
No portion of this publication may be reproduced without written consent. 51

Put your integrated WebSphere environments into production fast

The Business Server Page (BSP) technology introduced with the SAP Web
Application Server (SAP Web AS) 6.10 is a mature technology to develop
HTML-based Web applications. But there are some situations in which you
may want to use a Portable Document Format (PDF) form instead of an
HTML-based form:

• When you have a complex form and you want to offer high-quality
printer output to the end user, it might be a good alternative to use a
PDF form instead of an HTML-based form because PDF is designed for
excellent printing quality.

• When you want to save the output of your Web application to a local
disk for later reference, a PDF form is saved just as a single file,
whereas HTML output might consist of several files.

• When you have a paper-based business process, it is much easier to
create an electronic form that looks exactly like the paper-based form
with PDF than with HTML.

• PDF forms work without any restrictions in an Internet browser for
which JavaScript support is disabled for security reasons.

The Interactive Forms technology, which allows for the integration of
PDF forms in your business process, was introduced with SAP NetWeaver
’04 for the SAP NetWeaver Java stack and with SAP NetWeaver 2004s for
the ABAP stack1. However, Interactive Forms is intended for use in combi-
nation with Web Dynpro technology either for Java or for ABAP, and
unfortunately, Interactive Forms does not integrate seamlessly with BSP
applications. Furthermore, you need an SAP Web AS 6.40 for a Java

The PDF Toolbox for ABAP —
a cost-effective, open-source
solution for integrating PDF
forms into your BSP applications
by Cord Jastram

Cord Jastram
Software Engineer,
Computer Sciences
Corporation, Germany

Cord Jastram works for Computer
Sciences Corporation (CSC) in
Germany as a software developer.
His main focus lies in software
development using Java, ABAP,
and C++. He holds a Ph.D. from
Hamburg University where he did
research in the field of numerical
seismic modeling. Before joining
CSC in 2000, he worked as a
software developer for different
companies. You may reach him at
cjastram@csc.com.

1 For information, see the SAP Professional Journal article, “Streamline business processes and
increase user productivity with SAP NetWeaver: Build forms-based Web Dynpro applications
using Interactive Forms based on Adobe software” by Markus Meisl and Marc Chan
(January/February 2006).

SAP Professional Journal • July/August 2007

52 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

PDF Toolbox for ABAP
ABAP does not provide a library for manipulating PDF files, so I developed a solution — a toolset that
would offer ABAP developers a way to manipulate PDF files. My PDF Toolbox for ABAP is an open-
source solution. The purpose of this toolbox is to allow ABAP developers to programmatically modify
existing PDF documents. The toolbox consists of two components: an RFC server and two ABAP
Object classes.

The RFC server is implemented in Java and provides the functionality that you can use to make the actual
modifications to the PDF files. The RFC server is a simple wrapper for an open source Java library called
iText,* which you can use for modifying existing PDF files from Java. You can run the Java RFC server
on any computer equipped with a Java 5 Runtime Environment** and with an SAP Java Connector (JCo).

The Java RFC server offers the following functions:

• Encrypting (password protecting) a PDF file and setting its usage permissions

• Adding an attachment to a PDF file

• Adding a comment to a PDF file

• Adding a background text to a PDF file

• Permanently filling in the fields of a PDF form

• Setting the status of a form field to read-only (that is, it can’t be changed by the user)

• Concatenating two PDF files

Note!

The solution shown in this article is based on the Adobe AcroForm technology, which was introduced
by Adobe in its PDF 1.2. The other forms technology is the Adobe XML Forms Architecture (XFA),
which was introduced with PDF 1.5 and which Interactive Forms uses. As a rule of thumb, you can
create XFA-based forms using Adobe Designer; whereas, you create AcroForm-based forms using
Adobe Acrobat Professional. However, several other commercial and open-source solutions exist for
creating AcroForm-based PDF files (e.g., commercial solutions include Foxit PDF Editor from Foxit
or FormMax and CutePDF Professional from CutePDF; whereas, open-source solutions include
OpenOffice 2.0 and Scribus).

Continues on next page

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 53

system, and you have to pay for a license for Adobe
Document Services.

In this article, I introduce to you a solution that I have
developed for integrating PDF forms into BSP applica-
tions. My solution uses an extended version of the PDF
toolbox for ABAP, which I described in a recent SAP
Professional Journal article, “Improve your business
processes with quick and easy enhancements to PDF
documents: A toolbox for modifying PDF files using
ABAP” (May/June 2007).2

You can use my PDF solution on SAP Web AS
6.10 and higher and it only needs an additional
Remote Function Call (RFC) server. The solution is
aimed to be a cost-effective approach to extend your
already existing BSP applications with PDF forms.
However, the solution should not be seen as a replace-
ment or an alternative for Interactive Forms, which
are better suited to handle highly variable forms than
the solution I introduce.

This article provides an overview on the technical
approach that I use to integrate a PDF form into a
BSP application. The solution I propose here is based

• Adding a toolbar to a PDF file

• Creating a ZIP file in which the newly created PDF file is stored, and adding additional files to the ZIP file

The two ABAP Object classes provide an application programming interface (API) for interacting
with the RFC server. They provide an easy-to-use interface that allows ABAP developers to use the server
without any knowledge of the Java programming language. Two ABAP classes, ZCL_FILE and ZCL_
PDF_COMMAND_LIST, represent a file and a list of commands to be sent to the RFC server for processing.

The RFC server is the component of the solution that closes the gap between the Java and the ABAP
worlds. It allows an ABAP developer to call code written in Java just like an ABAP function module.
There are some pitfalls when you work with an RFC server, but the ABAP classes ZCL_FILE and
ZCL_PDF_COMMAND_LIST simplify your work significantly. When you use these classes, you don’t
even notice that you are using an RFC server.

Your program creates one or more instances of the ZCL_FILE class to represent PDF files and an
instance of ZCL_PDF_COMMAND_LIST to send one or more commands to the RFC server. You
create a ZCL_FILE object by reading an existing file from the client or from the server. Another
option is to create a ZCL_FILE object by converting the Output Text Format (OTF) of an SAP Smart
Form to PDF and then to load the desired commands (with any associated parameters) into a
ZCL_PDF_COMMAND_LIST object. Then you call the PROCESS method of the command list object
that takes on the ZCL_FILE objects you want to work with as parameters. The PROCESS method calls
the function module Z_PDF_PROCESS_COMMANDS on the RFC server, providing the command list
and the file data as the input data. The RFC server, in turn, performs the modifications to the file and
sends back a modified file. This is done behind the scenes, so your program is free to serve the PDF
data to the user — for example, via the Web in a BSP application — who can save it to a file or further
manipulate the data.
* iText offers additional functions (or services), such as the ability to add a watermark or digital signature.
** You don’t need a J2EE system; you simply need a Java 5 Runtime Environment.

2 For a brief overview of the PDF toolbox, see the sidebar that begins on
the previous page.

SAP Professional Journal • July/August 2007

54 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

on a template, or a static PDF form. This form is
modified at runtime by the BSP application, and
the newly generated PDF form is sent back as the
response. Included in this overview is a description
of the example that showcases some of the features
of the solution. Next, I explain how to integrate a PDF
form into a BSP application using my PDF solution
for ABAP, and how to create the BSP application so it
takes advantage of my PDF toolbox solution. Finally,
I explain the improvements I have made to my PDF
Toolbox so it can be used more effectively with BSP
applications and provide a closer look at the coding of
the PDF-BSP sample application. Let’s begin with an
overview of the technical background of the solution.

Integrating a PDF form into a BSP
application overview

A BSP application is typically called by an Internet
browser, such as Mozilla Firefox or Microsoft Internet
Explorer. As a first step, the browser sends a request

to the SAP Web AS. Depending on the URL of the
request, the server forwards the request to the cor-
responding BSP application. As a response to the
request, the BSP application generates HTML code
and sends it back to the server, which, in turn, sends
the response back to the browser. Today, in most cases,
there is also JavaScript code embedded in the HTML
pages. The JavaScript code, for example, allows for
client-side validation of form input data, which is not
feasible with plain HTML code. Figure 1 shows a
schematic picture of the processing flow of a request.

The Web browser has a built-in HTML rendering
engine that creates a graphical representation of the
HTML code and a JavaScript interpreter that parses
and executes the embedded JavaScript code. Figure 2
shows a schematic view of the browser components.

A detailed description of HTML and JavaScript
processing is beyond the scope of this article, but as
an example, just have a look at the HTML/JavaScript
code snippet shown in Figure 3. This snippet creates
an HTML form with a single input field and uses

Figure 1 Overview of the processing flow of a BSP application

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 55

JavaScript to check that a number is entered in the
input field. The first part is the form definition and the
second part is the embedded JavaScript code.

As shown in Figure 4 on the next page, when
you enter an invalid number and click on the Enter
button, you get an error message (that is, “Please
enter a number!”); whereas, when you enter a correct
number, you get a confirmation of the number (that is,
“You entered 3!”). The confirmation is created by
JavaScript code.

In the PDF scenario, the server forwards the
request to the BSP application. Then (through the
help of my PDF Toolbox for ABAP solution, which
has been loaded on the client) the application gener-
ates a PDF response (instead of HTML code), which
is returned to the browser by the server. Just replace
HTML with PDF in Figure 1 and you have the
diagram for the PDF scenario.

The main difference between the HTML scenario
and the PDF scenario is the handling of the response
by the browser. Because the browser’s HTML rend-
ering engine can’t handle PDF data, the browser

Figure 2 Web browser components for HTML
and JavaScript processing

<!-- the form definition-->

<form name="demo" onsubmit="return checkForNumber(this.test);" >

<p>Enter a number: <input type="text" id="test" name="test" /></p>

<p><input type="submit" value="Enter" /></p>

</form>

<!-- the javascript code -->

<script type="text/javascript" language="javascript">

// function definition

function checkForNumber(number) {

// validate input value

if (parseInt(number.value) != number.value) {

alert('Please enter a number!');

return false;

}

// check the number and create the response

document.write("You entered " + number.value + " !");

return true;

}

</script>

Figure 3 An HTML and JavaScript code snippet

SAP Professional Journal • July/August 2007

56 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

loads the Adobe Acrobat Browser Plugin and then
delegates the rendering of the response and the
handling of the user interaction with the PDF form to
the plugin. Figure 5 shows the browser components
involved in the PDF scenario. The plugin handles the
rendering of the response; whereas, the toolbox
handles the creation of the PDF response.

As you may know, you can improve an HTML page
using JavaScript, but what you might not know is that
there is a scripting language for PDF forms, JavaScript
for Acrobat. See the sidebar on the next page for more
information about JavaScript for Acrobat.

PDF forms can have the same input fields as
HTML forms, and they can have user interface (UI)
elements, such as a submit button. After the PDF form
has been loaded into the Acrobat Browser Plugin, the

Figure 4 The HTML/JavaScript in a Web browser

Figure 5 Web browser components for PDF processing

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 57

plugin controls the user interaction until the user
clicks on the submit button on the PDF form. When
the user clicks on the submit button, the plugin creates
a response that is exactly the same as if the user clicks
on the submit button on an HTML form. From a tech-
nical point of view, this is very helpful because this
means that you can replace an HTML form with a
PDF form without changing the server-side applica-
tion, which handles the response of the form and that
you can use the same technology (in our case BSP) to
handle the browser response from a PDF form.

Creating the PDF response

The solution introduced in this article creates the PDF
response using a template-driven approach. This

means that the PDF response is created at runtime by
merging an existing PDF form (that is the template)
with dynamic data. This modified PDF form is sent
as the response to the user. Using this approach, the
integration of a PDF form in a BSP application con-
sists of two parts: The first part is the design of the
PDF template and the second part is the development
of the business logic that modifies the PDF template.

You can create the layout of the PDF template
without any programming knowledge using a program
such as Microsoft Word. You convert the Word docu-
ment into a PDF file using the Acrobat Professional.
Then, using the form tools provided by Acrobat
Professional, you add the form fields, which act as
placeholders for dynamic text and as input fields,
within the PDF.

The business logic that modifies the PDF form is
typically implemented in the application class of the
BSP application in which the PDF form is integrated.
The actual modification of the PDF forms is done
using the PDF Toolbox for ABAP. With that said,
let’s look at an example in which I integrate a PDF
form into a BSP application.

Integrating a PDF form as the front end
of a BSP application

The example we’ll look at shows a simple hotel reser-
vation PDF form as the front end of a BSP application.
The starting point of the application is a simple
HTML page with a link to the hotel reservation form,
as shown in Figure 6 on the next page. This HTML
page is the starting page of my BSP application.

Note!

The Acrobat Browser Plugin is automatically
installed on your computer when you install
Adobe Acrobat Reader. I have tested the plugin
successfully on Windows XP-based computers
using Microsoft Internet Explorer and on Linux
using Mozilla Firefox 1.5.

Many more advanced features of JavaScript
were introduced with Adobe Reader 7, which is
the version I used to create my PDF solution. To
use the PDF solution described here, you need
at least version 7 installed on your computer.

JavaScript for Acrobat
Acrobat JavaScript is an object-based scripting language based on JavaScript 1.5, which was originally
developed by Netscape Communications. In addition to the JavaScript standard objects, such as Math,
String, Date, Array, and RegExp, Adobe implemented numerous Acrobat-specific objects and methods
that allow you to read form field data and to enhance the Acrobat user interface. You can even add
dialogs and a toolbar to a PDF document. For more information, go to www.adobe.com and search for
“JavaScript for Acrobat.”

SAP Professional Journal • July/August 2007

58 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

When a user clicks on the link for the hotel reser-
vation form, a PDF form appears inside the browser,
as shown in Figure 7. I created the PDF form using
Word and Acrobat Professional.3

In the upper part of the form, the user enters
personal data and the arrival and departure dates.
The next part of the form has six radio buttons that the
user clicks on to select the price category for either a
single or a double room. The actual price information
is not hard-coded in the form. It is inserted before the
form is sent to the browser, so you can change the
price ranges without changing the PDF form.

Below the price information is a list box from
which to select a smoking or non-smoking room.
The options available in this list box are also filled
at runtime, so you can easily change them without
changing your PDF form. The reservation date and
reservation number fields, which are filled by the
hotel after the reservation application has been
completed, are at the bottom of the form.

If you want the user to interact with a PDF form
inside a browser, you need to supply a UI element.
A simple solution is to add the UI element directly
on the form. For example, you might add a submit
button to the PDF form so the user can submit the
data entered in the form by simply clicking on this
button. However, there is a disadvantage to this
approach. Because the user may scroll up and down
or zoom in and out on a PDF form, the submit button

Figure 6 HTML page with a link to a PDF form

3 I give some tips on creating a PDF form later in the article.
Figure 7 A PDF form for a hotel reservation inside

a browser

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 59

may not always be visible. To address this problem, I
suggest adding a toolbar for submitting the data from
your PDF form. Every PDF file can have a single
toolbar created by JavaScript for Acrobat.

You create this toolbar using my PDF Toolbox
for ABAP. The toolbox adds the Acrobat JavaScript,
which is needed to create a toolbar in the PDF form.
When the PDF form is opened on the client side, the
Acrobat Browser Plugin executes the Acrobat
JavaScript code and adds the toolbar on the fly.

There are two buttons4 on this toolbar. Because the
toolbar is not a standard UI element, there is always
a warning on it that it was created by JavaScript for
Acrobat. The first button submits the form data to the
server. The second button resets the default values
in the form.

After the user clicks on the Submit button on the
toolbar, the form data (the form field names and the
form field values) is sent to the server. The BSP appli-
cation fills in the reservation date, adds the reservation
number, and adds the text “Accepted” to the form, as
shown in Figure 8. The user can then save the form
locally for future reference by clicking on the save
icon of the Acrobat Browser Plugin. The user clicks
on the second button to reset the form fields to the
user’s default values.

Creating a PDF template
In this part of the article I step you through the
process of creating the hotel reservation form. This
part is not intended to be an in-depth discussion of
this topic, but it should give you a feeling of how you
create a PDF form. The tools I used for this purpose
are Word and Adobe Acrobat Professional. However,
there are also excellent open-source tools, such as
OpenOffice 2.0 and Scribus 1.3.3.x, that allow you to
create PDF forms without Acrobat Professional.

Creating a PDF form is a four-step process:

1. Create the layout using Word or other word
processing software.

4 You can add other buttons to suit your needs.

Figure 8 The PDF form after it has been success-
fully submitted to the BSP application

Tip!

There is a tryout version of Acrobat Professional
available that works for a 30-day trial period,
so you don’t have to buy anything for your
initial testing of your PDF forms. The source
code of the RFC server, a compiled version
of the RFC server, and the source code of the
ABAP classes are available for download at
www.SAPpro.com.

SAP Professional Journal • July/August 2007

60 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

2. Convert the layout document to a PDF form.

3. Add form fields using Acrobat Professional.

4. Set up the format properties of the fields and
implement client-side validations.

Step 1: Create the layout using Word
or other word processing software

To create a PDF form, start by laying it out in Word.
For the example, I created the layout using standard
Word formatting tools. As I expect most developers
are familiar with those tools, I won’t go into the details
of creating the form layout. Remember, however, that
for a good user experience, you must provide a well-
organized, easily comprehensible layout.

Step 2: Convert the layout document
to a PDF form

During the installation of Acrobat Professional, PDF-
related menu items are added to the Word menu bar

(see Figure 9). These menu items allow for an easy
conversion of the Word document to a PDF document.
After you have laid out your form in Word, select the
Convert to Adobe PDF on the Adobe PDF menu.
After a few seconds, the new PDF file automatically
opens in Acrobat Professional. You can then save the
generated PDF file at a convenient location.

Step 3: Add form fields using Acrobat
Professional

Before you start to add form fields to a PDF file, you
should decide on a concise naming convention for
the names of the form fields, which is a best practice
whenever you are developing forms to maintain
consistency. The simple naming convention I use
can be summarized as follows:

• Use uppercase letters for all field names (e.g.,
CITY, FIRST_NAME, etc.). Form field names are
case sensitive, and therefore using only uppercase
letters minimizes potential errors. Note that you
can use special characters such as an underscore
in a field name.

• Use a prefix in a field name to indicate to which
group the field belongs. Separate the prefix from
the field name using a period (e.g., USER.
FAMILY_NAME). In some cases, you’ll need
more than one prefix (e.g., TEXT.PRICE_
CATEGORY.DRA). I’ll explain the reason shortly.

For the hotel reservation form, I used the prefix
USER for fields that are filled by the user, HOTEL
for fields that are filled by the hotel personnel, and
TEXT for fields that are just used as placeholders for

Figure 9 Acrobat PDF-related menu and com-
mands added to the Word menu bar

Tip!

When you intend to use a PDF form on the
Internet, pay attention to the size of the form.
A PDF form displayed over the Internet should
be minimally sized to reduce the time it takes
to load in a user’s browser, especially when
you can’t be sure that all users have a high-
speed connection.

To this end, I recommend restricting the
number of fonts you use in your forms,
especially fonts that have to be embedded,
because embedded fonts increase the form’s
size. Acrobat Professional comes with 14 stan-
dard fonts. Restricting the number of fonts in
the form and using only the standard fonts
keeps your form’s size to a minimum and
results in a more professional-looking form.

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 61

dynamic text. An example of a TEXT field is the six
price ranges of the room categories. They should be
filled at runtime because the price ranges may vary,
but they should not be editable once they have been
filled. To achieve this static state, these fields are
converted to text during the server-side processing of
the PDF form. This process is called “form field flat-
tening.” See Figure 10 for the USER and the HOTEL
fields of the form.

For the TEXT group shown in Figure 11, I used a
a second prefix PRICE_CATEGORY and the actual
field name consists of three characters. The first two
characters indicate the room size (DR for double room
and SR for single room) and a third character (A, B,
or C) for the price category (i.e., the higher the price,
the more amenities available).

Now it is time to actually add the form fields. Let’s
start with a text field for USER.LAST_NAME. From
the Acrobat Tools menu, select Advanced Editing →
Forms → Text Field Tool, as shown in Figure 12.

Using your pointer, define the text field area on the
PDF form page, positioning and aligning the fields as
best you can. After you define the area, a properties
dialog box appears. On the General tab, enter the
name of the field (for example, USER.LAST_NAME)

Field name Type
USER.LAST_NAME Text field
USER.FIRST_NAME Text field
USER.STREET_NO Text field
USER.POSTAL_CODE Text field
USER.CITY Text field
USER.ARRIVAL_DATE Text field
USER.DEPARTURE_DATE Text field
USER.PRICE_CATEGORY Radio button
USER.ADDITIONAL_INFO Combo box
HOTEL.RESERVATION_DATE Text field
HOTEL.RESERVATION_NUMBER Text field

Figure 10 PDF fields used for capturing input data from the user and from the hotel personnel

Field name Type
TEXT.PRICE_CATEGORY.DRA Text field
TEXT.PRICE_CATEGORY.DRB Text field
TEXT.PRICE_CATEGORY.DRC Text field
TEXT.PRICE_CATEGORY.SRA Text field
TEXT.PRICE_CATEGORY.SRB Text field
TEXT.PRICE_CATEGORY.SRC Text field

Figure 11 Field names of placeholder fields

Figure 12 Selecting the Text Field Tool from
Acrobat

and the tooltip text (e.g., “Enter your last name!”).
Mark this field as required. When you mark a field as
required, an error message appears if the field is
empty when you click on the submit button. See
Figure 13.

Switch to the Appearance tab, and then select gray
as the fill color, a font size of 14 pt, and Courier Bold
as the font style.

You continue to use the Text Field Tool until
you have added all fields. Use the General tab and
Appearance tab to set the properties for the fields.
When you have added all fields to the form,
it should look like the one shown in Figure 14.

SAP Professional Journal • July/August 2007

62 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Figure 13 Specifying the name, tooltip text, and
common properties of the field

Figure 14 The PDF form in Acrobat Professional

The code for the text

box overlaps the code

for the radio button

The last section in this article gives you a glimpse
at the code I have developed for implementing the
BSP application with the PDF form. But before
looking at the code, I want to introduce to you some
new capabilities of the PDF Toolbox that you can use
to manipulate the PDF forms you create.

Implementing the BSP
application
I developed the PDF Toolbox to help ABAP developers
to programmatically modify existing PDF documents.
But I have added Java-based features to the toolbox that
you can use in your ABAP coding as additional methods
in the ABAP class ZCL_PDF_COMMAND_LIST.
Figure 16 (on the next page) shows the methods and
the parameters I developed. I give some examples of
how you use these methods later.

Step 4: Set up the format properties of
the fields and implement client-side
validations

One of the assets of PDF forms is that you can easily
set up client-side validations, which are executed
by the Acrobat Browser Plugin, without sending a
request to the server. You find the corresponding
options on the Option and Format tabs of the Text
Field Properties dialog. It is always a good idea to
limit the number of characters that can be entered into
a form field. You use the Options tab to specify the
number of characters that a field allows (e.g., a state
field might allow just two characters). The Format
tab offers several format categories that you can use to
further control the input data (e.g., telephone numbers
and Social Security numbers). See Figure 15. For a
detailed discussion of the options, I recommend the
online help of Acrobat Professional.

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 63

Figure 15 The Options and Format tabs of the Text Field Properties dialog

SAP Professional Journal • July/August 2007

64 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

You use the methods ADD_SUBMIT_BUTTON
and ADD_RESET_BUTTON to add a submit button
or a reset button to the JavaScript toolbar of a PDF
document. Both methods take the LABEL and
the TOOLTIP text as a parameter. For the ADD_
SUBMIT_BUTTON method you can add a text
to the URL of the button. You use the method
SET_FIELD_VALUE to set the value of a PDF
form field. When you want to prevent a user from

editing a form field, you use the method SET_
FIELD_READONLY to which you supply the name
of the field you want to set to read-only. If you want
to set a read-only field to editable, you leave the
optional parameter STATUS blank or empty. You use
this feature for simple workflows. For example, users
should not be able to fill fields that require approval.
When the person who is authorized to approve values
opens the form, the approval fields should be set to

Figure 16 Methods of the ZCL_PDF_COMMAND_LIST class

Method ADD_SUBMIT_BUTTON PROCESS

Importing parameter LABEL Type ZPARAM_VALUE

Importing parameter TOOLTIP Type ZPARAM_VALUE

Importing parameter URL_PARAMETER Type ZPARAM_VALUE

Method ADD_RESET_BUTTON.ATTACHMENT

Importing parameter LABEL Type ZPARAM_VALUE

Importing parameter TOOLTIP Type ZPARAM_VALUE

Method SET_FIELD_VALUE

Importing parameter FIELD Type ZPARAM_VALUE

Importing parameter VALUE Type ZPARAM_VALUE

Method SET_FIELD_READONLY

Importing parameter FIELD ZPARAM_VALUE

Importing parameter STATUS C default "X"

Method SET_LIST_OPTION

Importing parameter FIELD Type ZPARAM_VALUE

Importing parameter DISPLAY_VALUES Type ZPARAM_VALUE

Importing parameter EXPORT_VALUES Type ZPARAM_VALUE

Method PARTIAL_FLATTEN

Importing parameter FIELD Type ZPARAM_VALUE

Method ADD_FIELD_INFO

Importing parameter FIELD Type ZPARAM_VALUE

Importing parameter SHORT_INFO Type ZPARAM_VALUE

Importing parameter INFO Type ZPARAM_VALUE

Importing parameter MESSAGE Type ZPARAM_VALUE

Method SIGN

No parameter

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 65

editable, but the fields entered earlier by the users
should be read-only.

Using the method SET_LIST_OPTION, you
provide a list of options for a combo or list box
field from which you can select a single value. The
parameter DISPLAY_VALUES is a table of type
ZPARAM_VALUE and holds the text elements
shown in the list or combo box. The parameter
EXPORT_VALUES is a table with the corresponding
keys of the entries.

As mentioned earlier, you can use form fields as a
placeholder for dynamic text. Using the method
PARTIAL_FLATTEN, you convert a form field into
simple text (for example, when you convert the price
range for the different room categories into plain text).

You use the method ADD_FIELD_INFO to
add additional information to a form field. This
kind of information is to be used for server-side
field validations. I will show an example of

ADD_FIELD_INFO later in this article. You can use
the method SIGN if you want an electronic signature
added to the PDF form. The signature can be used to
check whether the PDF form has been changed after
it has been created. However, a discussion of the
handling of electronic signatures is out of the scope of
this article.

Creating a BSP application
Now let’s take a quick look at the BSP application,
named Z_PDF_TEST, I wrote for the purpose of this
article. Figure 17 shows the application in the Web
Application Builder using transaction SE80.

As you can see, the application consists of two
BSP pages — default.htm and reservation.htm.
Z_PDF_TEST is a stateless BSP application with the
application class ZCL_PDF_APPLICATION. (We’ll
take a closer look at this class later in the article.)

Figure 17 The BSP Application Z_PDF_TEST shown by transaction SE80

SAP Professional Journal • July/August 2007

66 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Note!

The ABAP coding shown in this article has
only been written for demonstration purposes.
To improve the readability of the source code,
I have left out most of the error handling code
and used hard-coded text values.

The initial BSP default.htm file

The BSP default.htm file is used to create the starting
HTML page (Figure 4). From the page layout shown
in Figure 18, you see that it simply consists of a link
to the reservation.htm page.

The BSP reservation.htm file
The BSP that displays the PDF form in the browser
is named reservation.htm. The layout of this page is
shown in Figure 19.

Note this page just shows the error message, “AN
INTERNAL ERROR OCCURRED!” The reason for
this will become evident in the next part.

Generating the PDF response
Each BSP has several associated event handlers that
are called at different stages of the processing of the
page. For the PDF integration, I use the event handler
OnManipulation, which allows the manipulation of the
HTTP data stream that is sent to the browser because
a response has been created. The request is called after
the page response has been created. Therefore, in the

<%@page language="abap" %>

<%@extension name="htmlb" prefix="htmlb" %>

<htmlb:content design="design2003" >

<htmlb:page>

<htmlb:gridLayout id = "myGridLayout1"

width = "60%"

cellSpacing = "40"

columnSize = "1"

rowSize = "1" >

<htmlb:gridLayoutCell rowIndex = "1"

columnIndex = "1"

style = "ALTERNATING"

horizontalAlignment = "center" >

<htmlb:link id = "pdf"

reference = "reservation.htm" >

Open the HOTEL RESERVATION form

</htmlb:link>

</htmlb:gridLayoutCell>

</htmlb:gridLayout>

</htmlb:page>

</htmlb:content>

Figure 18 Code for the BSP default.htm page

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 67

OnManipulation event handler, I can create a response
of my own — the PDF form. When the creation of
the PDF form fails, I don’t modify the response and
the error message created by the BSP reservation.htm
is shown. If the PDF form has been successfully
created, I use the PDF form as the response.

Now let’s have a look at the coding of the
OnManipulation event handler coding, as shown in
Figure 20 on the next page.

At first I check whether the request, which calls
the page, is a GET or a POST request (#1). The GET

request type corresponds to the initial loading of the
PDF form, whereas the POST request type corre-
sponds to submitting the form data (that is, the user
has clicked on the submit button on the PDF Forms
toolbar). Depending on the request type, I call
different methods (#2 and #3) of the application class.
For the GET request I call handle_get_reservation,
and for the POST I call handle_post_reservation.
These methods return either the PDF form shown in
Figure 7 (GET) or Figure 9 (POST).

If an error occurs during the generation of the PDF

<%@page language="abap" %>

<%@extension name="htmlb" prefix="htmlb" %>

<htmlb:content design="CLASSIC" >

<htmlb:page title="BSP ERROR" >

<htmlb:textView design="HEADER1" >

 AN INTERNAL ERROR OCCURED!

</htmlb:textView>

</htmlb:page>

</htmlb:content>

Figure 19 Code for the BSP reservation.htm page

Note!

This part is intended for people who are familiar with the development of a BSP application, so I do not
show all details. For a good introduction to BSP application development, see the following SAP
Professional Journal articles:

• “Developing Custom Applications for SAP Enterprise Portal — Starting with the ‘Right’ Options in
Light of SAP NetWeaver” by Patrick Dixon (March/April 2005)

• “Develop More Extensible and Maintainable Web Applications with the Model-View-Controller
(MVC) Design Pattern” by Ken Huang and Markus Wieser (January/February 2004)

• “Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model” by
Karl Kessler (March/April 2003)

• “A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web
Application Builder” by Karl Kessler (January/February 2002)

SAP Professional Journal • July/August 2007

68 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

form, both methods set the attribute ERROR_FLAG
of the application class ZCL_PDF_APPLICATION to
“X.” I just have to check this flag (#5). If an error
occurred, I simply do nothing (#4) and the message
defined in the layout part of the BSP page is sent to

the browser. Otherwise, I modify some of the header
fields of the response to change the response content
type to PDF (#5). This step is very important because
from the content type the browser decides whether the
Acrobat Browser Plugin (mentioned in the introduc-

* event handler to manipulate dynamically the HTTP stream

DATA : request_type TYPE string.

*#1 get the request type

request_type = request->get_header_field(

name = '~request_method').

*#2

IF request_type = 'GET'.

application->handle_get_reservation().

ENDIF.

*#3

IF request_type = 'POST'.

application->handle_post_reservation(request).

ENDIF.

IF application->error_flag = 'X'.

*#4- do nothing

ELSE.

*#5

response->set_header_field(

name = if_http_header_fields=>content_type

value = 'application/pdf').

response->server_cache_expire_rel(expires_rel = -1).

response->set_header_field(

name = 'content-disposition'

value = 'inline').

*#6

response->set_cdata(application->response).

ENDIF.

Figure 20 ABAP coding of the OnManipulation event handler of the BSP page reservation.htm

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 69

tion of the article) should be loaded or not. As a last
step, the response of the request is set to the PDF
data created earlier (#6).

The coding of the OnManipulation event handler
will be similar for all BSP pages that generate
PDF output, so you can use it as a template for
your own coding.

Implementing the application class

Although it is not mandatory, each BSP application
should have an associated application class. Then in
each event handler you can automatically access an

object with the name “application” with the type of
the associated application class.

For the Z_PDF_DEMO application, I have written
a class ZCL_PDF_APPLICATION with the superclass
ZCL_BSP_APPLICATION. This class has three
private attributes shown in Figure 21.

This class has two public methods named
HANDLE_GET_RESERVATION and HANDLE_
POST_RESERVATION and a set of private methods
that you use to implement the public methods. The
listing of HANDLE_GET_RESERVATION is shown
in Figure 22.

Attribute Description Type

PDF_FILE The PDF template file data ZCL_FILE

COMMAND_LIST The command list to modify the PDF template data Z_PDF_COMMAND_LIST

ERROR_FLAG A flag indicating that an error has occurred during the
processing of the command list

C

METHOD handle_get_reservation .

DATA : result_file TYPE REF TO zcl_file,

lreturn TYPE bapireturn.

*#1

me->load_pdf_template().

*#2

me->command_list->add_submit_button().

me->command_list->add_reset_button().

*#3

me->fill_hotel_data().

*#4

me->flatten_fields().

*#5

Figure 22 Code for the HANDLE_GET_RESERVATION method

Figure 21 Private attributes of class ZCL_PDF_APPLICATION

Continues on next page

SAP Professional Journal • July/August 2007

70 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

At first (#1) the PDF template is loaded. Then I
add the submit and the reset toolbar buttons (#2).
Next, I modify the form fields of the PDF form: I fill
the hotel form fields (#3), handle the placeholder form
fields for the price ranges (#4), and then fill the option
list of the combo box for the additional information
(#5). For the combo box, I set the field values (#5)
and then convert them to simple text (#6). Then I set
the list options of the field USER.ADDITIONAL_
INFO to smoking and nonsmoking (#7). At the end
the PDF template (#6) is processed, and depending on
the success of this operation, I return the created PDF
form or an empty string (#7). As a result, you see a
PDF form in your browser (see Figure 7).

Now let’s have a look at some snippets of the
coding of the HANDLE_POST_RESERVATION
method. The most interesting part of this method is
the implementation of a server-side validation in the
method CHECK_DATES. As an example, I check
whether the departure date is before the arrival date.
To do this, I get the values entered in the form from
the request (#1). Then I check both dates and, if
necessary, I add field information to both fields and
set the field VALIDATION_FAILED_FLAG to “X”
(#2), as shown in Figure 23.

There are two ADD_FIELD_INFO methods —
one for the arrival field and one for the departure

me->fill_combo_box().

*#6

CREATE OBJECT result_file.

CALL METHOD command_list->process

EXPORTING

file_1 = me->pdf_file

IMPORTING

return = lreturn

result_file = result_file.

*#7

IF lreturn-type = 'S'.

response_string = result_file->get_string().

ENDIF.

ENDMETHOD.

Figure 22 (continued)

METHOD check_dates .

data : arrival type string,

departure type string,

temp type zparam_value.

Figure 23 Coding for the HANDLE_POST_RESERVATION method

Continues on next page

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 71

*#1

arrival = request->get_form_field_cs(

name = 'USER.ARRIVAL_DATE').

departure = request->get_form_field_cs(

name = 'USER.DEPARTURE_DATE').

temp(4) = arrival+6(4).

temp+4(2) = arrival(2).

temp+6(2) = arrival+3(2).

arrival = temp.

temp(4) = departure+6(4).

temp+4(2) = departure(2).

temp+6(2) = departure+3(2).

departure = temp.

IF departure < arrival.

DATA : shortinfo TYPE zparam_value,

info TYPE zparam_value,

message type zparam_value.

shortinfo = 'Arrival date is after departure date!'.

info = 'Please change the arrival or the departure date!'.

message =

'Some form fields have invalid entries.\nPlease check them!'.

me->command_list->add_field_info(field = 'USER.ARRIVAL_DATE'

shortinfo = shortinfo

info = info

message = message).

me->command_list->add_field_info(field = 'USER.DEPARTURE_DATE'

shortinfo = shortinfo

info = info

message = message).

*#2

me->validation_failed_flag = 'X'.

ENDIF.

ENDMETHOD.

Figure 23 (continued)

SAP Professional Journal • July/August 2007

72 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Figure 25 Tooltip indicates the date entered in the field is invalid

Figure 24 Initial error message for server-side validations

The PDF Toolbox for ABAP — a cost-effective, open-source solution for integrating PDF forms into your BSP applications

No portion of this publication may be reproduced without written consent. 73

field. If an invalid value is entered in either of these
fields, the method displays a dialog, as shown
in Figure 24. The method ensures that the dialog
displays only once even if it is called several times.
The parameter MESSAGE of the method provides the
dialog text. As shown in Figure 25, the method adds
a yellow frame around the field and provides a tooltip
that describes the field (when the pointer is positioned
over the field). It also adds a button on the right side
of the field. Clicking on this button displays detailed
field-related information, as shown in Figure 26.

At the end of the method HANDLE_POST_
REQUEST, I provide appropriate information or
instructions depending on the VALIDATION_
FAILED_FLAG (see Figure 27).

If no error occurs, I set the reservation number,
add the Accepted text on the form, and sign it elec-
tronically. Otherwise, I add a submit button and a

reset button. The user can then change the arrival
and/or the departure date and submit the form again.5

Figure 26 Popup with instructions for correcting the
error in the field

IF validation_failed_flag = space.

*#1

command_list->set_field_value(field = 'HOTEL.RESERVATION_NUMBER'

value = 'R 1235-5678').

command_list->set_field_readonly(field = 'HOTEL.RESERVATION_NUMBER').

command_list->add_background_text(text = 'Accepted'

fontsize = '48'

gray = '0.65'

ypos = '20'

xpos = '440'

rotation = '45').

command_list->sign().

ELSE.

command_list->add_submit_button().

command_list->add_reset_button().

ENDIF.

Figure 27 Code for addressing invalid information entered in fields

5 For a description of the deployment of the solution, see the section
“Deploying the RFC server” in my SAP Professional Journal May/June
2007 article and the installation instructions included in the download at
www.sappro.com.

Conclusion
In this article, I’ve shown how you can integrate PDF
forms in a BSP application. The solution generates the
PDF forms using a template-based approach. A static
PDF template is modified at runtime by the BSP
application and the newly generated PDF form is sent
back as the response. The solution works with any
SAP Web AS ABAP 6.10 and higher, and needs only
an additional RFC server to modify the PDF files.

For highly variable PDF forms, Interactive Forms
are better suited, but when you want to Web-enable
only a small number of PDF forms, you should give
the solution a try.

74 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

SAP Professional Journal • July/August 2007

