
No portion of this publication may be reproduced without written consent. 77

Put your integrated WebSphere environments into production fast

Most ABAP developers have used remote function calls (RFCs) in one
form or another to enable SAP and non-SAP system interoperability and
process communication. In high-volume processing scenarios, the most
commonly used types are asynchronous RFC (aRFC) for parallel function
calls, transactional RFC (tRFC) for ensuring that grouped function calls are
called once, and queued RFC (qRFC) for ensuring that grouped function
calls are called once in a specified order.1 However, aRFCs, qRFCs, and
tRFCs have their limitations. aRFCs are not guaranteed, and while qRFCs
and tRFCs follow the “transactional” model in which RFC calls succeed or
fail as a group so that all calls are guaranteed, their scalability is limited.
To bridge these gaps, with SAP NetWeaver 2004s SP14 SAP introduces
background RFC (bgRFC), a new RFC type that improves runtime through
efficient, highly scalable, transactional processing of large numbers of
sequential function calls.

This article is an introduction to bgRFCs for ABAP Objects developers,
and contains basic examples describing SAP NetWeaver integration scenar-
ios based on ABAP Objects. The first section provides a brief introduction
to reliable messaging and bgRFC terminology, including units, destinations,
scenarios (outbound, inbound, and out-inbound), and Quality of Service
(QoS) levels. Then you will learn how to program with bgRFCs, including
how to create inbound, outbound, and out-inbound units, how to lock and
unlock outbound units, how dependencies between the update task and
bgRFC are handled, and how bgRFC units are processed. The article con-
cludes with how to monitor bgRFCs and how to configure the bgRFC
scheduler.

Increase the efficiency of your RFC
communications with bgRFC —
a scalable and transactional
middleware framework

by Wolfgang Baur, Omar-Alexander Al-Hujaj, and Wolfgang Röder

Wolfgang Baur
Developer,
ABAP Connectivity,
SAP AG

Omar-Alexander Al-Hujaj
Developer,
ABAP Connectivity,
SAP AG

Wolfgang Röder
Development Architect,
SAP NetWeaver,
IMS NW Foundation,
SAP AG

(Full bios appear on page 106.)

1 For more information on the available types of RFCs, see the SAP Professional Journal articles
“Master the five remote function call (RFC) types in ABAP: Part 1 — A comprehensive guide for
SAP programmers and administrators” (September/October 2006) and “Explore the technical proce-
dures and settings for creating and securing RFMs in ABAP: Part 2 — A comprehensive guide for
SAP programmers and administrators” (November/December 2006).

SAP Professional Journal • May/June 2007

78 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Although experience in qRFC, tRFC, and aRFC
is not mandatory for reading this article or for using
bgRFC, it certainly helps in understanding the benefits
of bgRFC. Knowledge of distributed computing is
also very helpful in understanding the terminology.

Key bgRFC concepts
There are some important foundational concepts you
need to understand so that you can effectively use
bgRFC in your programs — bgRFC units, destina-
tions, scenarios, and Quality of Service levels. We’ll
look at these key concepts in detail in the following
sections.

bgRFC units

bgRFC supports two types of units — units of type T
(transactional) and of type Q (queued). Both units
follow a transactional model in which multiple RFC
calls succeed or fail as a group, only units of type Q
have additional features. We will come back to the
details of both types of units in an upcoming section
on bgRFC-supported Quality of Service levels, but
first let’s take a closer look at the definition of a
transaction in the context of bgRFC units.

Taking a look on the Internet, we find the follow-
ing definition for transaction: “When most database
programmers refer to a transaction, they are referring
to an ACID transaction. These transactions (logical
units of work) are designed for short-lived decisions
usually lasting under a few seconds. These transac-
tions identify a logical unit of work that is performed
either completely or not at all. That is, either a
COMMIT WORK or a ROLLBACK WORK is performed on
the operations. This enables the data to maintain a
state of consistency.”2

ACID is an acronym:

• Atomic: The transaction cannot be divided into
parts and must be executed completely (or not
at all).

• Consistency: A consistent state of the data may
be expected at all times; either all of the RFCs in
the unit are processed or none.

• Isolation: Transactions are isolated from each
other; transaction serialization ensures that multi-
ple transaction instances do not collide.

• Durable: Once a transaction commits, its updates
survive, even if the system goes down.

This definition is related to database transactions,
but with slight changes, you can reuse it for bgRFC
units: “When ABAP Objects programmers refer to a
bgRFC unit, they are referring to an ACID transaction.
These transactions identify a logical unit of work that
is performed either completely or not at all. That is,
either a COMMIT WORK or a ROLLBACK WORK is per-
formed on the operations. This enables the data to
maintain a state of consistency.”

In a transactional system, you want to save some
sets of work in their entirety or not save them at all.
For example, you don’t want the line items of an order
to be successfully saved if the save of the header row
containing the order total information fails. This com-
plete set of work is commonly called a “logical unit of
work.” Every time we use the term “unit” in this arti-
cle, it is used as a synonym for “logical unit of work.”

Like qRFCs and tRFCs, a bgRFC unit is a contain-
er for a number of RFCs. What’s different, however,
and completely new in bgRFC is the possibility to cre-
ate as many units in parallel as you like and to handle
them separately. This provides a big advantage over
the former tRFC and qRFC concept in which you
could only handle one unit at a time (CALL FUNCTION

... AS SEPARATE UNIT). This new feature is very help-
ful if your business transaction requires the creation of
multiple independent messages for successive business
steps (e.g., for accounting or inventory systems). With
bgRFC, you are able to commit all of them or roll back
all of them in a single transaction. This helps you keep
your business system consistent.

The potential of this feature is that you can now
easily group RFCs, and all such units are independent.
What happens if one RFC in one unit fails? A bgRFC
unit is atomic (ACID); either all of the RFCs in the
unit are processed or none. Each bgRFC unit is 2 See http://www.serviceoriented.org/acid_transactions.html.

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 79

isolated. This means that all bgRFC units are exe-
cuted independently. At the end of the execution of
each bgRFC unit, there is an implicit COMMIT WORK,
which makes the data manipulation persistent in
your database.

bgRFC destinations

One important piece of information is missing to
complete the full picture of the potential of bgRFC:
Similar to tRFC and qRFC, with bgRFC function
modules are called remotely. (In a later section you
will learn that a local system also can be used as a
remote system.) For RFCs, we use the construct of a
destination to define where to execute the function
module. In the case of bgRFC, tRFC, and qRFC, the
destination defines where the unit will be executed.
Later, you will learn that bgRFC destinations are
handled differently depending on whether they are
outbound or inbound, and we’re sure that you’ll
like the new way of handling destinations in
your programs.

SAP’s ABAP architecture is a three-tiered
architecture with different types of work processes.
All application servers with dialog work processes
can be used as a destination for RFCs, whether the
server is part of the same installation or a different
installation. bgRFC is primarily designed for inter-
operability, but you can also use it for an asynchro-
nous and load-balanced mass execution. A destina-
tion is usually not a single server, but it could be.

Let’s take a closer look at the load balancing
issue. bgRFC units are always executed in dialog
work processes. Because dialog work processes are
primarily used to handle the work processes of
human users, what will happen if dialog users have
to share the same dialog work processes with mass-
es of bgRFC units? What will be the effect on the
response times for the human users? What mecha-
nisms prevent the overloading of servers and the use
of idle servers? Not to worry — bgRFC provides
functions for a fair share of system resources to
automatically handle load balancing issues.

A bgRFC destination could also be a group of
application servers — the automatic dispatching of

units to these servers is handled by the bgRFC run-
time. Later in this article, you will learn how to define
bgRFC destinations and server groups.

bgRFC scenarios

You can use every application server with at least one
dialog work process as a destination for bgRFC units.
bgRFC supports three types of bgRFC scenarios —
outbound, inbound, and out-inbound — which we will
introduce in the subsequent sections. The main differ-
ence between these scenarios is which system controls
the execution of units — i.e., in which system the
bgRFC scheduler, which is in charge of dispatching all
bgRFC units, is running (we will go into more detail on
this later in the article). bgRFC scenarios are strongly
related to the bgRFC destination. Every time you
request a destination object, you use special factory
methods3 that are related to the three bgRFC scenarios.
We introduce the complete bgRFC API in its own sec-
tion, but let’s first zero in on the three scenarios.

bgRFC outbound
Let’s begin with the outbound scenario. Outbound
scenarios are scenarios of RFCs between different
installations, e.g., between SAP ERP and SAP Supply
Chain Management (SCM) systems. In this scenario,
one application creates information that must be syn-
chronized with at least one other remote application.
Because of the possibility that the remote system may
not be up and running, the units are temporarily stored
in the local database of the sender system prior to
delivering them to the bgRFC scheduler, which is part
of the sender system. In the outbound scenario, the
bgRFC scheduler of the sender system is in charge of
the execution of the units in the receiver systems. This
leads to the situation in which the execution of the
units is separated (asynchronous in a separate transac-
tion) from the transaction that has created the units in
the sender system. After a unit has been executed in
the remote system, the bgRFC scheduler deletes this
unit in the local database. This concept provides the
service quality level Quality of Service Exactly Once

3 An object-oriented design pattern that deals with creating objects
without specifying the exact class of the object to be created.

SAP Professional Journal • May/June 2007

80 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

(QoS EO). Quality of Service Exactly Once In Order
(QoS EOIO) is also available. (We go into more
detail on bgRFC QoS in an upcoming section; see
the sidebar on this page for a brief introduction to
this concept.)

In Figure 1, you see the global class CL_BGRFC_
DESTINATION_OUTBOUND, which provides two
factory methods to get a reference to an object with
the interface IF_BGRFC_DESTINATION_
OUTBOUND.

In Figure 2, we introduce the factory methods
used to create instances of bgRFC unit objects. We
will present more detail on these unit objects when we
introduce the supported QoS levels in an upcoming
section. You can see that there is a hierarchical rela-
tionship between bgRFC destinations and bgRFC
units, and that there is a strong binding between
bgRFC destinations and bgRFC scenarios.

bgRFC inbound
For the inbound scenario, in contrast to the outbound
scenario, the receiver system is identical to the sender
system. This scenario is similar to the update task.
The bgRFC inbound scenario is not a replacement
for the update task, but provides new capabilities
for developers.

If you call a function module using the statement
CALL FUNCTION ... IN UPDATE TASK, the function
module is flagged for execution using a special update
work process. The actual execution of the function
module may therefore be postponed. When you call a
function module using the IN UPDATE TASK addition,
the function module and its interface parameters are
stored as a log entry in a special database table. You
can then commit or roll back all of the update postings
of a program at one time. The implication, therefore,
is that you can only have one logical unit of work at a

Quality of Service (QoS)
In computer networking, the traffic engineering term Quality of Service (QoS) refers to control mecha-
nisms that can provide different priorities to different users or data flows, or guarantee a certain level of
performance for a data flow in accordance with requests from the application program. QoS can be
defined as “the measure of the degree of satisfaction of the user of the system.”* This term is sometimes
used as a quality measure with many alternative definitions, rather than referring to the control mecha-
nisms. In computer networking, a good QoS may mean advanced QoS mechanisms, or high probability
that the network is able to provide the requested level of performance. In the context of bgRFC, QoS is
used to define the level of service for the dispatching of bgRFC units.

QoS types include the following, where “messages” can be considered a synonym for bgRFC units:

• Quality of Service Best Effort (QoS BE): If a system failure occurs, QoS BE messages may not be
delivered. There is no guarantee for the right message order.

• Quality of Service Exactly Once (QoS EO): QoS EO messages are guaranteed to be delivered. There
is no guarantee for the right message order.

• Quality of Service Exactly Once In Order (QoS EOIO): QoS EOIO message delivery and sequence
are guaranteed. The information is published in time order, and the same order should be guaranteed at
the receiver’s side (i.e., old messages should arrive at the receiver’s side before new ones).

* See http://en.wikipedia.org/wiki/Qos.

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 81

time. Every time you want to create a new and inde-
pendent logical unit of work you have to close the
existing one by using COMMIT WORK. This has a major
impact on the design of your program in those cases
in which you want to create multiple independent
logical units of work. As you learned before, you
can create and manage many bgRFC units in parallel.
You can create additional units as long as you have
not called COMMIT WORK. COMMIT WORK closes all exist-
ing bgRFC units and the application transaction. It
stores the interface parameters of all function mod-
ules in bgRFC units plus the interface parameters of
all function modules for the update task.

In contrast to update tasks, the system processes
bgRFC units in dialog work processes. This provides
you with more control over the dispatching of units.
For example, you can define a special bgRFC desti-
nation for a specific purpose and use it for your units.
You can use this for parallelization of the mass exe-
cution of units or to make use of special servers for a
purpose or service (e.g., a tax calculation). You can
also separate types of units by using different bgRFC
destinations for better performance or throughput.
Think about the usage of buffers, context switches,
and so on. For example, you can use each bgRFC

destination as a logical application to separate finan-
cial or HR transactions from others. The bgRFC
inbound scenario is always an alternative to the update
task, if you require more control over the execution of
units. However, bgRFC units do not keep the current
business transaction for used resources (i.e., master
data records) locked. This could be one reason for
staying with the update task. This does not mean that
during the execution of the unit there is no locking
mechanism, but each RFC is responsible for its own
locking to guarantee system integrity.

Like the outbound scenario, the inbound scenario
provides at least the service quality level QoS EO.
This could be a reason for using bgRFC instead of
aRFC, because aRFC provides only Quality of Service
Best Effort (QoS BE), which means you don’t have
reliable messaging. Reliable messaging is a protocol
that allows messages to be delivered reliably between
system applications. This means that the delivery of
messages is guaranteed based on a hand-shaking
protocol between sender and receiver systems.

The factory method in Figure 3 provides an
instance of a destination object with the interface
IF_BGRFC_DESTINATION_INBOUND.

CL_BGRFC_DESTINATION_OUTBOUND

+CREATE(in DEST_NAME : BGRFC_DEST_NAME_OUTBOUND) : IF_BGRFC_DESTINATION_OUTBOUND
+CREATE_GROUP(in DEST_NAMES : BGRFC_DEST_NAME_TAB_OUTBOUND) : IF_BGRFC_DESTINATION_OUTBOUND

Figure 1 Factory methods for outbound destinations

«interface»
IF_BGRFC_DESTINATION_OUTBOUND

+CREATE_TRFC_UNIT() : IF_TRFC_UNIT_OUTBOUND
+CREATE_QRFC_UNIT() : IF_QRFC_UNIT_OUTBOUND
+CREATE_QRFC_UNIT_OUTBOUND() : IF_QRFC_UNIT_OUTBOUND

Figure 2 Factory methods to create instances of unit objects for the outbound scenario

CL_BGRFC_DESTINATION_INBOUND

+CREATE(in DEST_NAME : BGRFC_DEST_NAME_INBOUND) : IF_BGRFC_DESTINATION_INBOUND

Figure 3 Factory method to create instances of inbound destinations

SAP Professional Journal • May/June 2007

82 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

As in the outbound scenario, bgRFC provides
factory methods to create instances of unit classes,
as shown in Figure 4.

Note!

You should use the concept of the update task
as long as it provides all required functionality
and only switch to the bgRFC inbound scenario
if it is really required. Do not misuse dialog
work processes for asynchronous transactional
updates.

bgRFC out-inbound
The out-inbound scenario is a mixture of the outbound
and the inbound scenario. The bgRFC scheduler in the
sender system is only allowed to transfer the units
from its outbound workload to the inbound workload
of the receiver system. The units will be deleted in the
workload of the sender system after the transfer. In the
receiver system, the local bgRFC scheduler works as
in the inbound scenario to execute the units. The main
purpose for this scenario is so you don’t give the
sender system control over the execution of the units
in the receiver system. Another purpose is that the
working process of the sender system in an outbound
scenario is blocked in idle mode during the execution
time of the unit in the receiver system. In an out-
inbound scenario, the sender system has less idle time.
From the programmer’s perspective, the out-inbound
scenario is similar to the outbound scenario (refer

back to Figure 2). For this reason, bgRFC doesn’t
provide separate factory methods to create instances
of destinations, but rather provides a factory class
for creating instances of unit classes for the out-
inbound scenario.

bgRFC Quality of Service levels

In the prior sections, we used the term Quality of
Service. This term is often used in the area of interop-
erability and networking, including Internet and Web
services, to define levels of provided services (see
also the sidebar on page 80). With bgRFC, we have to
distinguish between the Best Effort (QoS BE), Exactly
Once (QoS EO), and Exactly Once In Order (QoS
EOIO) service levels. Even though QoS BE is not
supported by bgRFC, you should be aware of the dif-
ferences between it and other QoS levels.

QoS BE means that the service provider does
not guarantee the delivery of the message because
the service expends minimal (best) effort for the
service. This means that the message could be trans-
ferred to the receiver once, multiple times, or never.
In the case of aRFC, you get a service that is compa-
rable with QoS BE (except the multiple delivery
times), but this may not be enough for your business
transactions. (Of course, if you do not need reliable
messaging, you should think about using aRFC
instead of bgRFC to save the additional effort of
reliable messaging.)

For reliable messaging, you need QoS EO and
QoS EOIO. Let’s take a look at how bgRFC supports
these two service levels via bgRFC units of type T
(transactional) and Q (queued), respectively.

bgRFC QoS EO
bgRFC units of type T (transactional) offer QoS EO.
QoS EO means that the service guarantees that the
message will be delivered once and only once. In the
case of bgRFC, this means that the unit will be execut-
ed in the receiver system once. The unit can’t get lost
because a bgRFC unit is persistent, and the bgRFC
protocol guarantees that the unit will be executed
once. All bgRFC units with the attribute QoS EO are

«interface»
IF_BGRFC_DESTINATION_INBOUND

+CREATE_TRFC_UNIT() : IF_TRFC_UNIT_INBOUND
+CREATE_QRFC_UNIT() : IF_QRFC_UNIT_INBOUND

Figure 4 Factory methods to create instances of
unit objects for the inbound scenario

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 83

independent from each other. All of them can be exe-
cuted in parallel in a random order — which describes
the use case of bgRFC QoS EO scenarios.

QoS EO is supported for both bgRFC inbound
(see Figure 5) and outbound (see Figure 6) scenarios.
You can identify the API for the QoS EO units by the
term “tRFC” in the names of classes, interfaces,
and methods.

bgRFC QoS EOIO
bgRFC units of type Q (queued) offer QoS EOIO —
they are like units of type T, which are executed
only once, but units of type Q are executed in a
particular order.

In this section we present the real power of the
bgRFC concept. To help you identify scenarios in

which you can use bgRFC with QoS EOIO, we start
with some examples that use non-bgRFC solutions
and examine their disadvantages:

• Example 1: A given CRM application is designed
for creating sales orders and billing documents.
Your business process requires that both docu-
ments be forwarded to a back-end system. The
back-end system requires that the sales order be
imported before the related billing document. The
easiest way to handle this requirement is to serial-
ize the messages using a single queue, because it
can be set up to work in a FIFO (first in, first out)
mode, as shown in Figure 7. That’s fine for small
solutions, but what happens in a high-volume
system? The single queue can become a bottle-
neck because there is no option for scalability via
parallelization. In that case, there is no option
to add more processing power (e.g., by adding
application servers) to handle a high volume of
business transactions.

• Example 2: Let’s try to attack the problem from
a different angle. Suppose we were to increase the
number of queues to 10. We’d hope that such a
change would result in running 10 times faster,
but it doesn’t. There is one major issue: how to
dispatch the messages to the queues. Round-robin
dispatching doesn’t help, because we have to keep
the dependencies between the sales orders and the
billing documents in mind, and we then have to
guarantee that the corresponding billing document
is assigned to the same queue as the sales docu-
ment. A simple heuristic could help (e.g., adopting
a dispatch sequence based on the last digit of the

«interface»
IF_TRFC_UNIT_INBOUND

+CREATE_UNIT_BY_PATTERN() : IF_TRFC_UNIT_INBOUND

Figure 5 Interface of a bgRFC unit for the inbound
scenario

«interface»
IF_TRFC_UNIT_OUTBOUND

+CREATE_UNIT_BY_PATTERN() : IF_TRFC_UNIT_OUTBOUND

Figure 6 Interface of a bgRFC unit for the out-
bound scenario

Figure 7 Example 1 with a single pipe

SAP Professional Journal • May/June 2007

84 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

sales document number), but such simple solutions
are generally not sufficient in real-world business
scenarios, because the number of related docu-
ments may be high and the heuristic rapidly
becomes too complex.

• Example 3: If 10 queues turn out to be unman-
ageable, maybe we could use two queues, one for
sales orders and one for billing documents (see
Figure 8). The sales order queue has a higher
priority. Every time at least one message is in the
sales order queue, the scheduler stops working on
the billing document queue. That could work, but
if you have a high volume of sales orders, you
would have to have a good explanation for your
customer waiting at the front desk for the billing
document. Also, what would happen if the first

message in a queue fails? For better scalability,
you could increase the number of queues, but this
is not a realistic solution; daily business is not as
simple as this example.

We could continue thrashing around devising
clever queuing schemes to address bottlenecking
issues, but bgRFC offers a simpler solution. To
understand the bgRFC approach, it’s helpful to look
at the problem using a topological sorting scenario.
You may not be familiar with this term, but as a
developer of asynchronous high-volume business
transactions, you certainly know the problem. Here’s
an example: Consider the interface between a CRM
and an SCM system. We now enter the world of
dependencies and “pipes” (also known as “queues”).
In Figure 9 you see the six messages M1 to M6.

Topological sort

M1 M2 M3 M4 M5 M6

P1

P2

Figure 9 Basic topological sort

Figure 8 Example 3 with two pipes

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 85

We want to execute all of these messages in parallel,
but we have two dependencies: (1) message M5 is
related to M1 (marked as P1) and M6 is related to
M3 (marked as P2). In Figure 10 you can see the
corresponding threads to the result of the topological
sort with all of the messages that can be processed
simultaneously or sequentially.

What we need is an engine that automatically
recognizes the dependencies between messages and
executes as many messages as possible in parallel
but in the correct order. Here, we face the QoS

EOIO requirement. Message M5 can be executed
only if message M1 is already executed. The same
is true for the messages M6 and M3. bgRFC pro-
vides the solution we need for this.

Let’s use a more sophisticated example of a
generic SCM scenario to illustrate how bgRFC
meets the QoS EOIO requirement. Take a look at
the Figure 11. Note that we have to switch the
terminology used in the previous example — in
bgRFC we don’t work with “messages” but rather
with “bgRFC units.”

Figure 11 bgRFC units and used business objects

Figure 10 Resulting threads with the messages of Figure 9

SAP Professional Journal • May/June 2007

86 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

In this example, we have a multi-user application
that creates bgRFC units for an SCM destination. A
unit is a container for many RFCs, and each of these
function calls is a manipulation of business objects.
For example, the unit U1 manipulates business partner
BP1 and the two products Pr1 and Pr2. The following
three units U2 to U4 are manipulating different busi-
ness objects. This means that there is no dependency
between unit U1 and the following three units. The
unit U5 is using the business objects BP3, Pr1, and
Pr3. Therefore a serialization of the units U1 and U5
is required because both are using or manipulating the
product Pr1. Without a serialization, the business
process could fail, and the database consistency is in
danger. In this example, there are also dependencies
between the other units.

Figure 12 visualizes the dependencies of all units.
Each edge of the topological sort represents the reason
for the dependency. You can determine the required
business process as a result of a topological sort of
the units.

Again, to satisfy the requirements of this scenario,
you need an engine that recognizes all dependencies
between all units and executes as many units in paral-
lel as possible. A number of predefined queues is not
helpful because an SCM scenario is usually a high-
volume scenario and our example is only a small frag-
ment. In reality we will have thousands of units that
could be processed in parallel, providing that you

have the right engine for the dependency recognition.
This engine must be very fast and effective; other-
wise, the engine itself can become the limiting factor
for high-volume scenarios such as SCM. With the
assumption that a unit can only be assigned to one
queue, we will lead with our example in only one
queue, because we have indirect dependencies
between all units. These indirect dependencies are
visualized as the forks and joins (i.e., the black verti-
cal bars) in Figure 13.

What we need is a solution to assign units to multi-
ple queues. However, a bgRFC unit is atomic, and we
are not allowed to split bgRFC units. The solution is to
assign units to virtual queues, which are identified by
name and destination. The reason for the identification
by destination is that there cannot be a dependency
between bgRFC units for different destinations.
Remember that a destination is a pointer to a target sys-
tem for bgRFC units. Every time you need an addition-
al virtual queue, you can use it — simply by using the
appropriate name. The main challenge here is to define
the rules for the names of the virtual queues. All appli-
cations or transactions that require a serialization of
bgRFC have to share the same bgRFC destination
and queue names. The dependency recognition is
automatically handled by the bgRFC API. The bgRFC
runtime analyzes the names of the virtual queues of
each unit and automatically inserts the units in the
bgRFC process for a destination (e.g., U1, U2, U3)
as shown in Figure 13. Figure 14 shows how the

Topological sort

U1 U2 U3 U4 U5 U6

BP3

Pr4
Pr5Pr3

Pr1

Figure 12 SCM example topological sort

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 87

SCM queues

U1/BP1

U2/Pr2

U2/BP2

U6/Pr3 U5/Pr3 U2/Pr3

U3/Pr4 U2/Pr4

U4/Pr5

U6/BP3 U5/PB3

U5/Pr1 U1/Pr1

Figure 14 Usage of virtual queues

Figure 13 SCM example business process using standard notation

SAP Professional Journal • May/June 2007

88 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

units are distributed across virtual queues by using the
business partner key and the product key as the virtu-
al queue name (e.g., U1/BP1, U5/Pr1, U1/Pr1, etc.).

Figure 15 and Figure 16 provide the inter-
faces for the virtual queued units for the inbound
scenario and the outbound scenario, respectively.
Figure 17 provides the interface for the virtual
queued units for the out-inbound scenario.

You can identify the classes, interfaces, and
methods of the APIs of the units with QoS EOIO
by the term “qRFC” in the name. For each bgRFC
scenario, we provide a single interface. Using this
interface you can add queue names to bgRFC units.
Because you get the reference to an instance of a
unit class via a factory method of a destination class,

there is no need for the developer to include the
destination in the queue name. bgRFC handles
this automatically.

Here, we used basic examples to describe the
problems addressed by the bgRFC solution. In reality,
a high-volume business scenario like the SAP SCM
example could easily create millions of units with
hundreds of queue names per unit and many over-
laps between virtual queues. This would lead to an
enormous business process graph requiring as many
simultaneous threads as possible for maximum
throughput of unit executions combined with reliable
messaging. bgRFC is a scalable solution that fulfills
all of these requirements. Next, we show you how to
use bgRFC in your own developed solutions.

«interface»
IF_QRFC_UNIT_INBOUND

+CREATE_UNIT_BY_PATTERN() : IF_QRFC_UNIT_INBOUND
+ADD_QUEUE_NAME_INBOUND(in QUEUE_NAME : QRFC_QUEUE_NAME, in IGNORE_DUPLICATES : bool = false)
+ADD_QUEUE_NAMES_INBOUND(in QUEUE_NAMES : QRFC_QUEUE_NAME_TAB, in IGNORE_DUPLICATES : bool = false)
+GET_QUEUE_NAMES() : QRFC_QUEUE_NAME_TAB

«interface»
IF_QRFC_UNIT_OUTBOUND

+CREATE_UNIT_BY_PATTERN() : IF_QRFC_UNIT_OUTINBOUND
+ADD_QUEUE_NAME_OUTBOUND(in QUEUE_NAME : QRFC_QUEUE_NAME, in IGNORE_DUPLICATES : bool = false)
+ADD_QUEUE_NAMES_OUTBOUND(in QUEUE_NAMES : QRFC_QUEUE_NAME_TAB, in IGNORE_DUPLICATES : bool = false)
+GET_QUEUE_NAMES() : QRFC_QUEUE_NAME_TAB

Figure 15 Interface of virtual queued units for the inbound scenario

Figure 16 Interface of virtual queued units for the outbound scenario

"interface"
IF_QRFC_UNIT_OUTINBOUND

+CREATE_UNIT_BY_PATTERN() : IF_QRFC_UNIT_OUTINBOUND
+ADD_QUEUE_NAME_OUTBOUND(in QUEUE_NAME : QRFC_QUEUE_NAME, in IGNORE_DUPLICATES : bool = false)
+ADD_QUEUE_NAMES_OUTBOUND(in QUEUE_NAMES : QRFC_QUEUE_NAME_TAB, in IGNORE_DUPLICATES : bool = false)
+ADD_QUEUE_NAME_INBOUND(in QUEUE_NAME : QRFC_QUEUE_NAME, in IGNORE_DUPLICATES : bool = false)
+ADD_QUEUE_NAMES_INBOUND(in QUEUE_NAMES : QRFC_QUEUE_NAME_TAB, in IGNORE_DUPLICATES : bool = false)
+GET_QUEUE_NAMES_OUTBOUND() : QRFC_QUEUE_NAME_TAB
+GET_QUEUE_NAMES_INBOUND() : QRFC_QUEUE_NAME_TAB
+LOCK_AT_INBOUND()

Figure 17 Interface of the virtual queued units for the out-inbound scenario

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 89

Programming with bgRFCs
So how do you program using bgRFCs? You will see
that the API has a clear object-oriented design and that
it is easy to program. This API is designed to support
the different scenarios we just described.

Creating inbound units

The first scenario is the QoS EO — also called trans-
actional bgRFC. We generate an independent unit that
can be executed in parallel with other units.

In the example shown in Figure 18, we generate a
bgRFC unit of type T, which contains two function
modules. First, you must create an object reference for
a destination. Use transaction SBGRFCMAINIDST to
configure the inbound destination. A destination handle
can be created only if the inbound destination is main-
tained in the table — otherwise, the system raises an

exception of type CX_BGRFC_INVALID_
DESTINATION. We’ll describe how to maintain
inbound destinations and their meaning in more detail
in the section “Inbound destinations” later in the article.

In the second step, we generate an object reference
for a specific unit. With this object reference, it is
possible to call as many function modules as you
want. Each function module that is called with the
same unit reference lies within the same logical unit
of work. All of the function modules taken together
form the bgRFC unit. Within the application program,
you can create as many destinations and unit refer-
ences as you want in parallel. If you want to bundle
function modules from within different methods, func-
tion modules, or form routines, you have to take over
the object reference. For powerful and mass data-
relevant applications, it is necessary to build appropri-
ate packages. The creation of a high number of short-
running bgRFC units increases the overhead of the

data:

l_lock_id type bgrfc_lock_id,

l_dest type ref to if_bgrfc_destination_inbound,

l_unit type ref to if_trfc_unit_inbound.

* Create the destination object references

l_dest = cl_bgrfc_destination_inbound=>create('TEST_BGRFC').

* Create new bgRFC inbound unit type T object reference

l_unit = l_dest->create_trfc_unit().

* Register first function module

call function 'RFC_FUNCTION_1' in background unit l_unit.

* Register second function module

call function 'RFC_FUNCTION_2' in background unit l_unit.

* Lock unit if requested

l_lock_id = l_unit->lock().

* Save the call

commit work.

Figure 18 Create inbound unit of type T

SAP Professional Journal • May/June 2007

90 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

bgRFC runtime environment and therefore probably
decreases the overall performance.

But what is the meaning of the statement l_unit-
>lock()? If it is necessary to delay the execution of
a unit, the programmer can create a lock within the

application program. In this case, the bgRFC scheduler
will not touch the unit until it is unlocked. Two use
cases exist for this task. The first one is that you write
a test program and you want to see the unit before the
scheduler executes it. In this case, you can unlock the
unit from the monitor (SBGRFCMON2). After you

data: l_lock_id TYPE bgrfc_lock_id.

* Release the lock of a transactional inbound unit.

cl_trfc_lock_inbound=>if_bgrfc_lock~release(lock_id = l_lock_id).

commit work.

data:

l_lock_id type bgrfc_lock_id.

l_dest type ref to if_bgrfc_destination_inbound,

l_unit type ref to if_qrfc_unit_inbound.

start-of-selection.

* Create the destination object references

l_dest = cl_bgrfc_destination_inbound=>create('TEST_BGRFC').

* Create new queued bgRFC inbound unit type Q object reference

. l_unit = l_dest->create_qrfc_unit().

* Assign the unit to a queue

l_unit->add_queue_name_inbound('BASIS_BGRFC_IN_Q1').

* Register first function module

call function 'RFC_FUNCTION_1' in background unit l_unit.

* Register second function module

call function 'RFC_FUNCTION_2' in background unit l_unit.

* Lock unit

l_lock_id = l_unit->lock().

* Save the call

commit work.

Figure 20 Create an inbound unit of type Q

Figure 19 Release a lock on a unit of type T in inbound scenario

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 91

release the lock, the scheduler takes the unit as soon
as possible to execute it. It is neither necessary nor
possible to explicitly trigger the scheduler — it is done
automatically. The second use case is the prevention of
the immediate execution of a unit because the program
logic demands this. In this case, our API allows the
unlocking of the unit within the application program.
To do this, you must store the lock_id (in this exam-
ple, l_lock_id) to unlock the unit at a later time. For
releasing a lock, the API provides the interface method
if_bgrfc_lock~release(). This use case makes
sense when there are dependencies in other parts of
the application program that are inspected at a later
point. Figure 19 shows how to unlock a transactional
inbound unit. The interface is implemented in four
different classes that incorporate the two possible sce-
narios (inbound and outbound) as well as the service
type (transactional as well as queued) of the bgRFC.

In the second example program, depicted in
Figure 20, we create a bgRFC unit of type Q in the
inbound queue. There are only a few differences in
the coding between this and the previous example —
the main issue is that for queued bgRFC, we need a
queue name and must use a different factory method
to create the unit object. To program a unit of type Q
in the inbound queue, you have to proceed as men-
tioned before. First, create an object reference for a
destination object, and then create a unit reference.
To provide the unit with a queue name, you have to
assign the queue name using the method add_queue_
name_inbound. It is not important whether you assign
the queue name before or after the function module
call. After that step, you have a complete bgRFC unit
object in which you can bundle as many function
modules as you want. To store the data in the data-
base table, you have to call a commit work. If you do

not call commit work, a rollback happens and no data
is saved. After the commit work, the bgRFC scheduler
can pick the units from the database to execute the
units locally.

Creating outbound units

In Figure 21 on the next page we create a bgRFC unit
of type T in the outbound scenario. As you can see,
the call structure is the same as Figure 18 — only the
interface names are slightly different. So you have
only to replace the word inbound by outbound within
the interface names and you can easily change a pro-
gram from inbound to outbound bgRFC.

Note!

The inbound and outbound scenarios are very
different use cases. Also, the term “destination”
has a different meaning for the outbound and
inbound scenarios. An outbound bgRFC desti-
nation must be maintained using transaction
SM59. More details how to customize the desti-
nation are given in the upcoming section on
configuring bgRFC destinations.

Unlocking a locked outbound unit

You can release a lock within the monitor or with a
separate program. To release it with a program, you
have to store the lock_id at creation time. Figure 22
on the next page depicts how this is done.

Creating a bgRFC outbound unit
of type Q

In the example program depicted in Figure 23 on
page 93, we create a bgRFC unit of type Q in the out-
bound queue. There are only a few differences in the
coding compared to the bgRFC outbound unit of type
T (see Figure 21). The main issue is that for queued
bgRFC, we need a queue name. Also, you use a differ-

Note!

All unit references that are generated in the
program will be invalidated after the commit,
so it is not possible to reuse a unit handle
following a commit work.

SAP Professional Journal • May/June 2007

92 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

ent factory method to create the unit object. To pro-
gram a unit of type Q in the outbound queue, you
have to proceed as mentioned before. First, you have
to create an object reference for a destination object,
after which you can create a unit reference. To provide
the unit with a queue name, assign the queue name
using the method add_queue_name_outbound. It is
not important whether you assign the queue name

before or after the function module call. After that
step, you have a complete bgRFC unit object in which
you can bundle as many function modules as you
want. To store the data in the database table, you have
to call a commit work. If you do not call commit work,
a rollback happens and no data is saved. After the
commit work, the bgRFC scheduler can pick the units
from the database to execute them.

data:

l_lock_id type bgrfc_lock_id.

l_dest type ref to if_bgrfc_destination_outbound,

l_unit type ref to if_trfc_unit_outbound.

start-of-selection.

* Create the destination object references

l_dest = cl_bgrfc_destination_outbound=>create('TEST_BGRFC').

* Create new bgRFC outbound unit type T object reference

l_unit = l_dest->create_trfc_unit().

* Register first function module

call function 'RFC_FUNCTION_1' in background unit l_unit.

* Register second function module

call function 'RFC_FUNCTION_2' in background unit l_unit.

* Lock unit if requested

l_lock_id = l_unit->lock().

commit work.

Figure 21 Create outbound unit type T

data: l_lock_id TYPE bgrfc_lock_id.

* Release the lock of a outbound unit.

cl_qrfc_lock_outbound=>if_bgrfc_lock~release(lock_id = l_lock_id).

commit work.

Figure 22 Release an outbound lock

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 93

Creating a bgRFC out-inbound unit
of type Q

Figure 24 on the next page shows an example for the
out-inbound scenario. As depicted in the code, we
decided to deliver a separate interface to create out-
inbound units to distinguish them from the outbound
and the inbound scenario. As already mentioned, the
main advantage of the out-inbound scenario is the sep-
aration of communication and execution of a bgRFC.

As in the previous examples, we start with creating
a reference to a destination object. The destination
object provides the corresponding factory method,
which supplies the reference to the unit interface. In
the out-inbound scenario, you can choose two queue

names, one for the outbound queue and one for
the inbound queue. The queue names need not be
different — you can use the same queue name for
both the outbound and the inbound queue. This makes
it easier to track the units as they move from the out-
bound queue to the inbound queue. After the queue
names are assigned, you can register as many function
modules as you want. In contrast to the outbound and
inbound scenarios, you may lock the unit on both
sides if you want. To lock the unit on the outbound
side, use the unit method lock(), and to lock the
unit on the inbound side, use the method lock_
at_inbound().

With the COMMIT WORK statement, all units are
saved to the database.

data:

l_lock_id type bgrfc_lock_id.

l_dest type ref to if_bgrfc_destination_outbound,

l_unit type ref to if_qrfc_unit_outbound.

start-of-selection.

* Create the destination object references

l_dest = cl_bgrfc_destination_outbound=>create('TEST_BGRFC').

* Create new bgRFC outbound unit type Q object reference

. l_unit = l_dest->create_qrfc_unit().

* Assign the unit to a queue

l_unit->add_queue_name_outbound('BASIS_BGRFC_OUT_Q1').

* Register first function module

call function 'RFC_FUNCTION_1' in background unit l_unit.

* Register second function module

call function 'RFC_FUNCTION_2' in background unit l_unit.

* Lock unit

l_lock_id = l_unit->lock().

* Save the call

commit work.

Figure 23 Create outbound unit type Q

SAP Professional Journal • May/June 2007

94 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

The update task and bgRFC

If bgRFC and the update task are used within the
same application commit work cycle, you get
dependencies between the bgRFC units and the
function modules called in the update task. In
Figure 25, the function module UPDATE_
FUNCTION_1 is called in the update task. The
bgRFC function modules will be executed auto-
matically only if the update function module is

executed. Until the update task has finished, the
bgRFC units are locked.

The bgRFC lock will be released and the unit
picked up from the bgRFC scheduler only if the
update task is executed correctly. While the update
process is processing, the unit is locked with the
state wait for update. This behavior is the same
for all bgRFCs (transactional inbound, transactional
outbound, queued inbound, and queued outbound).

data:

l_lock_id_in type bgrfc_lock_id.

l_lock_id_out type bgrfc_lock_id.

l_dest type ref to if_bgrfc_destination_outbound,

l_unit type ref to if_qrfc_unit_outinbound.

start-of-selection.

* Create the destination object references

l_dest = cl_bgrfc_destination_outbound=>create('TEST_BGRFC').

* Create new queued bgRFC OutInbound unit type Q object reference

l_unit = l_dest->create_qrfc_unit().

* Assign the unit to a queue

* Outbound

l_unit->add_queue_name_outbound('BASIS_BGRFC_OUTIN_Q1').

* Inbound

l_unit->add_queue_name_inbound('BASIS_BGRFC_OUTIN_Q1').

* Register first function module

call function 'RFC_FUNCTION_1' in background unit l_unit.

* Register second function module

call function 'RFC_FUNCTION_2' in background unit l_unit.

* Lock unit

* Outbound

l_lock_id_out = l_unit->lock().

* Inbound

l_lock_id_in = l_unit->lock_at_inbound().

* Save the call

commit work.

Figure 24 Create queued out-inbound unit

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 95

How bgRFC units are processed —
the bgRFC scheduler

We can now address the issue of how bgRFC units
are processed. After they have been written to the
database at COMMIT WORK, they are processed by a
scheduler. There are two types of schedulers: one for
inbound units and one for outbound units. For each
of them, one or more program instances can be con-
figured to run on a specific application server. The
schedulers have to cope with several tasks: load bal-
ancing issues, resource management, and execution
coordination to avoid a double execution.

The AUTO ABAP process reads the configuration
tables, checks the actual number of running sched-
ulers, and then restarts or kills them. If there are no
units to process, the inbound or outbound scheduler
goes into a sleep mode for a configurable time. It is
awakened by an event if new units are written to the
queues. In addition, if the idle time has elapsed, the
scheduler actively checks the database tables for exe-
cutable units. In this way, the possible loss of an event
can be counteracted.

Before we discuss the details of unit processing,
we should mention what are not scheduler tasks.
Schedulers are optimized for the fast execution of
units. Therefore the scheduler does not check depend-
encies of units at execution time. The dependencies
are determined at the creation time of units, i.e., when
COMMIT WORK is processed. This ensures a linear scala-
bility of execution, especially for strongly dependent
queues. After execution of a unit, its successors are
updated. The ones without further predecessors and
locks are copied into a special, central database table

for immediate execution. All active schedulers pick
their work package of units from this table.

For each unit of the work package, the first thing
the scheduler does is ensure that the destination of the
unit is up and available. After this precondition has
been fulfilled, the scheduler checks to see if the local
and the remote gateway have enough resources for the
unit transfer.

Furthermore, the scheduler has to ensure that both
the local and target systems have enough resources to
execute the units, i.e., a free dialog work process on
each system. At this point some intelligence comes
into play. To optimize the runtime and to reduce
network load, the scheduler does not always poll
information about the receiving system. Each time a
unit is processed, the resource information of the des-
tination system is sent back to the sending system. It
is cached together with a timestamp on the sending
system. All scheduler tasks that are working with the
same destination system use this stored data to decide
whether the unit can be started or not. Polling of
resource information is necessary only if no up-to-
date cached information is available.

If enough resources for sending and executing a
unit are available, the scheduler will send the function
modules to the target system and execute them asyn-
chronously. Therefore every scheduler will execute
several independent units in parallel. At a later time,
the scheduler will wait for the responses of the target
system and ensure that the units have been executed
completely and successfully. If, on the other hand,
some resource is lacking, the unit will be locked for
a limited time and the scheduler will try to execute the
unit subsequently.

* Create bgRFCs

...

* Call update task

call function 'UPDATE_FUNCTION_1' in update task.

commit work.

Figure 25 Call a function module in update task

SAP Professional Journal • May/June 2007

96 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Of course, the scheduler also has to check for
those units for which a response has been missing
for a long time. For those units, it must verify
whether they are still running or if their execution
has been aborted. This may be the case, for example,
when an unrecoverable error has occurred on the
receiving system. These occurrences must be distin-
guished from those cases in which the network may
have temporarily disconnected and therefore the
response has been lost. (This holds true for both out-
bound and inbound schedulers.)

It may occur to you to configure as many sched-
ulers as possible to maximize the overall throughput.
But the situation is unfortunately not that simple —
the more schedulers that are configured, the higher
the effort for coordination. Furthermore, the I/O
capacity of the database server restricts the maxi-
mum number of executable units.

Advantage of the out-inbound
scenario

To appreciate the advantage of the out-inbound
scenario, let’s examine a common example of an
ABAP communication. Normally, an ABAP system
sends and receives requests from different ABAP
instances. Neither the time of occurrence nor the run-
time of a task can be evaluated. If, for example, a
transactional bgRFC is triggered on ABAP instance A
and should be executed on a second ABAP instance
B, and some other ABAP instances send a lot of
requests to ABAP instance B, it is possible that not
all sent requests can be executed on the server system
immediately. In this case, all incoming requests that
cannot be executed immediately will be queued in the
dispatcher of ABAP instance B until a work process
becomes free. On the sending machine, the work
processes will be kept blocked until the dispatcher
gets free work processes for the task. In the case
where a lot of applications are executed on ABAP
instance B with long runtimes, you can easily imag-
ine that the work processes on the sending system
will be blocked for a long time for all following
requests. Because these triggered transactional
bgRFCs are stuck in the dispatcher queue and waiting
for a free work process, an overflow of the dispatcher

queue could result as well as a huge amount of
memory allocation on the server system.

Because a receiver system has no control over the
incoming requests, it is beneficial to reduce the time
to handle the incoming requests. You can do this using
the out-inbound scenario.

In this case, the scheduler on the sending system
sends the data to the destination system. Instead of being
immediately executed there, the data is stored on the
database tables to minimize the communica-tion time.

The work process on the sending system is then
blocked as long as the destination system needs to
store the application data in the database. The inbound
scheduler of the destination system determines whether
the destination system has the resources (memory, work
processes, etc.) required to process the application
data. For the inbound scheduler, the resources check
can be easily done, because it is only a check on the
local instance. The scheduler will start processing the
bgRFC units only if enough resources are available.
The result is a more stable system load situation and
the sender system will not be blocked by weak server
systems during the whole application runtime.

Now that you how know how to use bgRFC in
your programs, let’s take a look at the bgRFC des-
tinations that enable the functionality to work.

Configuring bgRFC
destinations
In the following sections, we look at how outbound and
inbound destinations differ, and how they are configured.

Outbound destinations

bgRFC units sent to an outbound destination will
normally be executed on a remote system, i.e., on a
system that is different from the calling one. But there
is no need for calling and receiving systems to be
different. It is also possible just to change the client
or the user and to keep the system the same, or even
to execute the bgRFC unit on the very same applica-
tion server with the same user and the same client.

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 97

There are many ways to configure an outbound
destination. For this task, call transaction SM59. We
do not have room here to discuss all of the possibili-
ties for configuring destinations in SM59; the impor-
tant issue for bgRFC purposes is to enable bgRFC for
a destination.

At this point, we need to take yet another little
excursion. The bgRFC framework is a reimplementa-
tion of an existing framework (classic tRFC and
qRFC). The bgRFC framework and tRFC/qRFC
framework and their schedulers exist now in parallel,
because the APIs of these two implementations are

completely different. To avoid serializations between
the schedulers, for every SM59 destination, the
administrator must define whether the destination
works with the legacy (tRFC/qRFC) or bgRFC
implementation.

You make this distinction by selecting the qRFC
version. It may be 0 (i.e., Classic qRFC version) or
1 (i.e., Version qRFC for NetWeaver), which is, in
fact, the bgRFC implementation. (By default a desti-
nation will have the setting Classic qRFC.) You find
the qRFC version on the Special Options tab, as
shown in Figure 26.

Figure 26 Define RFC destination (transaction SM59)

SAP Professional Journal • May/June 2007

98 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Inbound destinations

Inbound destinations are completely different. An
inbound unit is always executed on the calling system.
You cannot change the client, the user, or the lan-
guage. And you do not even maintain them using
SM59. So of what use is the notion of a destination
in this context? Before we discuss this philosophical
point, let’s concentrate on the practical side: inbound
destinations must be maintained via transaction
SBGRFCMAINIDST. In contrast to transaction
SM59, there are only two things to maintain: the name
of the inbound destination, and the server group. You
maintain server groups using transaction RZ12, as
shown in Figure 27.

The corresponding server groups are called RFC
server groups, which differ from the logon groups you
maintain via transaction SMLG. The load balancing
information of an RFC server group is updated much
more quickly than the load balancing information of
the logon groups and therefore much more suitable for
RFC load balancing. From the maintenance point of
view, RFC server group is very similar to the logon
groups. Each group consists of one or more applica-
tion servers of the system. A unit sent to an inbound
destination corresponding to an RFC server group
will be sent to the server in the maintained group that
currently has the lowest load.

The second maintenance transaction
(SQRFCCUSTIDST) comes into play when bgRFC
inbound units of type Q are to be created. This brings
up an interesting point: In contrast to the outbound
case, destination and queue names are not independent
of each other; it is not possible to have the same queue
name for two destinations. Each queue name corre-
sponds to exactly one inbound destination. Therefore,
in the maintenance transaction, each queue prefix is
assigned to one destination. But one destination may
have more than one queue prefix assigned to it.

In summary, we can say that an outbound destination
is a real remote system, whereas an inbound destination
is just a name for a group of queues. So why do such
different concepts have identical nomenclature?

Destinations serve to group queues; this is the case
for both outbound and inbound destinations. Each

application can maintain its own set of destinations
and therefore find its own queues. The second reason
is symmetry — although inbound destinations have
fewer features than outbound destinations, they are
both used to create instances for units. The API has
become easier to understand, because the handling in
outbound and inbound scenarios is very similar.

Monitoring bgRFC units
Because the processing of units takes place asyn-
chronously, there is a need to monitor if queues are

Figure 27 Maintain server groups (transaction RZ12)

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 99

stopped, if a certain unit has been processed, which
function modules have been registered, and which
queues a unit is in. For debugging purposes, a queue
may have to be stopped, a unit may need to be
debugged, or a forgotten lock may have to be
released. All of these tasks can be executed by the
bgRFC monitor.

In fact, there are two such monitors:
SBGRFCMON1 for type Q, and SBGRFCMON2
for type T bgRFC units. They differ mainly in the
select options available at the time the monitor is
started, but their main functionality is similar.
Therefore we will describe monitoring the outbound
scenario for bgRFC units of type Q with the help of
transaction SBGRFCMON1.

Monitoring queued bgRFC —
transaction SBGRFCMON1

The first selection screen, shown in Figure 28, lets
you choose the client (inbound or outbound) and

restrict destination and queue names. Another option
lets you look at locked or erroneous queues.

Note!

Although all erroneous queues are locked, not
all locked queues are erroneous.

The left column of the screen shown in Figure 29
on the next page has a hierarchical view of the bgRFC
with the names of the destinations and queues. The
top level is built up by the destinations, and below the
destinations are the queues. Both the destination and
queues are shown with their current state:

• The state of a destination can be green (units of
this destination will be processed by the sched-
uler), or it can be yellow (the destination is locked,

Figure 28 Selection screen of the bgRFC monitor transaction SBGRFCMON1

SAP Professional Journal • May/June 2007

100 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

meaning the scheduler will not execute any unit
of this destination).

• The state of a queue can be green (units of this
queue will be processed), yellow (the queue is
locked or blocked, meaning the units will not be
executed because of an existing lock or an unac-
complished dependency on units of other queues),
or red (an error has occurred).

Double-clicking on a queue name fills the grid
control on the right side with the first units registered
to the queue. The first units are those that the system
executes next.

Below the queue, you find some more details: the
state of the queue and the number of units that are
processable (those units that the system has not yet
successfully processed).

For every unit, a variety of information is avail-
able. The view of the information is customizable. In
this example, you see that the unit is locked, the unit
ID, the creation time of the unit, and the transaction
code of the creating program (SE80).

You get a more extensive view of the unit informa-
tion if you double-click on its corresponding entry, as
shown in Figure 30. Here you find more information,
such as the status text (the textual description of the
status of the unit), the name of the first function mod-
ule (SVER_CALLBACK_RFC), the name of the
queue (DEBITOR), and many others.

In Figure 29, note the two buttons in the tree:
Lock Destination and Delete Queue Lock. With the
first one, you lock the destination, which keeps the
scheduler from further processing units for this desti-
nation. This affects all units sent to this destination,
regardless of whether they are type T or type Q units,
but not those units that are already prepared for execu-
tion by the schedulers.

The second button lets you unlock a queue. A
queue lock is just a lock on a unit. Any unit lock will
become a queue lock if the unit has reached the first
position of a queue. Therefore, you will find in the
Details window (similar to the one shown in Figure
30) a lock reason “Unit locked,” although it is shown
in the tree as a queue lock. However, there are also

Figure 29 Screen of bgRFC monitor SBGRFCMON1

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 101

queue locks that can be set via the monitor as well.
They will result in locks on units, too, but the monitor
display will show “Queue lock at start of Queue” or
“Queue lock at end of Queue” as the lock reason.

The main difference between locks set on queues
and locks set on units is the point in time at which
they can be set. Unit locks (set by a method of the
IF_BGRFC_UNIT interface) can only be set before
COMMIT WORK; therefore no unit locks can be set when

the unit becomes visible in the monitor, whereas queue
locks can be set from the monitor. Normally, the user
has no precise control over which unit will be locked
(because the schedulers execute units in the back-
ground) and therefore the unit the user wants to lock
may have already been executed.

Interfering with scheduler processing — e.g., stop-
ping the processing by setting a lock or starting it by
removing it — is a delicate task. It may lead to unex-
pected application behavior and may raise problems
or questions. On the one hand, authorization for any
intervention can be finely controlled by the authority
object S_BGRFC. On the other hand, every action that
changes the processing is written to the application
log under the object BGRFC. In the example shown
in Figure 31, you find the message that the queue
has been unlocked in the monitor.

Basic bgRFC scheduler
configuration
Before bgRFC schedulers can work, some customiz-
ing is required. With the default configuration, no
scheduler will run and therefore no bgRFC units will
be processed. If you see, perhaps, that the units that

Figure 30 Detail information for a unit (partial)

Figure 31 Application log (transaction SMLG1) for object BGRFC, showing two log entries

SAP Professional Journal • May/June 2007

102 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

you created with the example code are not being
processed, then the system has not been customized
for running a bgRFC scheduler.

The most important element of scheduler configu-
ration with which to be concerned is the scheduler
user. This user and password are attached to an RFC
destination. You must create the scheduler user in
transaction SU01, as shown in Figure 32. Normally,
you would create a service user to prevent security
issues (service users are not allowed to log in).

Because the scheduler triggers RFC calls, and
these are authority checked, the scheduler user needs
special authorities. Two function modules have to be
called: RFC_PING from the function group SYST and
BGRFC_CHECK_SCHEDULERS from the function
group BGRFC_SUPERVISOR. The first one is called
during the processing and checks to see if a destina-
tion is available. The second one is called during the
recurring check to see if the configured number of
schedulers is still running.

The scheduler user configuration must contain
the S_RFC (authority check for RFC access)
authority object with activity “Execute,” and the
name of the RFC to be protected (i.e., BGRFC_
SUPERVISOR and SYST, which are the function
groups just mentioned). Figure 33 shows what this
minimum required authority should look like.

After you have configured the scheduler user
and given it the correct authorities, you can call
transaction SM59 to create the destination. This
destination does not serve for a remote connection,
but for local processing by a definite user (including
his/her password). Therefore, you have to ensure, by
the configuration, that the processing takes place on
the very same application server. This can be done in
two ways: as a logical destination or as an ABAP
connection.

In the example shown in Figure 34, we have
chosen a logical destination with the reference entry
“NONE” and no gateway host or service.

Figure 32 Transaction SU01 for the scheduler user

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 103

Figure 33 Minimum authorities needed for the scheduler user in transaction PFCG

Figure 34 SM59: Technical settings for a logical destination

SAP Professional Journal • May/June 2007

104 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Note!

The destination shown in Figure 34 is not
an arbitrary one, but one that contains the user
for the scheduler, i.e., the supervisor destina-
tion. This figure also lists some of the technical
settings.

Another option is to set up the destination as an
ABAP connection without load balancing, target host,
gateway host, and gateway service, as in the example
shown in Figure 35.

For both solutions, the main ingredient is to speci-
fy the user, language, and password. This ensures that
the scheduler will be executed on the very same appli-
cation server as the specified user. The required logon
and security settings are shown in Figure 36.

Having set up the user and the destination, we are
now ready to enter the configuration transaction that
writes the destination to the configuration tables. We
call this destination a supervisor destination, because
the schedulers are started by a “supervisor” that is
called during the AUTO ABAP process. Therefore, the
transaction to maintain the supervisor destination is
named SBGRFCSUPER. It not only checks the desti-
nation before it writes it to the corresponding database
tables, it also locks it against changes in SM59. If it

Figure 35 Destination for the scheduler user: Technical settings for an ABAP connection

Increase the efficiency of your RFC communications with bgRFC — a scalable and transactional middleware framework

No portion of this publication may be reproduced without written consent. 105

were easy to change the destination (e.g., by deleting
it or changing the password), then no scheduler would
run, and a large amount of short dumps would be
found on the system.

We have described enough basic configurations to
enable bgRFC processing. The default configuration
entries that are shipped within the system will normal-
ly make sure that after a run of the AUTO ABAP
process, one inbound scheduler and one outbound
scheduler are started on every application server.

The only precondition for this is a sufficient
amount of dialog work processes. At least two free dia-
log work processes plus one work process for each
scheduler are needed to run schedulers on an applica-

tion server. That is, if you want to run one inbound and
one outbound scheduler, you need at least six dialog
work processes on the respective application server.

A more elaborate configuration of the system is
possible to maximize the throughput, but a discussion
of advanced configuration is beyond the scope of this
article.

Conclusion
This article introduced you to the new bgRFC frame-
work for processing a large number of asynchronous
business transactions. It presented the most important

Figure 36 Destination for the scheduler user: Logon and security settings

SAP Professional Journal • May/June 2007

106 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

concepts of bgRFC: destinations, queues, units, and
dependencies. Furthermore, it demonstrated the class-
es and interfaces of this framework and provided you
with some simple programming examples for all kinds
of bgRFC units. The essential manner of operation of
the bgRFC scheduler was described as well as basic
monitoring and configuration. This fundamental arti-
cle on the bgRFC framework will enable you to get
the bgRFC schedulers working in your own SAP
NetWeaver 2004s system and to start coding your first
bgRFC programs. While bgRFC can work alongside
your existing implementations, we hope we convinced
you to use bgRFC in all new implementations for
highly scalable integration solutions.

Wolfgang Baur has more than 14 years of experience in
software development and support. He joined SAP in
1998 and currently works as a developer in the ABAP
Connectivity group, where he is responsible for tRFC
and qRFC. During the last two years, he has directed
the bgRFC project as project lead and has worked on
the design, implementation, and tools of the ABAP
communication infrastructure. You may reach him at
wolfgang.baur@sap.com.

Omar-Alexander Al-Hujaj studied physics and received
his doctorate in theoretical atomic physics at the
University of Heidelberg. He joined SAP in 2004 and
became a member of the ABAP Connectivity group,
where he works on the design, implementation, and
tools of the ABAP communication infrastructure. Omar-
Alexander is responsible for monitoring and configuration
interfaces and tools of the bgRFC framework. You may
reach him at omar-alexander.al-hujaj@sap.com.

Wolfgang Röder joined SAP in 1990. Earlier, he worked
for SAP customers. He is currently a development
architect in the ABAP language support group. In his
long history with SAP, he has worked on ABAP test tools,
customizing tools, data archiving (ADK), and Enterprise
Application Integration between SAP applications and
standard applications from SAP competitors. In addition,
he has been an SAP technical consultant, SAP system
administrator, and development manager for some of the
aforementioned areas. You may reach him at
wolfgang.roeder@sap.com.

