewhat in between
the previous two. They can come from the
ABAP code (using the keyword MESSAGE)
or they can come from the kernel side. However,
the keyword “MESSAGE … RAISING …”
doesn’t trigger an ABAP message. It leads to
an ABAP exception (as in “RAISE …”) with
the difference that in addition to the exception
key, the type, ID, and number of a T100 message
are sent back to the client. In particular, when
using “MESSAGE … RAISING …” the RFC
connection remains alive.

•

•

•

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK: Part 1

No portion of this publication may be reproduced without written consent.	 123

	 ABAP messages can be difficult to analyze
because there are six types of them, three of
which affect RFC communications: E (Error),
A (Abend), and X (Exit). The other three are
I (Info), S (Status), and W (Warning), but they
have no impact on RFC, so we won’t discuss
them. The three that affect RFC behave quite
differently; the only common feature is that after
the message is sent, the RFC connection is closed.

E:	 This is similar to an ABAP exception via
“MESSAGE … RAISING …” except that it
ends the user session and closes the connection.
In addition, error details are written to the
current work-process trace, which doesn’t
happen with ABAP exceptions.

A:	This is a more serious error and generates a
system log entry with syslog area D0.
Transaction SM21 can tell you what went wrong.

X:	This finally aborts the work process the hard
way and generates a short dump with key
MESSAGE_TYPE_X. The error details can be
found in transaction ST22.

A communications failure can be thought of
as an “error on network level.” This error
indicates a problem in the network layer. It can
range from a misspelled hostname to incorrectly
configured routers/firewalls to real hardware
problems.

You also need to be aware of one special error:
If you get the standard TCP/IP error message
“Connection reset by peer,” it usually means that
some router or firewall between the RFC program and
the communications partner has closed the connection.
However, it can also mean that there is no network
problem at all, but instead the communications partner
has crashed without properly closing the connection
and sending a final error message (as it would in the
case of a system failure).

Therefore, before immersing yourself in a detailed
analysis of your network settings, you should first
check the target host to see whether the process on
the other side has crashed or been terminated, or if
the operating system has been unexpectedly rebooted.

•

When reacting to these errors, you need to
know in which cases the RFC connection is still
okay. From a “technical” point of view a successful
function module invocation and one that ended in
an ABAP exception do not differ, so the connection
can immediately be reused. The only difference
is the payload being transported: In the first case,
it’s some return values; in the second case, it’s an
“application level error message” (as opposed to a
technical or network error message). In other words,
the RFC layer only cares about technical problems
on the system or network level.

In case of an ABAP message or a system failure,
the connection has been closed, but the system is
okay in principle, so it’s worth trying to open a new
connection and continuing with that system for the
next calls. (There may be rare cases where a system
failure has been caused by the back end being in
deep trouble on its database or operating system
level. Then, logging on again won’t be of much
use since another function call will result in the
same system failure again.) When you get a commu-
nications failure, any further attempt is typically in
vain, so it’s probably best to log the error and give
up until an administrator can fix the problem.

The switch-block after RfcInvoke() in
demoClient.c shows what such an error-handling —
including re-logon, if necessary — could look
like. This is a critical piece of code, as shown in
Figure 4 (on the next page). Because it appears in
a similar fashion in most client applications, let’s
take a moment to discuss it.

First, the network failure needs to be dealt with
separately from the other error conditions outside
the switch-block. In two of the other error conditions
(RFC_ABAP_MESSAGE and RFC_ABAP_RUNTIME_
FAILURE) the connection is being closed normally,
not by a network problem. In those cases, you should
try to reopen the connection for further calls. You
should also try to prepare for situations in which a
network failure occurs during an attempt to reopen
the connection. In the demo code this is achieved
in lines 35 and 41 by overwriting the return code
with the result of the reconnect attempts. As a
consequence, the if-block in line 49 will now handle

SAP Professional Journal • November/December 2007

124	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

01 while(1){

02 //... The necessary preparation for the function call goes here.

03 rc = RfcInvoke(connection, functionContainer, &errorInfo);

04 switch(rc){

05 case RFC_OK:

06 printExports(functionDescription, functionContainer);

07 checkForReset(connection);

08 break;

09 case RFC_ABAP_EXCEPTION:

10 printfU(cU("%s threw an ABAP Exception: %s\n"),

 functionName, errorInfo.key);

11 if (strlenU(errorInfo.abapMsgClass) > 0)

12 printfU(cU("Message Details: TYPE=%s ID=%s NO=%s V1=%s

 V2=%s V3=%s V4=%s\n"),

13 errorInfo.abapMsgType,

14 errorInfo.abapMsgClass,

15 errorInfo.abapMsgNumber,

16 errorInfo.abapMsgV1,

17 errorInfo.abapMsgV2,

18 errorInfo.abapMsgV3,

19 errorInfo.abapMsgV4

20);

21 checkForReset(connection);

22 break;

23 case RFC_ABAP_MESSAGE:

24 printfU(cU("%s threw an ABAP Message: %s\n"), functionName,

 errorInfo.message);

25 printfU(cU("Message Details: TYPE=%s ID=%s NO=%s V1=%s V2=%s

 V3=%s V4=%s\n"),

26 errorInfo.abapMsgType,

27 errorInfo.abapMsgClass,

28 errorInfo.abapMsgNumber,

29 errorInfo.abapMsgV1,

30 errorInfo.abapMsgV2,

31 errorInfo.abapMsgV3,

32 errorInfo.abapMsgV4

33);

34 connection = RfcOpenConnection(loginParams, 1, &errorInfo);

35 rc = errorInfo.code;

36 break;

Figure 4	 Error-handling after an RfcInvoke()

Continues on next page

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK: Part 1

No portion of this publication may be reproduced without written consent.	 125

these two cases as well, avoiding the tripling of the
error-handling code for network problems.

The check for resetting the ABAP session context
is only necessary in the RFC_OK and RFC_ABAP_
EXCEPTION cases (lines 07 and 21). In the other cases
(RFC_ABAP_MESSAGE, RFC_ABAP_RUNTIME_FAILURE,
and RFC_COMMUNICATION_FAILURE), the ABAP
session context has already been destroyed, so there’s
no need to do it again.

To avoid memory leaks, you should release the
functionContainer in any case, independent of the
error code. For this reason that’s done in line 44
outside the switch-block. The exception is that, if
your application can reuse the container for further
calls, a good place to destroy it would be the if-block
for communication failures.

Tip!

Depending on the back-end release, some error
information may not be available. In particular,
for some of the ABAP message cases, SAP R/3
4.6C and R/3 4.6D have not yet returned the
detail values (message type, ID, number, and
v1–v4 parameters). Therefore, the correspond-
ing fields in errorInfo remain empty. This is a
shortcoming of the SAP R/3 kernel, so don’t
blame the SAP NetWeaver RFC library.

Let’s proceed to the final step of our RFC client
program now: how the results returned by the back
end can be displayed to the user.

37 case RFC_ABAP_RUNTIME_FAILURE:

38 printfU(cU("%s aborted with a SYSTEM_FAILURE: %s: %s\n"),

 functionName,

39 errorInfo.key, errorInfo.message);

40 connection = RfcOpenConnection(loginParams, 1, &errorInfo);

41 rc = errorInfo.code;

42 break;

43 }

44 RfcDestroyFunction(functionContainer, NULL);

45 /* The following if-block handles both cases: when the connection broke

 down during RfcInvoke

46 as well as when we were unable to reconnect after an RFC_ABAP_MESSAGE

 or RFC_ABAP_RUNTIME_FAILURE.

47 That's why we didn't include the case in the switch-block.

48 */

49 if (rc == RFC_COMMUNICATION_FAILURE){

50 printfU(cU("A communication/network problem occurred: %s\n"),

 errorInfo.message);

51 printfU(cU("Please check the connection to %s and try again.\n"),

 attributes.sysId);

52 break;

53 }

54 }

Figure 4 (continued)

SAP Professional Journal • November/December 2007

126	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Comparing SAP NetWeaver RFC SDK to the classic RFC SDK
This article discusses three aspects of RFC programming:

Metadata descriptions

Data containers

Invocation of ABAP function modules

When comparing these to the classic RFC SDK, observe the following differences and similarities.

Metadata descriptions

In the classic RFC SDK, the concept of metadata descriptions exists only in a rudimentary form. You can
use the genh tool to generate header files for ABAP structures, but it only supports flat structures (ABAP
type 1). Also, two functions, RfcGetStructureInfoFlat() and RfcGetStructureInfoAsTable(), can
be considered forerunners of RfcGetTypeDesc(). However, the information these functions return isn’t
easy to use and works only for flat structures. You can’t get the description of a complete function module
in one step.

RfcGetFunctionInfoAsTable() works only with simple function modules. The classic RFC SDK user
basically has to build up memory areas for his or her function modules manually from single pieces. To
define the layout of single structures and tables, you can use the functions RfcInstallStructure() (plus
genh information) and RfcInstallStructure2()/RfcInstallUnicodeStructure() (plus information
from RfcGetStructureInfoFlat()) within their limitations.

Data containers

The concept of data containers doesn’t exist at all in the classic RFC SDK. There, it is basically the appli-
cation developer’s responsibility to provide structures with the correct layout to hold the data. In the
classic RFC SDK, you always have to provide values in the correct data type, whereas SAP NetWeaver
RFC SDK has convenient automatic-conversion features. The only conversion available in the classic
RFC SDK is from the BCD data type to STRING and vice versa using RfcConvertBcdToChar() and
RfcConvertCharToBcd().

Also, in the classic RFC SDK you have to assemble the list of function-module parameters manually, a
tedious and error-prone task. In the server case, the programmer must send the response data to the
back-end system, in contrast to SAP NetWeaver RFC SDK, which performs this task automatically.

Invocation of ABAP function modules

SAP NetWeaver RFC SDK client connectivity has retained a measure of similarity to the way it worked
in the classic RFC SDK. Ignoring changes in how import and export parameters are exchanged with the
RFC library, you can think of the functions shown in the table as being equivalent.

•

•

•

Continues on next page

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK: Part 1

No portion of this publication may be reproduced without written consent.	 127

Processing the output parameters

When RfcInvoke() ends successfully, the SAP
NetWeaver RFC library has already read the back
end’s return parameters from the network connection
and written them into the RFC_FUNCTION_
HANDLE container. The program then uses a
similar recursive mechanism to traverse through the
output parameters (CHANGING, EXPORTING, and
TABLES) via the function printExports(), which
is symmetrical to the fillImports() function. Take
a look at the helperFunctions.c file again.

As when setting the input values via
RfcSetString(), you can use the convenient function
RfcGetString() to convert all kinds of data types
into a string representation. Otherwise, nothing much
is new in this section.

One point deserves some extra attention, however:
Before trying to execute the next function module, the
program asks the user whether to reset the ABAP
session context in the back-end system. A reset will

clean up any leftover memory or stale information
from the previous function call and, thus, make sure
that there won’t be any unwanted side effects on the
next call. It is almost equivalent to closing and then
reopening a fresh connection, but it has a much more
efficient performance, because it saves the time that
would be needed to establish a new network connec-
tion and handle an expensive logon procedure. (When
SNC is involved, the logon handshake is quite expen-
sive.) A reset is a must, especially when implementing
a connection pool (used by different parts of the appli-
cation) before returning the connection to the pool for
others to use.

On the other hand, always resetting the connection
after every call isn’t necessarily a good idea either.
Some families of function modules store important
state information in the ABAP session memory, which
the next function module in the sequence uses. If that
memory is deleted, a follow-up function module that
depends on it will get an error. Examples of this are
function modules that use the keyword “EXPORT TO

Besides the handling of import/export data, three other concepts have changed quite substantially:

Error-handling has evolved to support all error types (as long as the back end does, too) while the
classic RFC library was only able to handle the standard ABAP exceptions. Everything else was
mapped to a SYSTEM_FAILURE, thereby losing the server context’s detail information, such as the
contents of the fields SY-MSGID, SY-MSGTY, SY-MSGNO, and so on.

The way “RFC callbacks” are handled within an RFC client program has been simplified. We haven’t
covered callbacks yet, since there is a separate section dedicated to that topic in the third article.

Experience has shown that trying to interrupt an ongoing RFC call is quite risky and seldom yields the
desired effects. Before something like this can work satisfactorily, a lot needs to be changed on SAP
R/3 kernel side. Therefore, the split into two separate RfcCallEx() and RfcReceiveEx() functions, as
well as the function RfcCancel(), have been removed from the SAP NetWeaver RFC library.

•

•

•

Classic RFC SDK SAP NetWeaver RFC SDK

RfcOpenEx() RfcOpenConnection()

RfcCallReceiveEx() RfcInvoke()

RfcCleanupContext() RfcResetServerContext()

RfcClose() RfcCloseConnection()

Continued from previous page

SAP Professional Journal • November/December 2007

128	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

MEMORY” or global parameters defined in the top
include of the function group.

Another case in which an untimely reset can
hurt is when a BAPI writes to the database (Update-
BAPIs). These BAPI changes are only persisted
in the database if the BAPI call is followed by
a call to BAPI_TRANSACTION_COMMIT within the
same user session. If a reset is done between the
two RfcInvoke()s for the BAPI and the BAPI_
TRANSACTION_COMMIT, then the temporary buffer
that the BAPI created is discarded and not written
to the database.

But note that there is no rule without an exception.
There are some old 3.1I BAPIs that have their
internal COMMIT WORK. They don’t need a BAPI_
TRANSACTION_COMMIT, so it’s always useful to consult
the documentation when using BAPIs.

By asking the user whether a connection reset
should be done, the demoClient program can correctly
call chains of “stateful” function modules, as well as
Update-BAPIs.

Conclusion
SAP NetWeaver RFC SDK allows you to write RFC
client programs quickly, even if the function modules
involved are complex or use advanced features. This
makes SAP NetWeaver RFC SDK usable not only for
“static” approaches (where the function modules are
hard-coded), but also for generic approaches (where
the programs need to react dynamically).

The simplicity of the examples given here shows
you that a lot of work is being done “under the hood”
in the SAP NetWeaver RFC library (i.e., the library
internally performs a lot of tasks with which the appli-
cation developer was formerly burdened). In
particular, the parsing and interpreting of complex

data types, and the correct conversion of non-ASCII
character data were difficult in the past. The enhanced
capabilities for reacting to error conditions outside
your control (i.e., inside the SAP system or ABAP
code, or in the network layer) should make your
programs more robust, and the possibility of getting
more detailed error messages from the ABAP side
should make the task of finding and fixing the cause
of a problem easier.

In the second installment of our series of articles,
we’ll explore the intricacies and advanced features of
the “opposite direction” of RFC communications:
external programs that can be called from within an
SAP system.

Ulrich Schmidt joined SAP in 1998 after working in the
field of Computational Algebra at the Department of
Mathematics, University of Heidelberg. Initially, he was
involved in the development of various products used for
the communication between SAP R/3 systems and external
components. These products include the SAP Business
Connector, which translates SAP’s own communications
protocol RFC into the standard Internet communications
protocols HTTP, HTTPS, FTP, and SMTP, as well as pure
RFC-based tools, such as the SAP Java Connector and
RFC SDK. Ulrich gained insight into the requirements
of real-world communications scenarios by assisting in
the setup and maintenance of various customer projects
using the above products for RFC and IDoc
communications.

Guangwei Li joined SAP in 1997 after working in the
fields of CAD/CAM, Production Planning and Control, as
well as Internet Messaging. Since then his work has been
focused on the communications and integration between
SAP systems and external systems, especially the external
systems running on Microsoft Windows platforms. He
has been involved in the development of the SAP DCOM
Connector, the SAP Connector for Microsoft .NET, and
the RFC SDK.

