
No portion of this publication may be reproduced without written consent. 81

Put your integrated WebSphere environments into production fast

Although new communication protocols, such as HTTP, HTTPS, and
SOAP, have been gaining traction in recent years, remote function call
(RFC) remains the protocol of choice for SAP developers, system archi-
tects, and administrators who need to connect their SAP systems together.
This is not an accident: Since its invention by Gerd Rodé and Rainer
Brendle in 1993, RFC has become a trusted, widely supported protocol
that is deeply embedded into nearly all major enterprise systems.1

Within SAP landscapes, RFC continues to serve as the basis of nearly
all major integration points, including Application Link Enabling
(ALE)/Intermediate Documents (IDocs), ArchiveLink, and links to more
recent systems, such as SAP NetWeaver Portal and SAP Master Data
Management (MDM). If you’re a developer, you’ve probably used RFC to
call function modules on other SAP systems, or used one or more of SAP’s
standalone RFC libraries2 to connect to an SAP system from Java, C, C++,
or .NET.

But did you know that your SAP system offers a transactional RFC
model — that is, one that allows you to specify several RFC calls that
should either succeed or fail as a group? Did you also know that to achieve
balanced distribution of the system load you can have the system execute
multiple RFCs at the same time and process them in parallel and then call
your program back when the task-specific results become available? If not,
then read on!

This article, the first part of a two-article series, takes you on a brief tour
of the five RFC types available to you within your SAP Basis 4.0B or higher
systems, and teaches you how to use them within your ABAP programs. This

Master the five remote function
call (RFC) types in ABAP
Part 1 — A comprehensive guide for SAP programmers
and administrators

by Masoud Aghadavoodi Jolfaei and Eduard Neuwirt

(Full bios appear on page 106.)

Eduard Neuwirt
Senior Developer,
SAP AG

Masoud Aghadavoodi Jolfaei
Development Architect,
SAP AG

1 RFC’s strength lies primarily in its simplicity and ease-of-use. Many other technology infrastructures
from this time, such as DCE-RPC, COM, or CORBA, need huge books to describe their configura-
tion and programming capabilities, whereas users can understand RFC intuitively and quickly.

2 The RFC libraries are available on the SAP Service Marketplace (http://service.sap.com/swdc/).

SAP Professional Journal • September/October 2006

82 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

knowledge is especially important for both developers
and administrators who support SAP programs.

Note!

Many of you may be familiar with one or two
of these types. If so, feel free to skim those
sections, or just jump ahead. Most sections are
self-contained.

In this article, we begin by explaining some essen-
tial RFC terms and concepts, including the building
blocks of the interaction between a client session and
a server session, and then discuss the five types of
RFCs available to you, and when, why, and how to
use each of them. In the second article, which will
appear in an upcoming issue of this publication, we
cover how to design and develop remote function
modules (RFMs), as well as how to perform user
authorization checks and maintain RFC destinations,
and more advanced topics, such as serialization and
deserialization of ABAP types and the handling of
exceptions and messages in your programs. For each
of these topics we help you avoid some common
pitfalls that plague even the most experienced devel-
opers by providing best practices — for example, how
to effectively apply RFC authorization objects, nested
structures, and compatible extensions of structures,
and how to avoid errors due to character conversions.
There’s something for everyone here, so let’s start
with some basics.

Baseline terminology
Before diving into specifics on the RFC types, there
are a few terms and concepts used throughout the
articles that you need to know. Feel free to skip
ahead as needed.

• SAP Web Application Server (SAP Web AS):
Each SAP Web AS server consists of a gateway,
Internet Communication Manager (ICM),

dispatcher, and set of work processes (Figure 1).
The gateway and ICM are interfaces for communi-
cation with other application servers within the
same SAP system, other SAP systems, or non-SAP
systems. The gateway process handles the physical
RFC communication with the remote systems (the
focus of this article). The ICM process handles
the communication for standard protocols (e.g.,
HTTP, HTTPS, and SMTP) with the remote
systems. The dispatcher is the link between the
work processes, the gateway, the ICM, and users’
front-end SAPGUIs. Older systems, such as SAP
R/3 4.6C, run on top of SAP Basis, which does
not have the ICM components. The gateway and
dispatcher components are essentially the same,
however, so this article still applies even if you’re
not running SAP Web AS.

• Work processes: Each SAP Web AS system
contains several work processes running in
parallel. These work processes perform the actual
processing the system or user requests (e.g., dialog
requests, locking/unlocking database tables, etc.).
There are five types of work processes on a
system:

- Background work process for processing
background jobs (e.g., long-running or
resource-intensive reports or programs)

- Dialog work process for dialog and RFC
communication (explained next)

- Enqueue work process for locking and
unlocking database entries that can be accessed
concurrently

- Spool work process for spool and printing tasks

- Update work process for processing update task
function modules

All work processes contain the same components
(i.e., taskhandler, dynpro, and ABAP processors).
The type of work process determines the kind
of tasks for which it is responsible in the applica-
tion server.

• Dialog work processes: Dialog work processes
execute the dialog steps of ABAP programs, and
are also used to process RFC sessions. The

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 83

dispatcher distributes dialog and RFC processing
requests among the available dialog work
processes on the application server.3

• Logon session: A logon session is used to load
and store all of a user’s data after he or she has
logged on. A logon session can be created either
by a user explicitly logging on via SAPGUI (called
a SAPGUI session) or by another SAP system via
an RFC (called an RFC session). The user account
for the RFC logon in the target system is called
an RFC user.

• Roll out, roll in: On occasion, the processing of a
program by a dialog work process encounters a

situation in which the system must wait for some
event before continuing — for example, when the
system displays a screen to a user and waits for
user input (i.e., at the end of a dialog step); when
the program makes a synchronous RFC call,
requiring the system to wait for the results before
continuing; or when the system encounters a WAIT
statement in the program’s code. To optimize
resources, SAP designed its systems to be able to
“roll out” the program from memory while it waits,
freeing the work process to work on another task.
When the program processing can be resumed —
such as when the results of a synchronous RFC
call are received — the program can then “roll in”
again. This design maximizes the utilization of
the available pool of work processes.

• Logical system: This term is derived from the
Application Link Enabling (ALE) technology, and
uniquely identifies an application in a scenario in
which multiple applications store their data in a
single database. In the SAP world, a logical system
corresponds to a client in a system — for example,

Gateway

HTTP client
 (e.g., browser)

SAP Web AS

ICM

RFC client
 (e.g., BAPI

client)

. . .

Dialog work process

Dialog work process

Enqueue work process

Spool work process

Update work process

Background work process

Dialog work process D
ispatcher

Figure 1 Work processes in an SAP Web AS

3 You might be wondering why dialog work processes process RFC
requests. This was an architectural choice by SAP, because dialog work
processes have the unique capability of being able to “roll out” (or “set
aside”) a given task when it is waiting for some reason (e.g., a reply by
the remote system to which the call is made). This design lets the SAP
application server handle more RFC requests with a limited number of
processes. The other reason is that dialog processes have a timeout fea-
ture, which helps to avoid work processes with long-running RFC tasks.
By default, this timeout is set to five minutes (it can be adjusted via
profile parameter rdisp/max_wprun_time).

client 000 in SAP system SRC represents a
different logical system than client 800 within
SAP system SRC.

• Logical Unit of Work (LUW): This is the time
between two consistent states on the database or
between the indivisible sequences of database
operations that are concluded by a database
commit. This span of time is commonly referred to
in the database world as a “transaction” (you can
understand why SAP chose not to use that word
given its alternate meaning in the SAP context).
An LUW is executed either completely or not at all
by the database system. If an error is detected
within an LUW, it is possible to revoke all data-
base changes since the beginning of the LUW with
the help of a rollback.

• RFC client, RFC server: An RFC client (or
an RFC server on an SAP Web AS executed in
a logical system) requests that an RFC server
execute a function or program.

• Remote function module (RFM): This function
module is remote-enabled and can be executed via

SAP Professional Journal • September/October 2006

84 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

RFC. The decision to remote-enable an SAP func-
tion module is made on an individual basis via the
“Remote-enabled” radio button on the function
module’s attributes screen.4

With these definitions in hand, let’s begin our
journey into the world of working with RFC in SAP
Web AS.

The RFC communication
process
The main task of the RFC runtime is to facilitate the
execution of function modules in a remote system,
be it an SAP system or an external program linked
with one of the SAP-supplied RFC libraries, the Java
Connector, or the .NET Connector. Fortunately, the
details (such as specific mapping requirements of
parameter values) of which type of system the user
is calling are all handled by the RFC runtime. The
ABAP code the system requires to call the external
function is the same in all cases.

One of the first things you need to understand to
work with RFC effectively is how RFC calls are actu-
ally communicated and executed. Figure 2 illustrates
the request-response phase through which each RFC
call goes. The RFC client system (in the example, the
SAP Web AS CLN) is shown on the left. The SAP
Web AS SRV, shown on the right, hosts the function
we want to call, and therefore is the RFC destination,
or more specifically the RFC server.

The communication cycle begins with a work
process (i.e., a dialog or background work process
initiated by an application on the client) that generates
an RFC request. The RFC request is serialized in the
work process for transmission over the network and
passed to the target system.

The RFC request can include:

• Connection parameters: These values include
the host name and port number of the target server.

4 To enable this option, display the function module in change mode via
transaction SE37, and then navigate to the Attributes tab.

Note!

Interestingly, SAPGUI, which is typically
thought of as a client, also acts as an RFC
server because it can host user interface (UI)
controls, which can be controlled via RFC.
For example, the SAP application server loads
the SAP Easy Access Menu tree control, with
which you are undoubtedly familiar, with its
contents by calling an RFC function resident
within the SAPGUI software. Therefore, not
only does SAPGUI make requests of the SAP
application server, but it also listens for
requests from the SAP application server.
If you’re interested in further reading on the
subject, google “SAP Control Framework,”
or search for it on the SAP Help Portal at
http://help.sap.com/.

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 85

They are the technical settings maintained in the
RFC destination.5

• Logon information: This information includes
the associated user attributes (e.g., language, client,
user name, etc.).

• RFC runtime data: This is the name of the
function module, as well as any specified input
parameters (e.g., exporting, importing, changing
tables parameters).

The local gateway (on the RFC client) opens a
TCP/IP connection to the target gateway (on the RFC
server) and transmits the request to it. The target
gateway then allocates a task at the target dispatcher,
which identifies an available dialog work process to

process the request. The work process on the target
system then deserializes the request,6 executes it, and
returns the result following the same sequence in
reverse (i.e., dispatcher, gateway, network, gateway,
etc.). As indicated in Figure 2, rolling session data in
and out as needed (e.g., while the client waits for the
response, after the server issues its response, etc.),
freeing both memory and work processes to perform

Figure 2 RFC process communication cycle

5 Typically we distinguish between two different destination types: the
RFC destinations maintained in transaction SM59 and the so-called
dynamical destinations (e.g., <hostname>_<system id>_<system
number>, such as binmain_BIN_53), which are not available in transac-
tion SM59. In that case, you then specify the connection parameters in
the destination ID (e.g., binmain_BIN_53, where binmain is the host-
name and 53 is the target service number).

Note!

For maximum performance and security, the
RFC runtime transmits the connection param-
eters and logon information with the first
request only.

6 That is, the target system converts the request from a stream of bytes
into a memory structure representing the inbound RFC call so that the
target program can read parameters and other RFC metadata included in
the request.

SAP Professional Journal • September/October 2006

86 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

runtime checks to make sure that the users are
authorized to execute the function module to
be called.7

4. Calls the function module. If the previous steps
are successful, the remote-enabled function module
is executed. Otherwise, an appropriate ABAP
runtime or error message is raised and passed
back to the caller program.

other tasks when it is not actively needed, optimizes
performance on both the client and target systems.

Now let’s take a closer look at what specifically
takes place within the work process on the target
system (RFC server). Using Figure 3, let’s discuss
the following actions the RFC server performs in
the order in which they are executed:

1. Checks that the function module is available
and remote-enabled. A function module can
only be executed remotely if it is properly identi-
fied in the Function Builder as a remote-enabled
function module.

2. Creates an RFC session. If this is the first
RFC request, an RFC session is created with the
delivered logon information. You may find it
interesting that this happens after the function
module availability check.

3. Performs an RFC authority check. Depending
on the setting of the application server’s profile
parameter auth/rfc_authority_check, the RFC

Is function
module remote-

enabled?

Was logon
already done?

Was the logon
successful?

Is RFC
authority check

necessary?

Is this a
system function

module?

Is RFC
authority check

successful?

Raise ABAP runtime error Execute authentication

Raise ABAP runtime error Execute function module

Raise ABAP runtime error

Execute RFC authority check

Yes Yes

No No

Yes

No

No

Yes

No

Yes

Yes

Figure 3 RFC work process flow on the target system

Note!

A few system function modules, those
belonging to the function group SRFC,
can be executed even if the request is
missing logon information or includes
invalid logon information (e.g., RFC_PING
and RFC_SYSTEM_INFO).

7 You can find a detailed description of the auth/rfc_authority_check
profile parameter in transaction RZ11. The RFC authority check
is active by default.

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 87

Now that you have a better understanding of
the RFC work process flow, let’s delve into the
five types of RFCs available on SAP Basis 4.0B
and higher systems, including all SAP Web AS
systems.

The five basic types of RFC
There are five basic types of RFCs from which to
choose, each well suited to specific scenarios:

• Synchronous RFC (sRFC)

• Asynchronous RFC (aRFC)

• Transactional RFC (tRFC)

• Queued RFC (qRFC)

• Parallel RFC (pRFC)

In the following sections, we explain the unique
role of each RFC type, review the ABAP commands
associated with each one, and the situations in which
each excels. We follow up with a consolidated quick-
reference matrix to which you can refer in your daily
work. Let’s begin with the most common type —
synchronous RFC.

Synchronous RFC (sRFC)

The synchronous RFC (sRFC) is the most common
RFC and is ideal when you need the results of a
function module immediately after its execution.
sRFC also means that both systems (i.e., RFC

client and RFC server) must be available at the
time the call is made. As shown in Figure 4 on
page 88, the sRFC is made by calling a function
via the CALL FUNCTION statement with extension
DESTINATION, which identifies the target system
of the call.8

8 The DESTINATION clause appears in all of the RFC types, although it
is optional in instances of aRFC, tRFC, and qRFC. If you omit it, the
value of DESTINATION is set internally to NONE, which means that
the function executes on the local system.

Note!

To improve performance, the system can roll
out the context of the caller program while it
waits for the response of the RFM. As soon as
the local gateway receives the response, how-
ever, the activation (roll in) of the program
context is triggered. For maximum perform-
ance, the connection to all target systems is
retained for the entire duration of the process
of calling an ABAP program (or ABAP trans-
action). An RFC session is created for each
unique destination ID encountered in your
program (see myFirstDestination and
mySecondDestination in Figure 4).

There are situations in which it is not reason-
able to keep the RFC pipe (i.e., the communi-
cation) and its associated remote session open
for a whole transaction. For example, when
the RFC is used as a stateless call on a differ-
ent server or in a separate session, this call
still has some influence on the transaction
flow of the caller execution time because
the call consumes considerable application
server resources. In this case, you can close
the RFC pipe and the associated remote
session with the help of the function module
RFC_CONNECTION_CLOSE.9

Note!

You manage authorizations at the function
group level (and not at the function module
level). Granting a user authorization to a
function group (authorization object S_RFC)
enables the user to execute all RFC-enabled
function modules within that group.

9 A stateless call is one in which subsequent calls do not depend on the
outcome of any previous call or on which user is making the call —
an example of a stateless call is a catalog search.

SAP Professional Journal • September/October 2006

88 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

that you can place error-handling logic immediately
after the CALL FUNCTION statement to prevent down-
stream calls if an exception occurs during a call.

Every remote call of a function module that is made
using the sRFC interface defines a separate context in

The sRFC call is passed immediately to the target
system, and the caller program is halted until the
response of the RFM is received. Processing then
continues with the next line after the CALL FUNCTION
statement, so the actual results of the function are avail-
able for use within the main program. This also means

CALL FUNCTION `MY_FIRST_FUNC`
DESTINATION `myFirstDestination `

 EXPORTING …
 IMPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2

FUNCTION MY_FIRST_FUNC.

…

ENDFUNCTION.

PROGRAM MY_PROGRAM.

CALL FUNCTION `MY_SECOND_FUNC`
DESTINATION `mySecondDestination `

 EXPORTING …
 IMPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.

...

...

RFC Session 1

FUNCTION MY_SECOND_FUNC.

…

ENDFUNCTION.

FUNCTION MY_THIRD_FUNC.

…

ENDFUNCTION.

CALL FUNCTION `MY_THIRD_FUNC`
DESTINATION `mySecondDestination `

 EXPORTING …
 IMPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.

...

RFC Session 2

Roll Out

1

3

5

7

9

11

Roll Out

Roll Out...

Roll In

2

6

10

4

8

12

Close all RFC Sessions
(RFC Sessions 1 and 2)

13
´´ Termination of program MY_PROGRAM

Figure 4 Calling a function module synchronously from ABAP (sRFC)

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 89

the target system. The function group of the function
module is loaded into an internal session of the context
and retained. This means that if repeated calls of func-
tion modules belonging to the same destination and the
same function group are made, the global data of this
function group can be accessed collectively. A connec-
tion and its context are retained until the connection is
explicitly closed, or until the calling/caller program is
finished. To close a connection explicitly, you can use
the function module RFC_CONNECTION_CLOSE or the
API function RfcAbort or RfcClose.

Note!

A nice feature of the system is that, upon
termination of an RFC client program, the
system automatically closes all active sRFC
connections for that program and eliminates
the associated RFC sessions.

Note!

If the RFC destination is omitted or left blank
(e.g., CALL FUNCTION <function name>

DESTINATION <blank>), the function module
gets executed locally, like a normal function
call, and not as a remote function call.

Asynchronous RFC (aRFC)

Asynchronous RFC (aRFC) is a great option when
you want to improve the performance of your ABAP
program by having the system call one or more
function modules in parallel rather than force your
program to wait for results before continuing. In
other words, with aRFC, the system immediately
passes control back to the caller program so it can
continue processing after the CALL FUNCTION state-
ment. The system calls the function modules

immediately. There are two forms of aRFC, and
the specific form of aRFC you choose depends on
whether you want to process values from the function
module or keep a connection to the remote system
open for subsequent calls (which you might do for
performance reasons).

Note!

Both sRFC and aRFC are distinct program-
ming approaches, each with a unique ABAP
syntax. However, we still refer to sRFC and
aRFC when introducing the other RFC types
(tRFC, qRFC, and pRFC) because these other
types use sRFC and aRFC behind the scenes
— adding their specific own functionalities
(i.e., queuing, transactional grouping, and
parallel processing) to the process.

Let’s further explore aRFC by tackling the ques-
tion of whether or not to process the parameter
values from the function module. The easiest option,
as you might imagine, is not to make the system
return the values to you. This form of the process is
called asynchronous RFC (aRFC) without response
(Figure 5 on page 90). This means that, when the
RFM is triggered, the return values are not made
available to downstream calls or to the calling
program. This process is useful in many situations, in
which, for example, neither the caller program nor the
downstream function calls need to receive or evaluate
the output values of the RFM.

All you need to do to use this form is add a
STARTING NEW TASK <task name> clause to the CALL
FUNCTION, where <task name> can be any unique
name you want (its significance will become clear
shortly). As shown in Figure 5, the system begins to
execute a call immediately in a dialog work process.
A connection is made to the remote system, and the
RFM executes immediately within a new session.
Once the function is complete, both the RFC session
and the connection to the remote server close. This is,
therefore, less than optimal from a performance

SAP Professional Journal • September/October 2006

90 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

perspective if you need to make multiple aRFC calls
to the same destination.

If you want to handle the results of your function
calls — so you can, for example, take some condi-
tional, follow-on action based on a function module’s
output, such as emailing an administrator if a failure
occurs, or posting additional records using a dynamic
order number generated by one of the functions —
then asynchronous RFC (aRFC) with response is
for you. Like the “without response” form, the CALL
FUNCTION returns immediately, freeing the caller
program from having to wait until the calls complete
before continuing — in other words, the caller program
executes the function immediately. Unlike the “without
response” form, however, here you specify the name of
a subroutine ABAP FORM (in the example, FORM
RESP_1) that the system should invoke once both the
function results are available and the caller ABAP
program reaches a “synchronization point” statement,
such as the WAIT UNTIL <logical expression> state-
ment shown in Figure 6. You add a PERFORMING

<callback form> ON END OF TASK clause to the CALL
FUNCTION statement (in addition to the STARTING
NEW TASK command we discussed earlier), and the
callback subroutine includes a RECEIVE RESULTS FROM

FUNCTION <function name> clause. (For more infor-
mation on aRFC, see the sidebar “Things to keep in
mind when choosing an aRFC with or without
response” on page 92.)

Figure 6 also illustrates how the RFC process
comes together. The RFC client sets up the connection
and transfers the RFC data to its application server’s
gateway, without waiting for any acknowledgement.
The caller program resumes processing after the
CALL FUNCTION statement until the ABAP statement
WAIT is reached. The associated task and destination
names identify the RFC connections belonging to the
aRFCs (in the example, the task names are
myFirstTask and mySecondTask, and the destination
is myFirstDestination). The call executes, and the
subroutines are called in the order in which the
responses arrive, assuming the main program has

CALL FUNCTION `MY_FIRST_FUNC`
 STARTING NEW TASK `myFirstTask `

DESTINATION `myFirstDestination `
 EXPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.

FUNCTION MY_FIRST_FUNC.

…
ENDFUNCTION.

CALL FUNCTION `MY_SECOND_FUNC`
 STARTING NEW TASK `mySecondTask`

DESTINATION `myFirstDestination `
 EXPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.

...

...

RFC Session 1

...

1

2

3

3

PROGRAM MY_PROGRAM.

FUNCTION MY_SECOND_FUNC.

…
ENDFUNCTION.

RFC Session 2

6

6

4

5

Close RFC Session 1

Close RFC Session 2

Figure 5 ABAP statements for aRFC without response

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 91

CALL FUNCTION `MY_FIRST_FUNC`
 STARTING NEW TASK `myFirstTask`
 PERFORMING RESP_1 ON END OF TASK

DESTINATION `myFirstDestination `
 EXPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.

PROGRAM MY_PROGRAM.

CALL FUNCTION `MY_SECOND_FUNC`
 STARTING NEW TASK `mySecondTask`
 PERFORMING RESP_2 ON END OF TASK

DESTINATION `myFirstDestination `
 EXPORTING …
 TABLES …
 CHANGING … EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.

...

...

...
WAIT UNTIL logical_expression.

FORM RESP_1 using taskname.
RECEIVE RESULTS FROM FUNCTION `MY_FIRST_FUNC`

 IMPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.
 ...
ENDFORM.

FORM RESP_2 using taskname.
RECEIVE RESULTS FROM FUNCTION `MY_SECOND_FUNC`

 IMPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.
 ...
ENDFORM.

...

FUNCTION MY_FIRST_FUNC.

…
ENDFUNCTION.

RFC Session 1

Roll Out

FUNCTION MY_SECOND_FUNC.

…
ENDFUNCTION.

RFC Session 2

Roll Out

1

6

3

10

6

10

2

4

4

7

11

2

Close RFC Session 2
12

Close RFC Session 18

Wait for responses
(Roll Out - Roll In)

5, 9
13

Figure 6 ABAP statements for aRFC with response

Note!

You cannot predict in what order the responses will come, and therefore in what order your subroutines
will be executed. Make sure you take this into account when coding, and do not assume one code will
execute before the other. If you need to control this sequence, either check the order internally or use
qRFC (which we’ll discuss shortly). Also note that you can only use qRFC if no responses are required
or if an immediate processing of the remote function module is not required.

SAP Professional Journal • September/October 2006

92 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

reached the WAIT statement. RFC sessions and
associated connections close as soon as the callback
subroutine completes.

Your other option is to have the system retain the
RFC session on the remote server after each RFC
call, rather than discarding it. This yields improved
performance when multiple functions are executed
against the same destination in close succession. This
is where the task name within the CALL FUNCTION

statement gains importance.

If you compare Figure 7 with Figure 6, you can
see two key differences:

• On the left side, the addition KEEPING TASK of the
RECEIVE RESULTS statement specified for the first
function call tells the RFC runtime to keep the
connection alive after the first call.

• On the right side, you can see that the second func-
tion call is executed using the same task name and
destination as the first function, and thus is in the

Things to keep in mind when choosing an aRFC with or without
response
• In case of an aRFC without response, any error messages or exceptions raised during the execution of

the RFM are not propagated to the RFC client and vanish. If this error information is essential for the
RFC client processing, you have to choose the aRFC with response form.

• Remember, for the “call me back when the results are in” method (i.e., aRFC with response) to work,
your ABAP program must give the system an opportunity to call the ABAP FORM to handle the results.
The ABAP statements that trigger this type of interruption in processing include commands associated
with dialog interactions (e.g., CALL TRANSACTION and CALL SCREEN), as well as an sRFC CALL or a WAIT
statement. The recommended statement to initiate a synchronization point for the receipt of asynchro-
nous responses is WAIT UNTIL <expression> (Figure 6). If a caller program terminates before receiving
all the outstanding responses of the aRFCs, this might result in ABAP runtime errors on the RFC server.

• The need for a synchronization point has two implications: First, an aRFC with response will only save
you processing time when you have processing to do while the aRFC call executes. Second, your call-
back subroutines have access to the global memory variables of your main program because they
execute in the same process. This is good news if you need this capability; however, you can’t predict
the state of these variables since you don’t know exactly when the callbacks might come.

• Consistent with SAP’s move to object-oriented (OO) coding, SAP Web AS 6.40 or higher allows you
to call a class method instead of a form routine in the PERFORMING <callback form> ON END OF TASK

addition. For the method specification, the same types are permitted as for the CALL METHOD statement.
Dynamic calls, in particular, are also supported.

Note!

In the case of an aRFC without response, the
connection closes directly after the successful
check for availability of the remote function
module and the logon procedure. If any errors
occur after the connection closes (e.g., if the
RFC authority check based on the S_RFC
authority object fails), the caller program
won’t be informed (Figure 3).

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 93

same RFC session as the first. When you use
aRFC with response, the task name and destination
identify the RFC connection and its RFC session.
Since these attributes are available because of an
open connection within the client context, this
connection is retrieved and used for the sub-
sequent call.

CALL FUNCTION `MY_FIRST_FUNC`
 STARTING NEW TASK `myFirstTask `
 PERFORMING RESP_1 ON END OF TASK

DESTINATION `myFirstDestination `
 EXPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.

PROGRAM MY_PROGRAM.

CALL FUNCTION `MY_SECOND_FUNC`
 STARTING NEW TASK `myFirstTask`
 PERFORMING RESP_2 ON END OF TASK

DESTINATION `myFirstDestination `
 EXPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.

...

...

...
WAIT UNTIL logical_expression.

FORM RESP_1 using taskname.
RECEIVE RESULTS FROM FUNCTION `MY_FIRST_FUNC`

 KEEPING TASK
 IMPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.
 ...
ENDFORM.

FUNCTION MY_FIRST_FUNC.

…
ENDFUNCTION.

RFC Session 1

Roll Out

1

4

4

11

2

9

5

2

Wait for responses
(Roll Out - Roll In)

10

14

FUNCTION MY_SECOND_FUNC.

…
ENDFUNCTION.

Roll In

...

...
WAIT UNTIL logical_expression.

3

7
8

9

FORM RESP_2 using taskname.
RECEIVE RESULTS FROM FUNCTION `MY_SECOND_FUNC`

 IMPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.
 ...
ENDFORM.

12

Close RFC Session 1
13

11

Keep RFC Session 1
6

Figure 7 RFC session handling and keeping the remote session for aRFC with response

Note!

As long as the associated RFC connection to
a task remains open, you are not allowed to
reuse the task name in the program.

SAP Professional Journal • September/October 2006

94 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

Now let’s look at what takes place in a
transactional RFC.

Transactional RFC (tRFC)

A transactional RFC (tRFC) lets you group one or more
function module calls together to a tRFC LUW, and
ensures that each function module within the LUW is
called exactly once — or not at all. In contrast to aRFC
and sRFC, in tRFC the function modules belonging to
a tRFC LUW are executed in order — if one issues
an exception, the others do not get executed. tRFC is
particularly important in scenarios in which you’re
posting business documents (e.g., invoices, shipping
information, orders, etc.) to a system that might not be
available at the time of posting. In this case, the tRFC
framework tries to execute the RFC call at a later time.
The tRFC infrastructure provides a monitoring transac-
tion (transaction SM58) to track errors that occur
during either the transmission of the call (communica-
tion errors) or the execution of the function module on
the target system. In contrast, when dealing with aRFC
and sRFC, you need to handle communication errors
and to build your own mechanism for reissuing calls
at a later time.

In summary, tRFC ensures that calls execute
only once or not at all on each system, a requirement
known as Exactly Once (EO) execution. Some busi-
ness scenarios are even more stringent, however,
requiring Exactly Once In Order (EOIO) execution,
which is what qRFC provides over tRFC, as
explained in the next section.

Figure 8 shows the syntax for calling a function
module via tRFC. You simply add an IN BACKGROUND

TASK clause to the CALL FUNCTION statement.

Here’s how this works. When a program encoun-
ters a tRFC CALL FUNCTION statement, the RFC
runtime records the call in a concealed internal table
in the computer’s memory, and then immediately
returns control to the caller program, rather than
calling the function module immediately. This is
similar to aRFC, except that the RFC call is not
executed immediately but rather held in a queue.
As with aRFC, the CALL FUNCTION statement returns

immediately, always succeeding with sy-subrc=0.
Internally, the system assigns a unique ID (known as
the transaction ID) to the calls for each destination
(in the example, transaction IDs 4711 and 4712).

The truly exciting part happens when the program
issues a COMMIT WORK command. The recorded calls
are executed asynchronously10 in a special set of tRFC
processing sessions created for each transaction ID
(in the example, Session 1, Session 2, etc.).

Note!

If a ROLLBACK WORK is issued instead of a
COMMIT WORK, the internal queue of pending
RFC calls is flushed — none of the calls are
performed.

To summarize, tRFC is a great choice to use when
the execution of function modules in a remote system
has to be guaranteed, and when the progress of those
calls should be monitored, especially for error behav-
ior. The tRFC should always be used when the EO
execution of the tRFC LUWs needs to be guaranteed,

Note!

Keep in mind that you don’t have to call all
function modules within your program using
only one approach. You can call one module
via tRFC, then the next via sRFC or aRFC,
then the next via tRFC. Any tRFC calls you
make will be grouped together for execution
as described next.

10 tRFC processing sessions are almost always executed asynchronously,
except in the rare case when the caller program (the tRFC client) is
running in a dialog work process (i.e., online) and the application server
cannot afford the extra resources for the asynchronous session. In this
case, the tRFC LUW is executed synchronously.

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 95

Figure 8 ABAP statements for calling function modules via tRFC

SAP Professional Journal • September/October 2006

96 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

even when an RFC destination is not accessible at the
time of processing, or when communication interrup-
tion can occur and automatic re-execution might need
to be done. See the sidebar “Important considerations
before choosing tRFC” below for more information on
implementing this type of RFC.

Queued RFC (qRFC)
Transaction RFC (tRFC) is a great option when you
want to have a guaranteed transactional execution
(EO execution) of LUWs, but it does not let you
control the execution order of multiple LUWs with any
certainty, which is a common requirement (see the note
on page 91). In these situations, you need to use qRFC.

Important considerations before choosing tRFC
You should be aware of a few important considerations before choosing tRFC:

• A COMMIT WORK is called on each remote system after all of the functions have executed without raising
an exception. This is so that all function calls either succeed or fail as a unit. If one of the function calls
raises an exception, downstream calls in the queue are ignored, and a rollback is issued for all previous
calls.

• Errors returned by functions in parameters, such as BAPI RETURN structures (which might return an E in
the RETURN-TYPE field) are not treated as failures by the RFC runtime. Only exceptions — i.e., messages
of types E (Error messages), A (Abort or Termination messages), and X (Exit messages) issued via an
ABAP MESSAGE statement — are treated as failures. So, carefully investigate how your remote function
module returns errors if transactional behavior is important to you.

• For the automated rollback mechanism (see the first bulleted item) to work, the function modules called
must not perform their own COMMIT WORK internally. You can check this by searching the function
module code for COMMIT WORK, CALL TRANSCATION, or sRFC or aRFC statements (transactions called
from within a function module perform a database commit at the end, making their changes irreversible
by a subsequent rollback).

• Because the CALL FUNCTION statement always succeeds (with sy-subrc=0 as mentioned earlier), there is
no point in using code error handling logic after this type of CALL FUNCTION. If the asynchronous call

Note!

An important point to remember: Only calls to
functions at the same destination are grouped
together within a given transactional unit. So
if you were to make three tRFC calls, two of
which were to the same destination, those two
would constitute one transaction, while the
third would be placed in its own transaction.
This means, unfortunately, that you can’t
group calls across multiple systems, which is
sometimes an important business requirement
(and is known as a “two-phase commit” in the
IT world).

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 97

Note!

Consider the following actions that must be
executed in sequence: creation of a purchase
order, modification of the purchase order, and
deletion of the purchase order. Since each
action needs to be committed before the next
is executed, and because the steps must be
executed in order, tRFC would not be the
right choice for this process. With tRFC, each
action is placed in its own session, and you
cannot control the order of execution of the
sessions. In this case, you need qRFC.

Queued RFC (qRFC), an extension of tRFC,
solves the problem by offering fine control over
the sequence in which tRFC sessions are executed.
Figure 9 on page 98 shows how the ABAP syntax for
qRFC differs from tRFC: all that’s needed is to call
function TRFC_SET_QUEUE_NAME before the regular
tRFC-style CALL FUNCTION statement. The call to
function TRFC_SET_QUEUE_NAME tells the system into
which queue to insert the next RFC call.

Figure 9 also illustrates how qRFC works opera-
tionally. Like tRFC, the recorded calls are saved into
the database when a COMMIT WORK occurs in the calling
program. In contrast to tRFC, however, a separate
scheduler process controls scheduling and execution
of qRFC LUWs.

fails, you have no opportunity programmatically (without using Workflow) to perform any follow-on
processing. This is not to say that you can’t monitor when these errors occur — all failed tRFC calls
appear in the tRFC administration log (transaction SM58), where they can be re-executed if necessary.
If you need to programmatically intercept failed asynchronous calls, use the aRFC with response
approach.

• Perhaps you’ve noticed that tRFC LUWs are executed in parallel, instead of sequentially. This can
cause a problem if the function calls in the second transaction need to be called after those in the first.
One solution to this problem is to use qRFC instead of tRFC — qRFC goes a step beyond tRFC to let
you specify a sequence in which various transactions can be executed. Another approach is to register
the RFC destinations used in tRFC LUWs via transaction SMQS.

Caution!

This latter approach (registration in SMQS) is not guaranteed to work in all cases. For example,
if, for some reason, one of the tRFCs fails (due to the target system being unavailable for
example), the remaining (downstream) transactions will still execute. The transactions are
not conditional upon one another, and execution in order is done on a “best efforts” basis.

SAP Professional Journal • September/October 2006

98 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

The qRFC Scheduler serves two purposes:

• To ensure the execution order of qRFC sessions
in a queue

• To hinder/stop the execution of subsequent LUWs

in the same queue when a qRFC LUW is executed
with an error, and to continue processing the queue
after the erroneous LUW is removed or the error
situation is resolved. For more information on the
qRFC Scheduler, see the sidebar on the next page.

Figure 9 ABAP statements for calling function modules via Outbound qRFC Scheduler

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 99

In summary, you should use qRFC when EOIO
execution of LUWs needs to be guaranteed (e.g., if a

target system becomes inaccessible, or if communica-
tion is interrupted for some reason).

Outbound vs. Inbound qRFC Scheduler
Technically, there are two queue scheduler processes: an Outbound Scheduler and an Inbound Scheduler.
The Outbound Scheduler controls the execution of LUWs in another logical system (i.e., when logging onto
another client or with another user ID). The Inbound Scheduler controls the qRFC execution in the same
system, user, and client (e.g., a qRFC call with destination NONE or no destination specification in the
CALL FUNCTION IN BACKGROUND TASK statement). Figure 9 shows the ABAP syntax for using the Outbound
Scheduler. The screenshot below shows the ABAP syntax for the inbound queue. To configure the qRFC
outbound queues, use transaction SMQS, and to configure the qRFC inbound queues, use transaction SMQR.

SAP Professional Journal • September/October 2006

100 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

Parallel RFC (pRFC)
This final type of RFC, pRFC, is actually an extension
of aRFC. Because it improves system performance,
using pRFC is a prudent and responsible choice when
you plan to make a large number of RFC calls asyn-
chronously (SAP R/3 Material Resource Planning and
Controlling applications use this kind RFC to speed
up the execution of their business scenarios).

What do we mean by “prudent and responsible”?
Well, in some cases, considering that executing a
function module asynchronously requires much more
system resources (i.e., memory, processing time, etc.)
than synchronous execution, aRFC can overload your
SAP server. After all, you’re asking the system to
initiate and manage the RFC calls while continuing to
process your main program, and perhaps queuing up
several more sessions to execute at the same time.11

What’s more, at any given point in time, the destina-
tion SAP server might run out of available memory
or other resources it needs to run these asynchronous
sessions as soon as they arrive. aRFC does not take
any of this into account — it just continues to make
its calls, without considering how the overload might
impact other processes or users on the system.

pRFC, on the other hand, combats this in two
ways:

• Allowing you to specify a group of application
servers on which to execute the RFC calls, instead
of just a single RFC destination. The RFC runtime
has a built-in, load-balancing mechanism that
distributes the RFC calls to application servers
based on their available resources.

• Alerting you — by raising an exception — when
none of the servers in the group has sufficient
resources to process the request, so you can choose
another processing option (we’ll discuss what your
choices are shortly).

Figure 10 shows the ABAP syntax for pRFC.
There are two items to note in the CALL FUNCTION

statement: First, the usual DESTINATION clause has
been replaced with a DESTINATION IN GROUP <group>

clause. Second, a RESOURCE_FAILURE exception has
been added to the exception list.12 The purpose of the
<group> in the DESTINATION clause is to identify a
group of application servers that the system should
use together to process the parallel RFC calls based
on availability. The RFC runtime raises the RFC
exception, RESOURCE_FAILURE, if, at the time you dis-
patch a call, none of the application servers in the
group has enough resources to execute the remote
function module.

Tip!

RFC server groups are maintained in
transaction RZ12.

11 If you’re using the tRFC or qRFC variations, the impact is even worse
due to the additional queuing, scheduling, and other logic involved.

Note!

When you design your application, another
thing that can constrain performance is your
parallel processes, which can require simulta-
neous access to system resources. For exam-
ple, two processes might need to modify an
entry in a database table, but one may need
to wait until the other releases the lock on
the entry.

Note!

pRFC can only be used to execute remote
function modules in the same logical system
— i.e., on the same system and client.

12 Note that, because pRFC is an extension of aRFC, the same ABAP
additions (like performing and receiving results) for remote session
handling are available for the aRFC.

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 101

At this point, you’re probably asking, “What
should I do if the call raises the exception
RESOURCE_FAILURE?” You have a couple of options:

• The best option is to allow the remote system
time to free up system resources by pausing your
program with a WAIT statement. This gives the
system time to complete existing aRFCs (e.g., to
initiate the receiving phase of outstanding asyn-
chronous responses, if any are being used). In
this case, the WAIT UP TO <seconds> command
should be used.13

• Another option — if you are executing the func-
tion calls locally — is to call the function modules
synchronously instead of in parallel. This should
avoid the overload situation because the system
can roll your (calling) program out of memory
temporarily while it proceeds with each of the RFC
calls in turn. When each of the calls complete, the
system brings your session back into memory.

In short, pRFC is appropriate when you need to
process a large number of RFC calls asynchronously,
such as during data loads. The built-in load balancing
and overload-avoidance features make it a responsible
choice that can help avoid angry emails or knocks at
your door because of system slowdowns.

CALL FUNCTION `MY_FIRST_FUNC`
 STARTING NEW TASK `myFirstTask`

DESTINATION IN GROUP ` myGroup`
 EXPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2
 RESOURCE_FAILURE = 3.

PROGRAM MY_PROGRAM.

CALL FUNCTION `MY_SECOND_FUNC`
 STARTING NEW TASK `mySecondTask`
 PERFORMING RESP_1 ON END OF TASK

DESTINATION IN GROUP ` myGroup`
 EXPORTING …
 TABLES …
 CHANGING … EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2
 RESOURCE_FAILURE = 3.

...

...

...
WAIT UNTIL logical_expression.

FORM RESP_1 using taskname.
RECEIVE RESULTS FROM FUNCTION `MY_SECOND_FUNC`

 IMPORTING …
 TABLES …
 CHANGING …
 EXCEPTIONS

COMMUNICATION_FAILURE = 1
 SYSTEM_FAILURE = 2.
 ...
ENDFORM.

...

FUNCTION MY_SECOND_FUNC.

…
ENDFUNCTION.

RFC Session 2

Roll Out

4

7

7

5

5

8

3

Close RFC Session 29

Wait for responses
(Roll Out - Roll In)

6
10

FUNCTION MY_FIRST_FUNC.

…
ENDFUNCTION.

RFC Session 11

2
3

Close RFC Session 1

Figure 10 ABAP statements for processing pRFC

13 Refer to SAP Note 597583 for more on this topic.

SAP Professional Journal • September/October 2006

102 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

Caution!

ABAP statements that may lead to a roll
out action — such as CALL SCREEN, CALL
TRANSACTION, sRFC calls, or WAIT statements
— may trigger a database commit. The use of
ABAP statements that lead to a roll out within
a callback (response) routine of an aRFC with
response call is not permitted. Instead, the
processing of those statements is initiated in
the caller program after the WAIT statement.

In order to fulfill the condition in the WAIT UNTIL

expression, you need to set some variables in the call-
back routine.

Choosing the “right” RFC type
Learning about the different RFC types available can
be a bit overwhelming at first, but it is a wise and
fruitful investment. To help you along, we’ve assem-
bled a table (Figure 11) that summarizes some key

characteristics of the types of RFCs to help you
choose the type best suited for your situation.

These key characteristics include:

• Execution time: With sRFC, aRFC, and pRFC,
execution occurs immediately when the remote
function is called. In contrast, tRFC calls execute
when a COMMIT WORK occurs.14

• Processing type: sRFC is undoubtedly the most
frequently used RFC type, and will continue to be,
because it is easy to code and debug, and because
you can use the results of RFC calls in your main
program for the majority of situations. In situations
in which you do not need the results (i.e., output
parameters) or in which performance is particularly
important, you need to decide if one of the other
types is a better choice. For example, tRFC and
qRFC are appropriate choices when you need EO
and EOIO execution of function modules, respec-
tively (assuming you can live with some of their
restrictions, which you will learn as you continue
to read this section).

• Output parameters: You cannot retrieve function
module output parameters with either tRFC or

sRFC aRFC tRFC qRFC pRFC

Execution time immediate immediate unspecified unspecified immediate

Processing type synchronous asynchronous asynchronous
and EO*

asynchronous
and EOIO*

asynchronous

Output
parameters

supported supported not supported not supported supported

User switch supported supported supported supported not supported

Dialog interaction supported supported not supported not supported not recommended

Monitoring not available not available available available not available

* EO = Exactly Once; EOIO = Exactly Once In Order

Figure 11 Decision matrix for choosing the “right” RFC type

14 The qRFC Scheduler manages destinations that are registered in
transaction SMQS.

Master the five remote function call (RFC) types in ABAP: Part 1

No portion of this publication may be reproduced without written consent. 103

qRFC (for reasons that go beyond the scope of this
article). aRFC and pRFC provide a callback mech-
anism that you can use to make the system call a
subroutine (FORM) in your program to receive the
output parameters when the program becomes
available (because of a WAIT statement, dialog step,
or sRFC call, for example), although you have to
be careful not to assume the sequence or point in
time at which these parameters will return.

• User switch: With all of the options except for
pRFC, you can explicitly specify a user ID or a

client number to use when logging on to the
remote system. (Further discussion of the logon
process in relation to pRFC goes beyond the scope
of this article.)

• Dialog interaction: As explained in the sidebar
“What happens if an RFM spawns a dialog?”
below, unsuppressed dialog interactions15 within
function modules are possible with sRFC and
aRFC, but not with tRFC and qRFC. Dialog

What happens if an RFM spawns a dialog?
Most function modules you call don’t have user interfaces — they simply execute, perform some action,
and return a result. Occasionally, however, you may encounter a function module that calls one or more
transactions and does not suppress the transaction screen (by supplying the system with batch data input
values, for example). Sometimes this happens if a transaction needs additional user input to complete its
task (e.g., the input of an order number).

The good news is that, in the case of sRFC and aRFC calls, the RFC runtime can display these screens to
your users on the local RFC client. In other words, when screen outputs are processed during the execution
of a synchronous remote function module call (e.g., by the ABAP statements CALL TRANSACTION or CALL
SCREEN), the generated SAPGUI data is sent back to the RFC client, rather than forcing the function
module error out. Pretty neat, right?

Note!

Transactional and queued calls do not pass dialogs through because there can be multiple calls
being made at the same time, and the connection to the caller program might not be available at the
processing time of LUWs. Although with pRFC a dialog interaction is technically allowed, you
must be very careful using it. Dialog interactions are executed in external sessions and are limited
to six at a time (the profile parameter rdisp/max_alt_modes controls this number). The system will
generate error messages if you try to process any more than six dialog sessions concurrently.
Although you may want to use pRFC when processing a large number of current sessions, it is
not recommended.

15 That is, the use of statements such as CALL TRANSACTION or CALL
SCREEN

Continues on next page

SAP Professional Journal • September/October 2006

104 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

The manner in which the dialog screens are displayed differs depending on whether the function
modules are executed synchronously or asynchronously. In the case of sRFC, the output of the remote
dialog screen is processed inline, on the same screen (i.e., the caller screen is temporary replaced
by the remote screen). In contrast, each screen from the asynchronous calls pops up in a new
SAPGUI window.

To avoid these remote screen issues, we recommend one of the following alternative approaches:

To avoid the /n<transaction code> issue:

Note!

There are two important issues that you should be aware of when relying on this “remote screen”
mechanism:

• The execution of any command field codes in the form of /n<transaction code> in a full
screen (i.e., a screen with a command field area) leads to interruption of the RFC connection to
the client program, with the exception of the aRFC without response. In other words, with /n, in
the case of sRFC, the remote session terminates and the caller program continues its processing
after the RFC.

• From the security point of view, with the help of a full screen, users can execute other com-
mands, such as /o<transaction code> (subject to the RFC user’s authorizations, of course).
This can be a problem in a scenario in which a static RFC user ID has been hard coded into the
RFC destination, and this user ID has authorizations that exceed those appropriate for that user.
The user could theoretically access all data and transactions available to the RFC user.

Note!

There is one additional, logical requirement for displaying dialog screens locally — there must be
someone to whom the dialogs display. That is, your program must be executed in the foreground
via a “regular” SAPGUI user (e.g., a dialog user). If you use a dedicated RFC user account for the
target system, the RFC communication user must also be a dialog user. If this condition is not met,
the system raises the ABAP runtime error DYNPRO_SEND_IN_BACKGROUND when it encounters a
screen on the remote system.

Continued from previous page

No portion of this publication may be reproduced without written consent. 105

interaction is generally possible with pRFC, but is
not recommended. Refer to the sidebar for details
behind these restrictions.

• Monitoring: Monitor transactions are only available
for tRFC and qRFC. tRFC monitoring and debug-
ging are accomplished via transaction SM58.
Transaction SMQ1 provides a monitor for the qRFC
outbound queues, and transaction SMQ2 provides a
monitor for the qRFC inbound queues. There are no
monitoring transactions for the sRFC, aRFC, and

pRFC connections available, other than the rudi-
mentary transaction SMGW, which shows the
present RFC connections on the application server.

Conclusion
This is the first in a two-article series on RFC capabil-
ities within SAP Basis 4.0B or higher systems. This
article has taken you on a tour of five key types of

• Use pop-up screens (i.e., screens without command fields), instead of full screens so users don’t have
access to the command field in the screen.*

• Use aRFC without response instead of sRFC, if possible, since the RFC connection to the server is no
longer available.

To avoid security issues:

• Suppress remote screens whenever possible by passing the necessary data through the remote function
module.

• Solicit the additional necessary information via your own screens, and pass the data to the remote
function.

• Provide the RFC user, maintained in the RFC destination, with restricted, well-tailored authorities for
his or her allowed activities in the target system.**

Note!

In an RFC session, the list processing outputs, which are generated by ABAP WRITE statements,
are ignored because the RFC server runtime deactivates list processing. The processing of
WRITE statements can be activated indirectly, however, by placing WRITE statements within
a report called by the RFM through a SUBMIT <report> AND RETURN statement.

* For information on how to control these screens, refer to the ABAP documentation at http://help.sap.com/.

** For more information, go to the SAP NetWeaver ’04 documentation at http://help.sap.com/ and navigate to Application Platform →
Connectivity → Components of SAP Communication Technology → Classical SAP Technologies (ABAP) → RFC → RFC Programming
in ABAP → Maintaining Remote Destinations → Trusted Systems: Trust Relationships Between SAP Systems.

Master the five remote function call (RFC) types in ABAP: Part 1

Masoud Aghadavoodi Jolfaei studied computer science
and received his doctorate in the area of satellite
communication at Aachen University of Technology. He
joined SAP AG in 1994 and became a member of the ABAP
Connectivity group, where he works as a development
architect on the design, tools, and rollout of the ABAP
communication infrastructure. In addition, Masoud is
responsible for the integration of Internet protocols (HTTP,
HTTPS, and SMTP) into the ABAP runtime. You may reach
him at masoud.aghadavoodi.jolfaei@sap.com.

Eduard Neuwirt joined SAP AG in 1999 and became
a member of the ABAP Connectivity group, where he
worked on the design, tools, and rollout of the ABAP
communication infrastructure. Eduard was also responsible
for the development of the remote function call (RFC) tools
on the external side, including the RFC library and JRFC.
Since September 2005, Eduard has worked for the SAP
Defense and Public Security Department. He is responsible
for the interfaces to external military non-SAP systems.
You may reach him at eduard.neuwirt@sap.com.

RFC. It has presented some basic, yet key terms and
concepts you need to know to work effectively with
RFC on your SAP systems. You have also had an
opportunity to explore the RFC communication
process and to step through each RFC type you can
choose from in daily practice. We’ve found that most
people are surprised to learn how rich and powerful
this functionality is, and have only ever used one or
two pieces before reading this article. You can now
begin trying your hand at the more advanced RFC
types, yielding better performing and more robust
ABAP applications.

In the next article, we explore how to create
and secure remote function modules, how RFC
serialization/deserialization works, and how to
handle exceptions and messages within your
ABAP code using best practice techniques.

106 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

SAP Professional Journal • September/October 2006

