
No portion of this publication may be reproduced without written consent. 75

Put your integrated WebSphere environments into production fast

Conceptually, developing business applications can be thought of as a
two-dimensional endeavor. You obviously need to implement the expected
transactional tasks, such as data entry and data processing. In addition, you
are often faced with the need to present tabular data with a common look
and feel, as well as allow users to create views that reflect their particular
needs. Data entry and data processing tasks are necessarily business-
specific and therefore require specialized coding and functionality. However,
the requirements for reporting on and interacting with tabular data are typi-
cally quite similar: I want to sort the data, I want to filter the data, I want to
total a column, I want to use certain criteria to aggregate the data, and so on.

Most developers would agree that using an SAP-provided tool to imple-
ment generic reporting and interaction capabilities is a far more attractive
option than coding the report layout and generic services such as sorting
and totaling from scratch each time:

• Productivity would be significantly increased because you need to write
less code and all tabular data automatically appears with a common look
and feel within your application.

• Programs would be easier to maintain and support because you can
write clearly structured programs that separate the business logic for
retrieving the data from the tool-provided logic for the user interface
and generic services.

• As an added bonus, you would also be able to reap the benefits of any
SAP-internal enhancements such as performance improvements and
memory optimization.

The good news is that you now have such a tool in the SAP List Viewer
(ALV).1 SAP NetWeaver ’04 provides a completely redesigned API for the

Take a fresh look at the redesigned
SAP List Viewer in SAP NetWeaver ’04:
Write programs to present tabular data
in less time and with fewer lines of code

by Falko Schneider

Falko Schneider
SAP NetWeaver Business
Intelligence, SAP AG

Falko Schneider is the Director
of Research and Development
for SAP NetWeaver Business
Intelligence. He designed and
developed the first version of the
SAP List Viewer (ALV), which was
first shipped to customers with
R/3 4.0. During the development
of R/3 4.6, he became the project
lead for ALV development and was
responsible for the control-based
ALV variant, the ALV Grid
Control. In 2000, Falko joined the
SAP BW team as a development
manager for ALV and SAP Query,
and also assumed responsibility
for Data Warehousing and
integrating Business Planning
functionality within SAP BW. 1 The name SAP List Viewer was introduced in SAP R/3 Release 4.6 to replace the formerly used name

ABAP List Viewer. The original ALV acronym has been retained for continuity.

SAP Professional Journal • November/December 2005

76 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

SAP List Viewer, which is now fully integrated and
officially released for customer use. The goal of this
redesign was to offer an object-oriented, robust, and
unified object model for presenting tabular data to
improve developer productivity. While previous ver-
sions of the SAP List Viewer included a separate API
for each format variant, the new API provides a single
object model for all variants. It is based on the ABAP
Objects programming language and uses the SAPGUI
technology to display the data.

Whether you are already familiar with the previ-
ously available APIs or have just recently discovered
the SAP List Viewer, this article shows how the SAP
List Viewer can help meet your reporting needs for
presenting tabular data in your applications. I start by

describing the presentation options that are available
based on how the data to be reported is structured. I
then introduce the new SAP List Viewer programming
model, including an overview of its overall structure
and components. Finally, I show how easy it is to use
the redesigned API by walking through some simple
code examples to get you started.

Options for displaying data
in the SAP List Viewer
Before we look at the SAP List Viewer architecture
and how to program its API, let’s take a brief tour of
the display format choices. The SAP List Viewer

Figure 1 Example report with a simple table using the ABAP list processor (Classic ALV)

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 77

supports a set of predefined presentation options (or
variants) based on the structure of the underlying
data to be displayed and the desired screen appear-
ance. Therefore, your first step is to determine the
type of data that you want to display:
• Non-hierarchical data
• Two-level hierarchical data
• Multi-level hierarchical data

You then implement the code to call the API. This
code describes how to present the data and also con-
tains any specialized functions that you want users to
be able to execute within the report.

Displaying non-hierarchical data

The simplest SAP List Viewer variant is for displaying

a table of data that is not hierarchically structured,
which means that the records do not have any parent-
child relationships. To implement this variant in your
program, you simply select the data to be displayed
in an internal table and pass that internal table to the
SAP List Viewer API. You have several options for
displaying the results:
• A simple table using the ABAP list processor,2 as

you can see in Figure 1. This variant of the SAP
List Viewer is also referred to as Classic ALV.

• A grid control3 in full-screen mode using the SAP
Control Framework, which is shown in Figure 2.

Figure 2 Example report with a grid control in full-screen mode

2 The ABAP list processor displays a list defined in an ABAP program
using standard ABAP WRITE statements.

3 The grid control is also commonly referred to as the ALV grid control.
For more information, see the article “A Developer’s Guide to the New
ALV Grid Control” by Jens Stumpe (SAP Professional Journal,
November/December 2000).

• A grid control embedded in a Dynpro container
using the SAP Control Framework, which appears
in Figure 3.

Using the SAP Control Framework lends a modern
look-and-feel to a report by supporting common
controls such as drag-and-drop. But for all new devel-
opment, SAP strongly recommends using the grid
control option (either in full-screen or embedded
mode) rather than the ABAP list processor option for
another important reason: It offers a huge advantage
with respect to performance and memory consumption
due to significant improvements made in SAP
NetWeaver ’04.

SAP Professional Journal • November/December 2005

78 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

Displaying two-level hierarchical data

The SAP List Viewer also supports a variant known as
a hierarchical sequential list for displaying data that is
based on a hierarchy that has exactly two levels. For
example, you might have an order header with n order
items that belong to it. To implement this variant, you
pass the header and detail data to the SAP List Viewer
API in two separate internal tables. You specify the
relationship between these data tables by naming the
foreign key relationship as a method parameter when
calling the API. I explain more about the factory
methods that are provided for this purpose later in
the article.

Figure 3 Example transaction with a grid control embedded in a Dynpro container

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 79

Figure 4 illustrates how two-level hierarchical data
is displayed. Note that the detail data (in this example,
Costing variant or Costing date) appears directly
below its associated header data (in this example,
Material and Material description).

Displaying multi-level hierarchical data

The other SAP List Viewer variant for presenting hier-
archically structured data supports the display of an
arbitrary number of levels. When using this variant,

Figure 4 Example report with a hierarchical sequential list

Why you should consider using the SAP List Viewer
While primarily a development tool, the SAP List Viewer offers significant productivity advantages for
developers and users alike.

Starting with the developer’s perspective, the SAP List Viewer is a powerful programming interface that
you can supply with any type of tabular data for display to users. It also provides generic services that
you can integrate directly into an application context. These services cover the complete spectrum, from
actions such as sorting or filtering that can be performed on any type of tabular data to reporting-related

Continues on next page

SAP Professional Journal • November/December 2005

80 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

In both cases, the columns must display the same
attributes/fields for all levels of the hierarchy. For
example, in Figure 6 the Quantity, Unit, and Materials
attributes (as displayed in columns two, three, and
five) are valid for every hierarchy level. For higher
levels in the hierarchy, the Value column also shows
the total accumulated from any lower-level nodes.

Note!

You cannot use the SAP List Viewer to
present different structures on more than
two hierarchy levels. The tree control always
requires the same structure with respect to the
attributes shown in the table. The hierarchical
sequential list can accommodate different
structures, although only for exactly two
hierarchy levels.

you pass the data to the SAP List Viewer API in one
internal table and, in a separate internal table, pass the
metadata that describes the parent-child relationship of
the hierarchy nodes. You have two options for display-
ing the results:

• A tree control4 in full-screen mode using the SAP
Control Framework, as shown in Figure 5. This
new presentation option was added in SAP
NetWeaver ’04. In this example, you can see that
the multi-level hierarchy consists of the carrier ID
on level 1 (AA, AB, AC), the flight number on
level 2 (0017, 0026, 0064), and the individual
flight bookings on level 3.

• A tree control that is embedded in a Dynpro
container, which you can see in Figure 6.

4 The tree control is based on the column tree control, which is a
SAPGUI control that represents a tree-table combination. The
CL_GUI_COLUMN_TREE class is the ABAP object wrapper for the
column tree control. The API for this SAP List Viewer variant uses this
class and enhances the column tree control with additional services,
such as defining which columns should be displayed or totaled or
whether to print the tree representation.

capabilities such as aggregation or graphical display options. You can combine these generic services
with application-specific functionality that is performed on the displayed data but controlled by the
application. Your job is significantly easier because you simply incorporate the generic services in your
applications without writing the code to implement them. The SAP List Viewer also handles report format-
ting and layout. Consequently, you can focus on developing the business logic to retrieve the data and the
application-specific functionality to further process the data.

Using the SAP List Viewer not only speeds up development, but also makes your code more manageable
and future-proof. In keeping with good programming practices, you can easily separate the business logic
from the report user interface logic in your programs. This structure is a prerequisite for being able to reuse
the business logic, as well as for reserving the option to replace the presentation layer with a Web-based UI
at some point in the future.

Now let’s turn to the user’s perspective. Instead of each application (and perhaps report) reflecting a
different presentation style as determined by the developer, data displayed with the SAP List Viewer looks
and feels the same in all applications that use its API. Data is presented in a state-of-the-art, standardized,
easy-to-use user interface that has a consistent appearance and familiar controls.

As a result, the developers who write the programs and the users who work with the results of the programs
are all more productive. These factors help to reduce your total cost of ownership for an application in
terms of user training time, amount of development effort, and code supportability and maintainability.

Sidebar continued

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 81

Figure 5 Example report with a tree control in full-screen mode

Figure 6 Example transaction with a tree control embedded in a Dynpro container

SAP Professional Journal • November/December 2005

82 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

any of these standard services in your programs
quickly and easily, without writing any code. Notice
that the non-hierarchical variants support the most

Figure 7 provides an overview of the generic user
interaction features that are available in the SAP List
Viewer for each variant. You can optionally enable

Feature No hierarchy Two-level
hierarchy

Multi-level hierarchy

Classic
ALV

ALV grid
control
(full-screen)

ALV grid
control
(Dynpro
container)

Hierarchical
sequential
list

ALV tree
control
(full-
screen)

ALV tree
control
(Dynpro
container)

Sorting
Sort by up to nine criteria X X X X – –
Build totals X X X X X X
Build subtotals X X X X – –
Expand/compress lines or sub-trees X X X X X X
Build mean value, maximum, minimum X X X – X X
Screening
Filter X X X X – –
Delete filter X X X X – –
Search X X X X X X
Layout management

Hide/unhide columns X X X X X X
Change layout X X X X X X
Save layout X X X X X X
Choose layout X X X X X X
Set default layout X X X X X X
Exporting
Excel inplace – X X – – –
Direct export to Excel X X X – – –
Download as file X X X X – –
Mail X X X X – –
Export to Lotus X X X – – –
Printing
Print preview – X X – X X
Print X X X X X X
Top of page X X – X X –
End of page X X – X X –
Automatic printing of pages, dates – X X – – –
Column headers in two lines X – -– X – –
Specialty functions
Application-specific functions X X X X X X
Graphical display – X X – – –
ABC analysis* – X X – – –
* ABC analysis is a process for determining the importance of an object. You perform an ABC analysis to classify objects according to

specific criteria or performance measures. For example, an object can be a material, a vendor, or a plant. Each object is assigned an
indicator of A (important), B (less important), or C (relatively unimportant).

Figure 7 Standard services that are available with the SAP List Viewer

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 83

options for presentation control. Further notice that
the tree-based variants for displaying a multi-level
hierarchy do not offer any export capabilities, for
example to a spreadsheet application such as
Microsoft Excel.

Understanding the old
SAP List Viewer model
In releases before SAP NetWeaver ’04, a separate API
existed for each SAP List Viewer variant. However,
only the variant for displaying non-hierarchical data
using the ALV grid control in a Dynpro container and
its corresponding API (CL_GUI_ALV_GRID) were offi-
cially released for customer use. Figure 8 illustrates
this model, showing the name of each API below its
corresponding SAP List Viewer variant.

This model has several drawbacks, not least of
which is that you are faced with a set of similar, yet

slightly different, APIs. For example, some parameter
names are identical for all of the APIs, but the refer-
enced Data Dictionary (DDIC) structures are different.
In addition, the interfaces for these APIs contain large
structures with many flags for parameterization.
Unfortunately, it is relatively easy to parameterize
these interfaces inconsistently, simply by setting
contradictory flags in the structures that you pass
when you call the API. For example, suppose you
want to display a field in a table. In the metadata
structure for the field (that is, the field catalog), you
define that the field has the data type CHAR. But in the
same field catalog you also accidentally define that
you want to calculate a total for this field, which is of
course only possible for numerical fields.

Performing runtime checks for correctness or
consistency for all parameter combinations is clearly
impossible due to the potentially negative effect on
performance. As a result, the programming axiom for
the SAP List Viewer was that the parameterization
must be consistent. In other words, developers are

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

ALV grid control in a
Dynpro container
CL_GUI_ALV_GRID

ALV full-screen grid
REUSE_ALV_GRID_DISPLAY

ALV list
REUSE_ALV_LIST_DISPLAY

Hierarchical sequential ALV
REUSE_ALV_HIERSEQ_LIST_DISPLAY

ALV tree control
CL_GUI_ALV_TREE

Developer

Figure 8 The old SAP List Viewer model

SAP Professional Journal • November/December 2005

84 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

personally responsible for ensuring that they do not
call the API with contradictory flags and settings.
While perhaps acceptable for SAP internal use, this
expectation is unreasonable for production environ-
ments and thus the reason why these APIs have never
been released for customer use.

Another drawback of the model used prior to SAP
NetWeaver ’04 is that SAP List Viewer supported a
data- and metadata-driven interface only for the data
that is displayed in a table. In other words, the SAP
List Viewer simply renders the passed data for display
based on the transferred metadata. However, you often
need to display additional information in a report, such
as at the beginning or end of a table. For example, at
the top of a list you might want to display the entered
selection criteria for the resulting data set. Or at the
end of a list you might want to show the number of
records processed or other status information.

Note!

Since the SAP List Viewer has been
redesigned and the new object model is now
officially released and available with SAP
NetWeaver ’04, SAP strongly recommends
using the new API for all new development.
However, you do not need to migrate any
programs that use the existing APIs.

The old model lacked a powerful API that could
address these requirements with a similar data- and
metadata-driven approach. Instead, to populate these
areas you explicitly write the information from the
application either by using ABAP WRITE statements
(in the ABAP list processor environment) or by using
the methods of the dynamic documents5 for displaying
this type of information in an HTML control (in the

SAP Control Framework environment). Consequently,
the content of these areas is not known to the SAP
List Viewer, which means that you are responsible for
creating top-of-list/end-of-list areas that conform to
the UI technology used to display the data and have
the same look-and-feel as other reports.

Introducing the new SAP List
Viewer model
Now that you understand the shortcomings of the
previous SAP List Viewer solution, let’s examine the
new object model that is available in SAP NetWeaver
’04 (see Figure 9). For comparison purposes, the
diagram maps the new API and its classes to the SAP
List Viewer variants and their corresponding APIs that
you used in the past. Note the addition of a new full-
screen tree control, which was previously impossible
because no API existed.

With the introduction of this new object model,
all of the old APIs become obsolete. The new object
model exposes SAP List Viewer functionality through
a single, unified API with three top-level classes:

• CL_SALV_TABLE for displaying non-hierarchical
tabular data

• CL_SALV_HIERSEQ_TABLE for displaying
hierarchical sequential lists (or two-level
hierarchical data)

• CL_SALV_TREE for displaying multi-level
hierarchical data

Note!

The hierarchical table and tree variants have
some intrinsic restrictions, such as the number
of columns that can be displayed or the col-
umn width. For more information, use the
Class Builder (transaction SE24) to refer to
the documentation for the associated classes
(CL_SALV_HIERSEQ_TABLE and
CL_SALV_TREE).

5 Dynamic documents describe an ABAP object wrapper for creating
HTML screens. You call methods provided by the dynamic documents
classes, which create the corresponding HTML internally. For more
information, refer to the SAP Help Portal at http://help.sap.com.
Navigate to the SAP NetWeaver documentation and select Application
Platform → ABAP Technology → UI Technology → Controls and
Control Framework for SAP GUI → Dynamic Documents.

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 85

many enhancements that are sure to make your life as
a developer easier. The table in Figure 10 summarizes

Beyond the obvious benefit of a single, consistent
API, the new SAP List Viewer object model offers

ALV grid control in a
Dynpro container
CL_GUI_ALV_GRID

ALV full-screen grid
REUSE_ALV_GRID_DISPLAY

Classic ALV
REUSE_ALV_LIST_DISPLAY

Hierarchical sequential ALV
REUSE_ALV_HIERSEQ_LIST_DISPLAY

ALV tree control
CL_GUI_ALV_TREE

ALV full-screen tree

CL_SALV_TABLE

CL_SALV_HIERSEQU_TABLE

CL_SALV_TREE

New Object Model

Developer

Figure 9 The new SAP List Viewer model in SAP NetWeaver ’04

Aspect Key features

Simplified and faster
programming

• The object-oriented programming model is based on ABAP Objects, which better fits
the skillset of developers today.

Error prevention • The API automatically derives the data type, preventing metadata mismatches.
• The API provides methods with built-in error-checking to avoid inconsistent

parameterization.
• The SAP List Viewer automatically handles back-end/front-end updates triggered by

metadata changes, eliminating manual synchronization.
• API methods that take a constant as a parameter have a global interface attribute

as the default, simplifying identification of valid parameters.

Unified object model • The API provides metadata-driven control of the top- and end-of-list areas.
• Classes define all metadata, which allows for reuse with different variants.
• You work with a streamlined object set consisting of a single unified API for all.

Figure 10 Advantages of the new SAP List Viewer model

SAP Professional Journal • November/December 2005

86 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

the key features. We’ll examine the aspects of error
prevention and the unified object model in more detail
in the next sections.

Built-in safeguards help prevent errors

Let’s begin our brief tour by reviewing several
enhancements that prevent many of the common
sources of errors in the old SAP List Viewer model:

• Automatically derived data type: The SAP List
Viewer now determines the data type of the data
that is passed to the new API. This meta-informa-
tion is derived automatically and is no longer part
of the metadata interface that you specify in your
code. In the past, developers commonly passed
incorrect metadata for data type descriptions. This
inconsistent parameterization caused a mismatch
between the data and metadata describing the data
types of the table fields, resulting in runtime errors.

• Error-checking for consistent parameterization:
The new API provides SET and GET methods6 for
all metadata settings, such as “Hide this column”
or “Total the values of this column” parameters.
You set meta-information with the SET method and
ask the API to return the current metadata setting
with the GET method. These methods also provide
runtime error-checking in the event of inconsistent
parameterization. Suppose you try to parameterize
the SAP List Viewer with contradictory metadata,
for example by specifying the “Total the values of
this column” parameter when the data type of the
column is not numeric. An exception is raised
during runtime explaining the reason for the error
so you can correct the appropriate parameter(s).

• Automatic front-end/back-end metadata
synchronization: For SAP Control Framework
variants such as the ALV grid control, the SAP
List Viewer now completely handles any
back-end/front-end updates that are triggered

by metadata changes. For example, suppose you
define a button in the SAP List Viewer toolbar
and implement an event handler to handle the
action. When a user clicks on the button, your
program checks whether a certain column is visible
and, if so, hides the column by calling the SET
method of the column object for setting the
VISIBLE property to FALSE. The object model
registers that the change has been made to the
back end and automatically updates the front
end when the event handler is finished. With
the old APIs, you needed to explicitly call the
REFRESH_TABLE_DISPLAY method of the
API in your event handler to ensure that any
metadata changes programmed in the back-end
code were also reflected in the front end. Other-
wise, an inconsistency would exist between the
back end and front end, causing unexpected
behavior in the UI or possibly even runtime errors.

• Simplified identification of valid constant
parameters: Some methods that are provided with
the new API take a constant as a parameter. The
new object model offers a consistent approach for
identifying the possible constant values for these
methods so you can easily determine the valid set
of parameters. Global interface attributes are used
to represent constants for parameterizing such
methods. In the parameter view of the Class
Builder (transaction SE24) for a method of this
type, you can see if a parameter requires a constant
as a value (see Figure 11). If a constant is
expected, the Default value column shows a global
interface value as the default, such as
IF_SALV_C_BOOL_SAP~TRUE in this example.
Double-click on this default value to open the
attribute view of the corresponding interface defi-
nition and view a list of valid constant values.
Then simply copy and paste the constant value into
your code.

A unified object model adds control
and streamlines usage

To conclude our tour of the key enhancements in
the new object model, let’s turn to its architectural

6 For more information about the SET and GET methods that are avail-
able within a class, refer to the documentation for the corresponding
class in the Class Builder (transaction SE24).

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 87

advantages. By providing a single API and a unified
object model for all variants, the redesigned SAP List
Viewer offers a much improved development experience:

• Metadata-driven top-of-list and end-of-list
areas: The new API offers a fully data- and meta-
data-driven interface that now also addresses the
top-of-list and end-of-list areas of a table. You
simply pass the data to display in these areas to the
API and describe how to display the data using
metadata instead of using WRITE statements in
your code to present the data.

• Reusable class-defined metadata: Metadata is
modeled as classes that you can reuse in different
SAP List Viewer variants. If you learn how to use
the metadata for a particular class and variant,
you can leverage that knowledge for programming
other variants. Derived classes are provided to
define additional variant-specific information, such
as the column object for the ALV full-screen tree

or the derived events object for tree-specific
events.

• Streamlined object set: As mentioned earlier,
the new object model provides a single API for all
variants with three top-level classes. You use just
one class (CL_SALV_TABLE) for all three represen-
tations of non-hierarchical data — that is, Classic
ALV, ALV full-screen grid, and ALV grid control
embedded in a Dynpro container. In the past, you
had to learn how to work with a different API for
each representation. In addition, you use the same
class (CL_SALV_TREE) for both the ALV full-
screen tree and the ALV tree embedded in a
Dynpro container.

In my experience, the SAP List Viewer is most
commonly used to display non-hierarchical data.
Therefore, in the rest of this article I focus on this
variant to show you how to use the new API.
However, you follow the same basic approach with

Figure 11 Identifying a valid set of constant parameters in the Class Builder

the other variants. To learn more about the ALV tree
(CL_SALV_TREE) or the hierarchical sequential list
(CL_SALV_HIERSEQ_TABLE), refer to the correspon-
ding class documentation in the Class Builder
(transaction SE24).

Understanding the old
programming model
Figure 12 illustrates the main principles of program-
ming the SAP List Viewer with the old APIs. This
example shows how to display an ALV full-screen
grid, but the principles are basically the same for
displaying all non-hierarchical data.

Here is what you would do in your application
code when using the old SAP List Viewer APIs. First
select the data to be displayed in the SAP List Viewer
in an internal table. Then pass the data and its corre-

SAP Professional Journal • November/December 2005

88 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

sponding metadata description (or field catalog,
which is in a separate internal table) to the API
function module (in this example,
REUSE_ALV_GRID_DISPLAY). Each record in the field
catalog describes one field of the internal data table,
which is then represented as a column in the SAP List
Viewer. The field catalog contains structural informa-
tion such as data type, internal length, and number of
decimals, as well as settings that control display
options such as header text, visibility, and alignment.

If the internal table is based on a DDIC structure,
transfer the name of this structure instead of a field
catalog. In this case, the SAP List Viewer reads the
field information from the DDIC and builds the field
catalog automatically using defaults such as “all table
columns are visible” for the display option. These
defaults are quite useful for rapid prototyping because
you do not have to specify or pass any metadata and
you see immediate results with very limited coding.
Later on, you can specify the necessary metadata to

CALL FUNCTION ‘REUSE_AVL_GRID_DISPLAY’
. . .

Full-screen grid

Call SAP List Viewer

Internal table with data Description of data

A
B
C

Select * from . . .

A B C

A B C <Name>

A B C
Data

Internal table Field catalog Structureor

Figure 12 The old programming model for the SAP List Viewer

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 89

display the data exactly as you want, for example by
identifying which columns to hide when the report is
presented to the user. The data is displayed on the
screen as a result of the ALV function module call
and all generic functions such as sorting, filtering,
and so on are represented as buttons in the toolbar.

Introducing the new
programming model
Figure 13 describes the main principles of the new
object-oriented programming model. For ease of
comparison with the old programming model, this
example also shows how to display an ALV full-
screen grid. As with the old model, the principles
are basically the same for displaying all non-
hierarchical data.

Main principles of the new
object model

In terms of how you write the code, you still select the
data in an internal table. But with the new model you
call the FACTORY method of the class for the desired
representation and pass the internal table to it. This
example uses the CL_SALV_TABLE class in order to
display an ALV full-screen grid. The FACTORY method
returns an instance of this class. To display the table,
you call the DISPLAY method of this instance. The
SAP List Viewer determines all structural information
such as the data type, internal length, and so on,
preventing the potential data type inconsistencies
described earlier. The SAP List Viewer examines the
internal data that is passed to the FACTORY method
and automatically derives the correct metadata. For all
display settings, the SAP List Viewer provides default
settings that, in most cases, represent the desired

CALL METHOD CL_SALV_TABLE=>FACTORY
. . .

Create ALV instance by calling factory method and handing over internal table with data

Full-screen grid

Data

Internal table

Select * from . . .

Get back the reference to the ALV instance

A B C

ALV instance display
. . .

A B C

Figure 13 The new SAP List Viewer programming model in SAP NetWeaver ’04

SAP Professional Journal • November/December 2005

90 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

behavior. For example, the alignment is set to left-
justified for all character-based or string-based data
types; the alignment is set to right-justified for all
numeric data types; and the column width is derived
from the output-length setting in the DDIC if a field
in the internal table references a DDIC data element.

Note!

Metadata is derived from dynamically
created internal tables in the same manner.
However, with Basis Release 6.40, SAP
recommends that you use the ABAP
runtime type information (RTTI) classes
to create dynamic tables instead of using
the CL_ALV_TABLE_CREATE class. This
technique is now the official way to create
dynamic data structures in ABAP.

I want to call your attention to an important change
in the default behavior of the new object model in
comparison to the old programming model. When
you use the new API, by default the presented UI
offers no generic services. Of course, you can easily
switch services selectively for each service (e.g., sort
ascending), for a group of services (e.g., sort and
filter functions such as sort ascending, sort descend-
ing, filter on, and filter off), or for all services at once.
I provide an example of how to do this later in the
article (see the “Example #2: Displaying generic
services to users” section).

SAP decided to change this default behavior
based on past experience with the SAP List Viewer.
We have observed that this tool is often used to
display very simple lists such as two columns with
five data rows. Developers often did not take advan-
tage of the option to switch off any generic services
that might not be relevant for a table of this type,
such as Excel inplace representation or aggregation
functionality. As a result, simple lists were often

report salv_learn_map_table_1.

*... Select Data

data:

gt_outtab type table of sflight.

select * from sflight into corresponding fields of table gt_outtab.

*... Create Instance and Display as Fullscreen Grid Control

data:

gr_table type ref to cl_salv_table.

call method cl_salv_table=>factory

importing

r_salv_table = gr_table

changing

t_table = gt_outtab.

*... Display Table

gr_table->display().

Figure 14 Example code to display data in an ALV full-screen grid

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 91

overloaded with functionality that is not useful, or
worse, confusing in that context.

You now have a basic understanding of how the
new SAP List Viewer works and why. Let’s move on
to the fun part of the article, which is how to write the
necessary code.

Creating simple SAP List
Viewer reports
In the first example (Figure 14), I show you how to
implement the simplest form of an SAP List Viewer
call. First, select the data from the database as shown

in the “Select Data” section in Figure 14. Then pass
the data to be displayed to the FACTORY method of the
object model, as shown in the “Create Instance and
Display as Fullscreen Grid Control” section. Specify
the class associated with the desired variant; all the
examples in this article use the CL_SALV_TABLE class
for displaying non-hierarchical data. This method
returns an instance of the object. Finally, call the
DISPLAY method of the instance to display the data
(see the “Display Table” section). If you call
the FACTORY method without any additional
parameters as shown in this example, the SAP List
Viewer presents the data in the default format as
an ALV full-screen grid. See Figure 15 for the
resulting report.

Figure 15 Example report using an ALV full-screen grid

SAP Professional Journal • November/December 2005

92 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

The code for displaying non-hierarchical tabular
data using the other SAP List Viewer variants is very
similar. For example, Figure 16 shows how to
implement a Classic ALV. As you can see, the step to
select the data from the database is exactly the same.
However, when you pass the data to be displayed to
the FACTORY method, include the LIST_DISPLAY
parameter with the value set to TRUE (see the “Create
Instance and Display as Classic List” section). The
method again returns an instance of the object. As in
the previous example, call the DISPLAY method of the
instance to display the data.

To round out our set of simple examples, the third
variant for displaying non-hierarchical tabular data
is an ALV grid control in a Dynpro container. The
example in Figure 17 illustrates how to implement

this variant. Once again, start by selecting the data
from the database, as in the previous examples. For
this variant, you then create an instance of the
container in which the ALV grid control is to be
displayed, as shown in the “Create Instance of
Container” section. Next call the FACTORY method as
described in the “Create Instance and Display as Grid
within a Dynpro” section. In addition to passing the
data table, notice that here you include two additional
parameters: R_CONTAINER, which contains the refer-
ence to the container, and CONTAINER_NAME. The
method returns an instance of the object. And finally,
call the DISPLAY method of the instance to display
the data.

You have now seen how easy it is to produce
simple reports using the SAP List Viewer. However,

report salv_learn_map_table_1_1.

*... Select Data

data:

gt_outtab type table of sflight.

select * from sflight into corresponding fields of table gt_outtab.

*... Create Instance and Display as Classic ALV

data:

gr_table type ref to cl_salv_table.

call method cl_salv_table=>factory

exporting

list_display = abap_true

importing

r_salv_table = gr_table

changing

t_table = gt_outtab.

*... Display Table

gr_table->display().

Figure 16 Example code to display data in a Classic ALV

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 93

if you want to change the metadata defaults before the
report appears on the screen, you need to call the
appropriate GET and SET methods for the metadata
objects in your code. The SAP List Viewer API
instantiates all of these methods as a result of the
factory method. In the following section, I provide an
overview of these metadata objects and show how
easily you can use them to program the desired table
formatting and behavior.

Using metadata objects
for table formatting and
behavior
Report metadata is modeled as classes that you
can reuse in different SAP List Viewer variants. To
get a better idea of what characteristics are avail-
able, let’s examine the metadata structure for the

report salv_learn_map_table_1_2.

*... Select Data

data:

gt_outtab type table of sflight.

select * from sflight into corresponding fields of table gt_outtab.

*... Create Instance of Container

data:

gr_container type ref to cl_gui_custom_container.

create object gr_container

exporting

container_name = 'CONTAINER'.

*... Create Instance and Display as Grid within a Dynpro

data:

gr_table type ref to cl_salv_table.

call method cl_salv_table=>factory

exporting

r_container = gr_container

container_name = 'CONTAINER'

importing

r_salv_table = gr_table

changing

t_table = gt_outtab.

*... Display Table

gr_table->display().

Figure 17 Example code to display data in an ALV grid control in a Dynpro container

SAP Professional Journal • November/December 2005

94 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

CL_SALV_TABLE class. Figure 18 contains a UML
diagram of the classes that define the different aspects
of metadata information offered by the SAP List
Viewer. You access these metadata objects from the
CL_SALV_TABLE ALV instance that you obtain by
calling the corresponding GET method. The other two
top-level classes provide similar metadata classes.

You access all of these main metadata classes
directly from the CL_SALV_TABLE object. These
classes contain further derived subclasses (see
Figure 19) that define the metadata for every concrete
object, such as a specific column or sort criterion.
Notice the deliberate similarity between the names of
the main classes and their subclasses. The naming
convention is that the class that defines the general
metadata (which is also valid for all subclasses) uses
the plural form of the object portion of its name, such
as CL_SALV_COLUMNS_TABLE. The class that defines
the metadata for a specific object uses the singular
form, such as CL_SALV_COLUMN_TABLE.

These classes and the methods they provide for
manipulating the properties of tables and their compo-
nent objects are well-documented in the system
documentation.7 However, to give you an overview as
a jumpstart, Figure 20 provides a brief description of
the purpose of the metadata objects and the type of
information available in each class.

CL_SALV_FUNCTIONAL_SETTINGS CL_SALV_DISPLAY_SETTINGS CL_SALV_COLUMNS_TABLE

CL_SALV_TABLECL_SALV_FUNCTIONS_LIST CL_SALV_EVENTS_TABLE

CL_SALV_AGGREGATIONS CL_SALV_SORTS CL_SALV_LAYOUT CL_SALV_FILTERS CL_SALV_PRINT

Figure 18 Main metadata classes of the CL_SALV_TABLE class

7 For more information, refer to the SAP Help Portal at
http://help.sap.com. Navigate to the SAP NetWeaver documentation and
select Application Platform → ABAP Technology → UI Technology →
Controls and Control Framework for SAP GUI → SAP List Viewer
(BC-SRV-ALV) → ALV Object Model.

Caution!

When applying aggregation to a table, be
careful to set the internal column size appro-
priately. The internal size of the column must
be sufficient to accommodate the individual
values as well as the result of the aggregation.
A column that is too small for the aggregated
result causes a field overflow, preventing the
display of the result. For example, never use
INT2 as the data type for a column if you
want users to be able to aggregate its values.
Unless the aggregated value is unrealistically
between -327678 and 32767, the result will
not fit into an INT2 variable.

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 95

CL_SALV_DROPDOWNS CL_SALV_HYPERLINKS CL_SALV_COLUMN_TABLE

CL_SALV_FUNCTIONAL_SETTINGS CL_SALV_COLUMNS_TABLE

CL_SALV_FUNCTION CL_SALV_FUNCTIONS_LIST CL_SALV_TABLECL_SALV_TABLE CL_SALV_EVENTS_TABLE

CL_SALV_AGGREGATIONS CL_SALV_SORTS CL_SALV_LAYOUT CL_SALV_FILTERS CL_SALV_PRINT

CL_SALV_AGGREGATION CL_SALV_SORT CL_SALV_FILTER

n n

CL_SALV_DISPLAY_SETTINGS

n

nnn

Figure 19 Main metadata classes and their derived subclasses

Figure 20 Overview of the main metadata classes

Class and purpose Examples of common actions

CL_SALV_AGGREGATIONS

Define aggregation options for a table. This object stores a
list of aggregation options plus the collective aggregation
properties for the table. A separate CL_SALV_AGGREGATION
object for each aggregation option stores its properties.

• Set collective properties such as whether to display
the aggregated result before or after the aggregated
line items.

• Set individual properties such as the type of aggregation
(total, minimum, maximum, or average) to apply to
a column.

CL_SALV_COLUMNS_TABLE

Manage the columns in a table. This object stores a list of
columns and the collective column properties for the table.
A separate CL_SALV_COLUMN_TABLE object for each
column stores its properties, which you use SET and GET
methods to change.

• Obtain a list of columns or change column order.
• Change individual column properties, such as align-

ment, visibility, width, and title.
• Change collective column properties, such as optimiz-

ing width or displaying/hiding headers.

CL_SALV_DISPLAY_SETTINGS

Control the visual appearance of the overall table. • Produce a striped effect by shading alternate table rows
light and dark.

Continues on next page

SAP Professional Journal • November/December 2005

96 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

Class and purpose Examples of common actions

CL_SALV_DROPDOWNS

Define a drop-down list for a cell. This object stores a list
of drop-downs that contain value lists. Each drop-down is
identified by a key that you can link to a column.

• Define a drop-down list for a column.

CL_SALV_EVENTS_TABLE

Implement application-specific functionality in a program. • Add an application-specific button to the ALV toolbar.
• Execute application-specific logic when a user double-

clicks on a table cell.

CL_SALV_FILTERS

Define filters to apply to a table. This object stores the filter
criteria. A separate CL_SALV_FILTER object for each criteri-
on stores its defined selection options.

• Define filters and selection options.

CL_SALV_FUNCTIONAL_SETTINGS

Manage user interaction by defining the functional settings
that control what happens when users click on different
areas of a table.

• Define which function to execute if users double-click on
a cell.

• Define that single-clicking on a column header sorts the
table by that column.

CL_SALV_FUNCTIONS_LIST

Control which generic functions are available to users in the
toolbar.

• Expose some, all, or no generic functions, such as sort,
filter, and so on.

CL_SALV_HYPERLINKS

Define a hyperlink for a cell. This object stores a list of
hyperlinks. Each hyperlink is identified by a key that you
can link to a column.

• Define a hyperlink for a column.

CL_SALV_LAYOUT

Control whether users are authorized to change and save
report settings for future reuse.

• Enable or disable layout control.

CL_SALV_PRINT

Specify the information to include when users print the
report.

• Add a cover page that shows the total number of
records, number of subtotals calculated, and number of
records filtered.

CL_SALV_SORTS

Define sort criteria to apply to a table. This object contains
collective sort properties for the table, including whether a
sort order is defined and, if so, the list and order of sort
criteria. A separate CL_SALV_SORT object for each criterion
stores its properties.

• Define sort criteria and properties, such as sort
sequence (ascending or descending).

Figure 20 continued

In the following sections, I describe how to
achieve the desired result and show the corresponding
code. Feel free to try these examples in your own
system environment, especially if you are new to the
SAP List Viewer.

Example #1: Hiding columns
The SAP List Viewer automatically creates a default
set of columns based on the table of data that is
passed to the API. However, the set of provided
columns may not always correspond to the intended
design of the report. Therefore, the SAP List Viewer
provides a way for you to control the table layout by
defining which columns to display and in what order.

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 97

Some examples to get you
started
Now that you have a basic understanding of the
available classes and methods, I want to walk
through some examples (including the necessary
code) that illustrate how to perform some of the
most common tasks:

• How to hide a table column from display

• How to control which generic functions are visible
to users

• How to add application-specific functions

• How to control whether users can change and save
the report layout in runtime

Considerations for controlling functional settings
In designing the new object model, we decided to distinguish clearly between the settings that influence the
visual design and display behavior of a report (that is, the CL_SALV_DISPLAY_SETTINGS class) and the
settings that influence the interaction design of the report (that is, the CL_SALV_FUNCTIONAL_SETTINGS
class). The CL_SALV_FUNCTIONAL_SETTINGS class includes the properties that influence the interaction
model and control, such as which function is executed if the user double-clicks on a cell or whether single-
clicking on a column header sorts the records in the displayed table by that column.

As the default, single-clicking on the column header always highlights the whole column. From a user
perspective, the SAP List Viewer follows the object-action* interaction paradigm. First you select or high-
light an object, and then you choose the action you want to execute on the object. Thus, the easiest way to
total the values of a column is to click on the column to highlight it and then click on the toolbar button
that provides the total function.

Suppose you decide to change the interaction behavior of the SAP List Viewer so that single-clicking on
the column header no longer highlights the column, but instead sorts the table immediately. Be aware that
subsequently all column-related interactions such as sort, total, filter, hide, and so on can only be executed
in the SAP List Viewer settings dialog. Pressing a button for a column-related interaction without first
selecting anything displays this dialog. The default column selection option is no longer available, as you
have now reserved it for the sort functionality.

* The object-action model specifies that, when using a GUI, the user first selects an object and then selects the action to be performed on the
object.

SAP Professional Journal • November/December 2005

98 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

In this first example, I show you how to remove
one or more columns from the set of columns to
be displayed. Building on the simple examples
that I provided earlier, the “Disable Column”
section of the example code in Figure 21 shows
you how to proceed if you want to hide a column.
First call the GET_COLUMNS method to retrieve the
CL_SALV_COLUMNS_TABLE object from the object

model. This object contains a list of available
columns that were passed in the internal table
and also provides the GET_COLUMN method for
retrieving a column. Next retrieve the column
that you want to hide and set its VISIBLE property
to FALSE. In this example, the MANDT column in
the internal table that was passed holds client infor-
mation, which you typically do not want to show

report salv_learn_map_table_2.

*... Select Data

data:

gt_outtab type table of sflight.

select * from sflight into corresponding fields of table gt_outtab.

*... Create Instance

data:

gr_table type ref to cl_salv_table.

call method cl_salv_table=>factory

importing

r_salv_table = gr_table

changing

t_table = gt_outtab.

*... Disable Column

data:

lr_columns type ref to cl_salv_columns_table,

lr_column type ref to cl_salv_column.

lr_columns = gr_table->get_columns().

lr_column = lr_columns->get_column('MANDT').

lr_column->set_visible(abap_false).

*... Display Table

gr_table->display().

Figure 21 Example code to hide a column

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 99

in a report. Figure 22 shows the result, with the client
information column no longer visible.

Example #2: Displaying
generic services to users
The SAP List Viewer provides a generic set of built-in
services such as sort, filter, aggregation, and so on. By
default, none of these generic functions are displayed
to users. Instead, you decide which services suit your
report and then activate the desired functions. If you

need all of these generic services, use the SET_ALL
method to activate/deactivate all functions in a single
step. Alternatively, you can use the SET_DEFAULT
method to activate/deactivate a predefined subset of
functions that are commonly used in all reports (sort,
filter, aggregation, sub-aggregation, column choice,
and search, for example). Other methods, such as
SET_GROUP_VIEW, allow you to activate a group of
related functions.

In this second example, I describe how to use
these valuable methods. I start by showing you how
to activate a predefined set of functions in a single
step using the SET_DEFAULT method. Look at the

Figure 22 Example report with MANDT column hidden

SAP Professional Journal • November/December 2005

100 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

“Enable Generic ALV Functions” section of
the code in the example shown in Figure 23.
First call the GET_FUNCTIONS method to retrieve
the CL_SALV_FUNCTIONS_LIST object from the
object model. Then call the SET_DEFAULT method of

this object to activate the predefined set of SAP List
Viewer functions. As you can see in Figure 24, the
buttons for sort ascending, sort descending, total, filter,
and column choice now appear in the toolbar that is
located above the list.

report salv_learn_map_table_3 .

*... Select Data

data:

gt_outtab type table of sflight.

select * from sflight into corresponding fields of table gt_outtab.

*... Create Instance

data:

gr_table type ref to cl_salv_table.

call method cl_salv_table=>factory

importing

r_salv_table = gr_table

changing

t_table = gt_outtab.

*... Disable Column

data:

lr_columns type ref to cl_salv_columns_table,

lr_column type ref to cl_salv_column.

lr_columns = gr_table->get_columns().

lr_column = lr_columns->get_column('MANDT').

lr_column->set_visible(abap_false).

*... Enable Generic ALV Functions

data: gr_functions type ref to cl_salv_functions_list.

gr_functions = gr_table->get_functions().

gr_functions->set_default().

*... Display Table

gr_table->display().

Figure 23 Example code to activate the default set of services

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 101

In some cases, you may want to activate a group
of related services, as shown in the example in

Figure 25. As in the previous example, start by
retrieving the CL_SALV_FUNCTIONS_LIST object

Figure 24 Example report with the default services visible in the toolbar

*... Only Activate Sort Functionality (Group of Functionality/Button for

*Sort Ascending and Button for Sort Descending)

data: gr_functions type ref to cl_salv_functions_list.

gr_functions = gr_table->get_functions().

gr_functions->set_group_sort().

*... Display Table

gr_table->display().

Figure 25 Example code to activate a group of related services

SAP Professional Journal • November/December 2005

102 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

from the object model. Then call the SET_GROUP_SORT
method to activate all functions related to sorting and
make these buttons visible in the toolbar.

Finally, the example code in Figure 26 shows how
to activate a single function. As in the previous exam-
ples, first retrieve the CL_SALV_FUNCTIONS_LIST
object from the object model. Then call the SET_FIND
method to activate the search function and make this
particular button visible in the toolbar.

Example #3: Adding
application-specific events
to a report
The SAP List Viewer is quite often seamlessly
embedded into an application, where it provides
reporting functionality with its generic functions, but
also offers application-specific functionality. For
example, you might want users to be able to double-

click on a cell of a table to perform some operation or
add an application-specific button to the SAP List
Viewer toolbar. Suppose you want to show detailed
information for a purchase order in the table. In order
to implement this feature, you add an application-
specific button that implements the functionality to
show the detail information of the purchase order.
When the button is clicked, the code determines
which purchase order was selected and then calls a
dialog box to display its details.

In order to react to user interactions, the
application must be notified when an interaction
occurs. You provide this notification by “firing”
events. If an application is registered to a certain
event, when that event is raised the application gets
control and can react accordingly. You use the
CL_SALV_EVENTS_TABLE object to register an
application to an event such as a link-click or a
double-click.

In this third example (see Figure 27), I show you
how to program the registration and reaction to the

*... Only Activate Search Functionality (One Function/Button for Search)

data: gr_functions type ref to cl_salv_functions_list.

gr_functions = gr_table->get_functions().

gr_functions->set_find().

*... Display Table

gr_table->display().

Figure 26 Example code to activate a single service

report salv_learn_map_table_4 .

* CLASS lcl_handle_events DEFINITION

Figure 27 Example code to implement an event handler Continues on next page

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 103

class lcl_handle_events definition.

public section.

methods:

on_double_click for event double_click of cl_salv_events_table

importing row column.

endclass. "lcl_handle_events DEFINITION

* CLASS lcl_handle_events IMPLEMENTATION

class lcl_handle_events implementation.

method on_double_click.

message i000(0k) with 'Row' row 'Column' column. "#EC NOTEXT

endmethod. "on_double_click

endclass. "lcl_handle_events IMPLEMENTATION

start-of-selection.

*... Select Data

data:

gt_outtab type table of sflight.

select * from sflight into corresponding fields of table gt_outtab.

*... Create Instance

data:

gr_table type ref to cl_salv_table.

call method cl_salv_table=>factory

importing

r_salv_table = gr_table

changing

t_table = gt_outtab.

*... Register to Double-Click Event

data:

gr_handle_events type ref to lcl_handle_events.

data:

lr_events type ref to cl_salv_events_table.

lr_events = gr_table->get_event().

create object gr_handle_events.

set handler gr_handle_events->on_double_click for lr_events.

*... Display Table

gr_table->display().

Figure 27 continued

SAP Professional Journal • November/December 2005

104 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

double-click event. Start by looking at the “Register
to Double-Click Event” section at the end of the
code. First call the GET_EVENT method to retrieve
the CL_SALV_EVENTS_TABLE object from the object
model. Then register the desired event, in this case
double-click. Now you need to define and implement
the event handling, which in this example is displaying
the row and column on which the event occurred. A
local event handler executes this task, as shown in the
“CLASS lcl_handle_events DEFINITION” section at
the beginning of the code. Here you define the method
ON_DOUBLE_CLICK for handling the double-click
event that is raised by the CL_SALV_EVENTS_TABLE
class. Then implement the ON_DOUBLE_CLICK method
to handle the event, as shown in the “CLASS
lcl_handle_events IMPLEMENTATION” section.

Now when a user double-clicks on a cell in the
report in the SAP List Viewer, a dialog box appears as
shown in Figure 28 with information on the row and
column on which the user double-clicked. The code
that produces this dialog box is in the “CLASS
lcl_handle_events IMPLEMENTATION” section in
Figure 27.

I specifically chose this example because it
makes clear that receiving the cell coordinates
where a user interaction happened gives the
application all the relevant information needed
to act further on the identified object. For example,
you might now want to display detailed information
for this flight date, such as what destinations and
airlines are available.

Example #4: Enabling user
control of report layouts
The SAP List Viewer gives you the flexibility of
allowing users to create and save report layouts during
runtime as needed. If layout handling is active, users
can save the current report settings (for example, the
set of displayed columns, the sort and filter criteria
used, and any aggregations executed) to a persistent
view with a unique name. You can allow users to save
persistent views only for themselves (user-dependent)
or for all users (user-independent).

Always allow users to save their own persistent
views, which are only visible to them and therefore
do not hinder other users. However, only authorize
specific users such as administrators to save user-
independent persistent views that are visible to all
users, since only they know which layouts are mean-
ingful in this business context. The best approach is to
programmatically allow all users to save both user-
dependent and user-independent layouts. Then use the
S_ALV_LAYOUT authorization object in the SAP List
Viewer to grant certain users the permission to save
user-independent views.

The example in Figure 29 shows how to use the
CL_SALV_LAYOUT class of the object model to activate
layout control. Start by looking at the “Enable ALV
Layout Control” section in the middle. First call the
GET_LAYOUT method to retrieve the CL_SALV_LAYOUT
object from the object model. This object provides
methods for setting the following values:

Figure 28 Dialog box showing the selected row and column

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 105

report salv_learn_map_table_5 .

*... Select Data

data:

gt_outtab type table of sflight.

select * from sflight into corresponding fields of table gt_outtab.

*... Create Instance

data:

gr_table type ref to cl_salv_table.

call method cl_salv_table=>factory

importing

r_salv_table = gr_table

changing

t_table = gt_outtab.

*... Enable ALV Layout Control

data:

gr_layout type ref to cl_salv_layout.

gr_layout = gr_table->get_layout().

*... Permit/Activate Saving of Layouts - can only be done if a unique key exists

*with which the layouts for this report can be saved

data:

ls_key type salv_s_layout_key.

ls_key-report = sy-repid.

gr_layout->set_key(ls_key).

*... Permit Saving of All Types of Layouts

gr_layout->set_save_restriction(if_salv_c_layout=>restrict_none).

*... Display Table

gr_table->display().

Figure 29 Example code to activate layout control

SAP Professional Journal • November/December 2005

106 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

• Unique key with which the layouts are to be saved

• Save restriction, which defines whether a user
can save user-dependent views, user-independent
views, or both types

• Specific layout to be loaded when the SAP List
Viewer is first called, which is separate from
default layout handling

• Default layout handling, which controls whether
layouts can be specified as the default (default
layouts are automatically loaded when the SAP
List Viewer is first called if no specific layout is
defined)

Next look at the code in the “Permit/Activate
Saving of Layouts” section. Here you call the SET_KEY
method and pass a unique key (such as the program
name) to activate layout handling. To set the save
restriction, call the SET_SAVE_RESTRICTION method
as shown in the “Permit Saving of All Types of
Layouts” section. The parameter for this method
defines whether a user can save user-dependent
views, user-independent views, or both types. The
most commonly used parameter is NONE, since you
typically implement the usage restriction using the
S_ALV_LAYOUT authority object.

I hope these examples of how to use the most
important metadata objects of the SAP List Viewer
API have increased your understanding of the

programming paradigm for the new object model. It
should now be clear just how quickly and easily you
can program the presentation of your data using this
new API. In my opinion, the most helpful enhance-
ment is the automatic creation of column objects based
on the data table that you pass to the object model.
The column object of the SAP List Viewer is very
important because it describes the metadata of this
data table. In the past, the column metadata was often
not defined correctly and caused runtime problems.
The SAP List Viewer has now assumed this responsi-
bility, which greatly reduces these types of errors.

Useful tips and techniques
As you have seen, the new object-oriented program-
ming model generally makes life a lot easier for you
when programming the SAP List Viewer. I want to
leave you with a few tips that I have discovered along
the way to help you get the most out of working with
the new API:

• Demo programs, including sample code that
focuses on specific aspects of programming the
SAP List Viewer, such as event or layout handling,
are available with SAP NetWeaver ’04. Enter
SALV_DEMO_* in the ABAP Editor (transaction
SE38) and press F4.

Terminology change for user-saved views in SAP R/3 4.6
In SAP R/3 Release 4.0 and 4.5, the term display variants was used to refer to user-saved views. In Release
4.6, we decided to change this rather technical term to a more transparent term, layout. The name of the
class (CL_SALV_LAYOUT) in the new object model reflects this name change.

If you are familiar with the function modules of the previous API, note that their parameters still reflect the
naming conventions used prior to Release 4.6. For example, the REUSE_ALV_LIST_DISPLAY function
module is used for displaying tables as standard SAP R/3 lists. Its layout parameter (IS_LAYOUT) has
nothing to do with the layouts in the new object model that can be saved with a unique name, but instead
comprises settings that you make in the new object model with the CL_SALV_DISPLAY_SETTINGS and
CL_SALV_FUNCTIONAL_SETTINGS classes.

Take a fresh look at the redesigned SAP List Viewer in SAP NetWeaver ’04

No portion of this publication may be reproduced without written consent. 107

• A new form object is provided for using the
metadata-driven interface to design the top-of-
list and end-of-list areas of a report. You can
find demo programs with sample code by
entering SALV_FORM_DEMO* in the ABAP
Editor (transaction SE38) and pressing F4.
Use these examples to become familiar
with the programming model of the form
object.

• Take special care when working with an ALV
grid control or ALV tree control that is embedded
in a Dynpro container. Although the ALV control
is embedded in the Process Before Output (PBO)
and Process After Input (PAI) processing of the
Dynpro container, the SAP List Viewer instance
does not know anything about the current PBO
or PAI state of the Dynpro container. Therefore,
if any user interaction occurs on the Dynpro
container outside of the ALV control, the PAI
of the Dynpro will be processed. If you now
need the selection state of the ALV control in
order to process an event based on selected line
items, first call the GET_METADATA method of
the object model in order to manually synchronize
the front end and back end. Automatic synchro-
nization would cause roundtrips that are to be
avoided for performance reasons. In contrast,
when events are triggered within the SAP List
Viewer, this method is called internally. The
SAP List Viewer knows that synchronization
is required because the application has registered
this event and needs a consistent state at
all times.

• If you want to change the structure and content
of the displayed table in the program, do not
call the FACTORY method again. Instead, call the
SET_DATA method in order to pass a new data
table to the object model and notify the SAP
List Viewer to create new metadata because the
existing metadata is no longer valid. The SAP
List Viewer instance is then reused to display
the newly structured data. For internal reasons
of front-end/back-end inconsistencies, do not
call the SET_DATA method in an event handler
to avoid unexpected behavior or even runtime
errors.

• You can display icons as well as text in a table.
However, note that you cannot use icons with the
checkbox, hyperlink, or text cell types.8

Looking beyond SAP
NetWeaver ’04
The new SAP List Viewer object model defines a
metadata view of tabular data that is the basis for data
display using the SAPGUI technology. The concept of
providing an API for displaying tabular data that
offers a rich set of generic functions also applies to
the new SAP UI technology, Web Dynpro.9 SAP
NetWeaver Release 2004s provides a Web Dynpro
List Viewer component that has a very similar meta-
data model to the object model described in this
article. Therefore, the value of your investment in
learning how to use the SAP List Viewer will not
diminish, even if you switch from the SAPGUI-based
environment to the new Web Dynpro UI technology at
some point in the future.

Conclusion
The SAP List Viewer is a powerful and flexible tool
that enables you to embed reporting and interaction on
tabular data directly into your applications. The new
object-oriented programming model is easy to learn
because of its logical structure. Its ability to be used
with all SAP List Viewer variants increases your
productivity by offering a generic set of built-in
services (sort, filter, etc.) that you simply incorporate
into your programs, no code required. You do not
have to handle data presentation because the SAP List
Viewer provides a common look and feel for all

8 For more information about cell types, refer to the SAP List Viewer
documentation on the SAP Help Portal at http://help.sap.com. Navigate
to the SAP NetWeaver documentation and select Application Platform
→ ABAP Technology → UI Technology → Controls and Control
Framework for SAP GUI → SAP List Viewer (BC-SRV-ALV) → ALV
Object Model.

9 The Web Dynpro programming model allows you to develop and model
browser-based business applications. It provides a standards-based,
device-independent runtime environment, bridging the gap between dif-
ferent platforms such as J2EE, ABAP, and Microsoft .NET, as well as
between different Internet browsers and mobile platforms.

SAP Professional Journal • November/December 2005

108 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

reports. Plus, the object model now automatically
derives the data type for data tables that are passed to
it, freeing you from the often error-prone task of
defining metadata for data types.

Not surprisingly, SAP uses the SAP List Viewer
extensively for displaying tabular data. In mySAP
ERP 2004, you will find approximately 8,000 ALV-
based lists in the system. For example, look at actual
cost line items for orders (transaction KOB1), cost
centers (transaction KSB1), and system monitors such
as process overview (transaction SM50). Therefore,
the SAP List Viewer is equally valuable from the
perspective of user productivity. All lists based on the
SAP List Viewer API look and feel the same, which
provides the consistency that users expect in order to
be able to efficiently perform their business tasks.

So why do I recommend that you take another look
at the new and improved SAP List Viewer? Because
the bottom line is that it has saved me significant time
and effort with my SAP NetWeaver ’04 reporting
needs and I am confident that you will experience
similar rewards.

Falko Schneider is the Director of Research and
Development for SAP NetWeaver Business Intelligence
(BI) and is responsible for Data Warehousing, Business
Planning, SAP List Viewer, and SAP Query development.
He began working for SAP AG in 1994 as an application
developer for Controlling Product Costing (CO-PC)
where he was responsible for reporting. He designed
and developed the first version of the SAP List Viewer,
which was used internally at SAP and first shipped to
customers with R/3 Release 4.0. During the development
of R/3 Release 4.6, he assumed the role of project lead
for SAP List Viewer development and was responsible
for the control-based SAP List Viewer variant, the ALV
Grid Control. In 2000, Falko joined the SAP Business
Information Warehouse (BW) team as a development
manager for SAP List Viewer and SAP Query development.
He also assumed responsibility for Data Warehousing
and integrating Business Planning functionality within
SAP BW. Besides heading up this part of the development
organization for SAP NetWeaver BI, Falko continues to
work as a project manager for SAP List Viewer development.
He can be reached at falko.schneider@sap.com.

