
Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 89

As digital documents have taken the place of paper documents, so too
have far-flung data stores taken the place of myriad file cabinets, folders,
and other paper organizers. With its sheer volume and possible formats
and locations, however, what once was heralded as a way to simplify
and consolidate your information has become as difficult to manage as
the system it replaced, preventing companies from achieving the highest
possible ROI from their document management investment. SAP
Records Management, a standard component of SAP Web Application
Server (SAP Web AS) 6.20 and higher (though licensed separately),
relieves this burden. Using a new, easily extensible framework called the
Service Provider (SP) Framework,1 SAP Records Management provides
users with access to all of their enterprise documents, transactions,
workflows, and data, regardless of their module or vendor, via a single
view — a record.2

SAP data by nature is constantly changing, however, which means
the record containing your data needs to be updated to reflect these
changes. This article shows you how to automate record updates to free
you from having to update them manually, to enable you to take full
advantage of your SAP Records Management implementation for real
time and cost savings. And even if you are not currently using SAP
Records Management, the techniques presented in this article are a
useful addition to your application development toolbox.

Improve the Efficiency of
Your SAP Records Management
Implementation with Automated
Record Updates
Joachim Becker and Ulrich Spinola

1 Developed as a series of ABAP classes, the SP Framework provides a generic set of interfaces
(i.e., service providers) that applications such as SAP Records Management can use to connect
to, manipulate, and integrate data and documents in SAP and non-SAP systems. You can use
standard SAP-supplied service providers or you can create your own.

2 A record can represent any type of object — such as an employee, a customer, or a customer
complaint case — with which you want to associate transactions and digital documents. Records
provide an organized, comprehensive view of all data associated with that object (e.g., orders,
faxes, and emails across SAP and non-SAP systems).

(complete bios appear on page 124)

Ulrich Spinola,
Development Project Lead,

SAP AG

Joachim Becker, Product
Manager, SAP Records
Management, SAP AG

SAP Professional Journal May/June 2005

90 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

To demonstrate the steps required to enable this
automation, this article builds on an example cus-
tomer record created in a previous SAP Professional
Journal article that introduced you to SAP Records
Management.3 The January/February 2005 article

reviewed the key components of the SAP Records
Management interface — the Records Organizer,
which acts as a central desktop for records administra-
tion, and the Records Browser and Records Modeler
administration tools for viewing and editing records
and defining the structure of a record, respectively.
The article showed you how to use these tools to set
up a simple example customer record and to access
and manage records.

SAP Records Management Tools and Terminology

This article builds on the concepts and examples introduced in the article “Consolidate and Integrate All of
Your SAP and Non-SAP Documents, Transactions, Workflows, and Data with SAP Records Management”
(SAP Professional Journal, January/February 2005). While we recommend that you read that article to
gain a solid understanding of SAP Records Management and a detailed background on the example
customer record used to illustrate the steps in this article, we provide a brief overview here. Additional
information is also available at http://service.sap.com/recordsmanagement.

Key SAP Records Management Tools

The Records Organizer acts as a central desktop from where you can search, edit, and create
records, documents, business objects, etc. All objects that have been made available for SAP Records
Management can be accessed from here. The Records Organizer automatically launches the Records
Browser (for viewing and editing records) and Records Modeler (for defining the structure of a record)
as needed.

The Records Browser is used to display and edit digital records. From here, users can maintain record
metadata (attributes) and record content (structured list of links to objects). You can add content, delete
and change content (if you have the authorizations to do so), create new documents, etc. Figure 1 in the
article shows an example record displayed in the Records Browser.

The Records Modeler is used by the project team that models business processes and configures the
system to define record models, which are templates for the structure and content of records based on
those models. Figure 2 in the article shows the model defined for the example record shown in Figure 1.

Key SAP Records Management Terminology

A record is an electronic “container” that groups links to digital documents, business objects, and
transactional data relevant to a particular employee, customer, customer complaint case, etc. A record
can also contain links to other records for organizational purposes.

Records consist of a hierarchy of nodes: structure nodes serve as headers to help organize the content

3 “Consolidate and Integrate All of Your SAP and Non-SAP Documents,
Transactions, Workflows, and Data with SAP Records Management”
(SAP Professional Journal, January/February 2005).

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 91

of the record and model nodes serve as placeholders for links to documents and data.* New records are
initialized with the set of defined placeholder model nodes (see Figure 1 in the article), to which objects
are assigned (see Figure 2 in the article). An object can be any type of digital document, business object,
data, or even transaction code or workflow item, that you want to include in a record. In the context of
SAP Records Management, we use the term elements for all objects included in a digital record.

When designing a record, each element must be described as having a specific element type, such as
an SAP R/3 invoice object, a document (either plain text or a type of Microsoft Office document), a URL,
etc., which maps the element to an appropriate service provider.** Service providers handle the unique
details required to access the actual information objects in the backend data sources and store important
type-specific attributes (e.g., where logical system elements of that type are stored, where the element
should be placed in the record, etc.). Service providers also give SAP Records Management a common
API with which to create, change, and/or retrieve heterogeneous SAP and non-SAP objects. All the
service providers and element types available for use with SAP Records Management are maintained
in the underlying Registry tool, where you can also define records management systems to logically
organize records into separate areas for access control.

The record model on which a record is based describes the default organizational structure of the record
(i.e., the structure and model nodes it includes by default) as well as the cardinality requirements of each
node (i.e., where and how often an object can be added to a record). For example, the record model can
require that at least one resume be attached to a new employee record for the record to be considered
technically complete, or it can specify that more than one copy of the resume can be attached to the
resume node.

* There is a third type, instance nodes, which are used to persist a certain object in all records based on a particular record model,
but these are infrequently used.

** SAP supplies standard service providers or you can develop your own to integrate data or workflows from third-party systems.
Element types give the service provider details it needs to access information objects, such as the name and target system of
the Business Object Repository object that the service provider for business objects calls to access customer master data. The
DOCUMENT_CLASS element type connection parameter for elements managed by the Knowledge Provider (records, record
models, documents, document templates, and notes) specifies the content model used by the element. The content model defines
the attributes bound to that element. SAP defines some standard content models as part of the Knowledge Provider, and you can
also define your own using the Knowledge Provider's Document Modeling Workbench tool. For more on the Knowledge Provider,
see the sidebar on pages 104-106.

�� Note!

To understand and apply this article, you’ll need to have at least a general understanding of the purpose and
building blocks of SAP Records Management. Reading the January/February 2005 article is recommended, but
not strictly required, and we try to summarize prerequisite concepts as we go along. For a recap of the key tools
and terms you need to know, see the sidebar above.

SAP Professional Journal May/June 2005

92 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Figure 1 shows the record model designed in the
previous article to serve as a template for the example
record, including the nodes4 added to the record hier-
archy structure to contain the various record elements
(documents, data, etc.); Figure 2 shows a fully popu-
lated record for customer 1000 based on the defined
record model in Figure 1. Our goal in this article is to
configure the system to automatically add a link in the
record to any new service notifications that are posted
in the SAP system,5 so that users can always view an
up-to-date list of links to related service notifications

in a customer record. You can apply this automatic
update technique to any element in your SAP Records
Management implementation.

�� Tip

There are different ways to use SAP Records
Management, depending on your needs. The
sidebar to the right describes the two main
approaches, and when it makes sense to use
which.

To accomplish this goal, we need to perform the
following tasks:

Figure 1 An Example Record Model

4 A node is a position in the record hierarchy structure (see the sidebar on
pages 90-91). It can be a folder or an element (object) that is included
in the structure. From an architectural perspective, a node is a building
block of the hierarchy.

5 The example record model defined in the previous article does not
include a node for a service notification, as you can see in Figure 2.
We will extend the record model to include one in this article.

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 93

Figure 2 An Example Record Based on the Defined Record Model

Two Approaches to Using SAP Records Management

There are two key ways to use SAP Records Management:

• An inside-out approach, where users use the Records Browser as a hub for all of their records-
related tasks in SAP. This is similar to using digital records as a portal or work center. In SAP
documentation, you’ll find the term “operational usage.”

• An outside-in approach, where users continue to retrieve and post documents by directly launching
individual transactions, as they traditionally do. In this case, digital records are mainly used for
documentation of business processes. The term “administrative usage” is sometimes used.

Consider the difference. In the outside-in approach, a user who needs to post a service notification
in QM would go directly to one or more transactions, as needed, to do the posting. Sometimes this
means going to only one transaction to do the posting, but frequently the user must look up some related
information before being able to do the posting. For example, if the user wanted to know the service

(continued on next page)

SAP Professional Journal May/June 2005

94 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

• Update the SAP Records Management configu-
ration, so the system knows the record in which
to insert the service notification links and where
in the record to insert them.

• Create the event linkage that binds the service
notification event to the event receiver function
module.

• Write the event receiver function module that
inserts the service notification links in the record.
The small bit of code involved is provided for
download at www.SAPpro.com.

Let’s begin by describing our overall approach in
a bit more detail, in particular the business objects and
BAPIs we’ll need to accomplish our goal.

history for the customer’s equipment, he or she might have to run a report, or first look up the equipment
number for the customer and then run a service history report. From a user’s perspective, the outside-in
approach can require navigation to multiple reports or transactions, and several searches to locate the
specific data relevant to the customer in question. From an SAP Records Management standpoint, you
must use the techniques in this article to configure the system to apply the notification posting to the
customer record.

In the inside-out approach, the same user would start by opening the customer’s record in the Records
Browser. The record would provide links to all of the information related to the customer (e.g., the
equipment record for the customer, any prior service notification documents, etc.). Only one or two
mouse-clicks (if any) would be required to access the background information,* and posting the
notification would involve navigating to the service notification node, right-clicking on it, and choosing
Create from the context menu. The Create Service Notification transaction would then appear as usual.
Since the transaction was launched via the Records Browser, the service notification would instantly
be added to the record — that is, you would not need the automated update configuration described
in this article.

In practice, you’ll probably choose to use both approaches for different business processes. For example,
you might choose the outside-in approach for simple posting tasks, where postings via the Records
Browser would take longer overall (e.g., line workers posting production confirmations). You might
choose the inside-out approach for tasks that would be simplified by a centralized access to data.

�� Technical Prerequisites

The previous article used an SAP R/3 Enterprise
(SAP R/3 4.7) system based on SAP Web AS 6.20
to create the example. Since that time, SAP Web
AS 6.40 (included as part of SAP NetWeaver ’04)
has become generally available, but for
consistency, and because it remains prevalent in
the marketplace, we will continue to use SAP Web
AS 6.20 for this article.

To carry out the configuration settings and
implementation described in this article, you
must have the authorizations of an SAP workflow
administrator and ABAP developer, and you must
have the role SAP_BC_RM_ADMINISTRATOR
assigned to your SAP user.

* This is especially convenient if the user has the customer on the phone, and must very quickly navigate to his or her information.

(continued from previous page)

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 95

Implementing Automated Record
Updates
Whenever a new business object (e.g., a posting in FI,
an order, a service notification) is posted in the SAP
system, an event is triggered.7 Using a technique
called event linkage, you can bind a workflow or
function module to the event, so that the system calls
the workflow or function module each time the
event occurs.8

In this article, we will leverage this eventing capa-
bility to insert links to newly created service notifica-
tions in our example customer record. Technically, we
will bind a custom ABAP function module to the “cre-
ated” event of the service notification business object.
The function module will do three things:

• Read the customer number from the service
notification. The customer number is defined
as an attribute of the service notification.

• Search for a customer record that matches this
customer number. We will update the example
customer record’s content model so that all cus-
tomer records have the attribute CustomerNumber.9

The function module will use this field to locate
the record for the customer in question.

• Insert a reference to the service notification at
the correct position in the customer record.
The function module will call a standard SAP
Records Management BAPI to update the record.
To ensure the service notification entry is inserted
at the proper location within the record, we will
update the example customer record model to
include a placeholder for service notifications.

Let’s explore the business objects we’ll use in a
bit more depth.

�� Note!

In the context of event linkage, the function module
is called the “event receiver.”

�� Note!

An alternative approach to our example would be
to add a link in the record to a report that lists
the service notifications for a customer. The
disadvantage of this technique is that the record
and the notifications would not be visualized
simultaneously in the Records Browser.

Still another approach would be to develop a new
service provider6 that lists the notifications for a
customer using the in-place visualization feature
for service provider elements, which would display
the record on the right-hand side of the Records
Browser and the list of notifications on the left.
However, developing a new service provider
requires additional development and maintenance
effort and detailed knowledge of the Service
Provider Framework.

6 Service providers are ABAP classes that handle the details of accessing
the backend resources containing the actual information objects linked
to the record (see the sidebar on pages 90-91). SAP provides predefined
service providers that meet most needs, though you can also define your
own. For more information on defining your own, visit the documenta-
tion area at http://service.sap.com/recordsmanagement.

7 This eventing mechanism is a standard feature of all SAP Basis and
SAP Web AS systems, and occurs behind the scenes when you create,
change, or delete most business objects defined in the Business Object
Repository.

8 Starting a workflow is appropriate if additional user interaction is
required. Keep in mind, however, that using a workflow is more
resource-intensive than using a function module.

9 The content model upon which an element is based defines the attri-
butes that are bound to that element. Content models are the central
modeling entities of the Knowledge Provider document management
system underlying SAP Web AS (see the sidebar on pages 104-106)
and are specified in the DOCUMENT_CLASS element type connection
parameter for elements managed by the Knowledge Provider (records,
record models, documents, document templates, and notes). As defined
in the previous article, the example customer record uses the standard
content model for records, SRM_REC00. In this article, we create a
custom content model that the record will reference instead.

SAP Professional Journal May/June 2005

96 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

The Service Notification (BUS2080) and
Record (RECORD) Business Objects

To implement the example, we’ll need to leverage
methods10 and events for two SAP business objects
(the attributes, methods, and events of SAP business
objects can be viewed using the Business Object
Builder11):

• Business object RECORD, which represents
records in SAP Records Management

• Business object BUS2080, which represents
service notifications

As you can see in the Business Object Repository
display in Figure 3, the RECORD object provides a
full line of methods for interacting with SAP Records
Management objects, including methods to create,
delete, read, and search for records, maintain record
attributes, and insert content.

Figure 3 RECORD Business Object Displayed in the Business Object Repository

10 The key methods we’ll use in the example each have a corresponding
BAPI that implements its functionality.

11 The Business Object Builder is the modeling tool of the Business
Object Repository (transaction SWO1).

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 97

�� Note!

Most of the RECORD business object methods
are implemented as BAPIs; you can tell which
because they are indicated with a green square
icon, as shown in Figure 3. To identify the
underlying BAPI, double-click on the method
name in the Business Object Repository and
navigate to the ABAP tab in the dialog box that
appears (see Figure 4). As you can see, the
underlying BAPI of the AddElement method is
BAPI_RECORD_ADDELEMENT.

Figure 5 summarizes the BAPIs associated
with the key methods of the RECORD business
object. In the example, we will use the AddElement
method to add new service notification links to
the example customer record. This method
corresponds to the BAPI
BAPI_RECORD_ADDELEMENT.12

You can also view the details of the service notifi-
cation object (BUS2080) in the Business Object

Figure 4 Detailed View of the AddElement
Method of the RECORD Business
Object

Method Corresponding BAPI Description

Record.Create BAPI_RECORD_CREATE Create a new record (based on a model
configured in the system).

Record.GetList BAPI_RECORD_GETLIST Search for records via attributes. The result is a
list of records. If an attribute is unique, the list will
include exactly one hit.

Record.AddElement BAPI_RECORD_ADDELEMENT Insert a reference in a record pointing to another
object.

Record.GetProperties BAPI_RECORD_GETPROPERTIES Read the attributes of a record.

Record.ChangeProperties BAPI_RECORD_CHANGEPROPERTIES Change the attributes of a record.

Record.Delete BAPI_RECORD_DELETE Delete a record.

Record.AddElements BAPI_RECORD_ADDELEMENTS Add several references in one step.

Record.DeleteElements BAPI_RECORD_DELETEELEMENTS Delete references included in the record.

Figure 5 Key Methods of the RECORD Business Object and Their Uses

12 To add the service notification links to the example customer record,
we will actually use another API instead of this BAPI to get around the
BAPI’s locking mechanism. We’ll discuss this in more detail later in
the article.

SAP Professional Journal May/June 2005

98 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Repository. Figure 6 shows the event (created) that
we will link to our function module, the attribute
(Number) that is passed to our function module, and
the attribute (Customer) that we’ll need to retrieve for
our notification. Figure 7 shows the underlying

details for the Customer attribute, accessed by double-
clicking on the attribute name in Figure 6. We see
at the bottom of the screen in Figure 7 that the cus-
tomer number for the notification is stored in field
KUNUM of table VIQMEL in the SAP database.

Figure 6 BUS2080 Business Object Displayed in the Business Object Repository

With these additional details in mind, it should
be clear how our application comes together. To
summarize: An SAP user creates and saves a new
service notification. After saving the notification
in the database, the system raises the event
ServiceNotification.created and looks for any active
event receivers (usually workflows or function mod-
ules) that need to be notified that the event occurred
(i.e., event receivers that are linked to the event).
Since we will have linked our custom function
module to the ServiceNotification.created event, the
system calls our function module, passing in an event
object that contains — among other things — the

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 99

number (key) of the new service notification.
Our function module will then look up the
customer number for the notification by calling
BAPI_SERVNOT_GET_DETAIL, try to
locate at least one customer record using
BAPI_RECORD_GETLIST, and try to insert
a new element (link) for the service notification
in the record (we’ll discuss this in more detail
later in this article).

�� Tip

Automatically adding new elements to records
using BAPI_RECORD_ADDELEMENT is just the
beginning of what you can do with these BAPIs.
For example, you can even automate the creation
of new customer records when new customers are
added to the system. Simply write a function
module that calls BAPI_RECORD_CREATE
whenever a new customer (represented by business
object KNA1) is created in the system. Remember
to set values for those record attributes that can be
set automatically — like the CustomerNumber
attribute used in this article — to avoid manual
work. Also, for convenience, be sure to insert a
link to the customer master as an element in the
record using BAPI_RECORD_ADDELEMENT.

�� Tip

In addition to using these BAPIs to automate
updates, consider leveraging them within your
custom ABAP programs to add SAP Records
Management functionality. For example,
enable users to jump to a customer’s record by
double-clicking on the customer number in a
report — code the report to call a BAPI like
BAPI_RECORD_DISPLAY, which is associated
with the Display method of the RECORD business
object (see the system documentation for more
details).

Figure 7 Detailed View of the BUS2080
Business Object’s Customer
Attribute

SAP Professional Journal May/June 2005

100 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

With our building blocks in hand, we’re now
ready to start building the application. Our first task
is to update the records management configuration
so that the system can identify the record in which to
insert the service notification links and where in the
record to insert them.

Updating the SAP Records
Management Configuration
Before we can write the code to establish the linkage
between the record and the service notifications, there
are two preparatory steps we need to perform:

1. We need to provide the system with a way
to easily identify the customer record in
which the service notification links should be
stored — let’s say the record with customer
number 1000. The best way to do this is to
define a CustomerNumber attribute for cus-
tomer records. The system can then find the
right record simply by searching for the record
with the CustomerNumber attribute set to 1000.
To do this, we have to create a new content
model, which defines all of the allowable meta-
data for the records, add a CustomerNumber
attribute to it, and assign it to the example
customer record, which currently references
the standard content model SAP provides
for records.

�� Tip

To make records easier to find, it is best to always
include the key of the associated business object as
an attribute of the record. While this gives users
another field to maintain, they will find it well
worth the effort when searching. During training,
compare the task to labeling the spine of a binder,
since this is an analogy users can relate to.

�� Tip

To make users’ lives even easier (and to make
sure they don’t forget), attribute maintenance
can be automated with a technique similar to
the one described in this article. If you automate
the creation of customer records when new
customer masters are added to the SAP system,
you can set attributes like CustomerNumber
automatically simply by calling the BAPI
BAPI_RECORD_CHANGEPROPERTIES
to update the attribute.

2. We need to tell the system where in the record
new notifications should be inserted. This posi-
tion will be identified by giving a name to a
position in the record model. Technically we
will call the name of the position in the record
an ANCHOR.

Let’s step through each of these tasks.

�� Note!

The procedures described in the following two
steps are technically detailed and involve a lot of
new concepts for many readers. To avoid getting
sidetracked from the main objective (automating
record updates), I recommend that you just scan
through these steps for now, and then read them
through in more detail later.

Step 1: Define an Attribute in a Content Model
to Identify the Record

The attributes associated with a digital record are
known as a content model. In this section, we’ll cre-
ate a new content model for the example customer
record and add a CustomerNumber attribute to it in
order to facilitate the service notification automation.

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 101

�� Note!

The previous article employed an SAP standard-
delivered content model for the customer record —
content model SRM_REC00 (specified in the
DOCUMENT_CLASS connection parameter for
the customer record element type). We’ll create a
new content model in this article, in the customer
namespace, so we can make the necessary
modifications (i.e., add the CustomerNumber
attribute).

Both creating the content model and adding
the attribute are initiated from the Implementation
Guide for SAP Records Management (see Figure 8),
accessed via transaction SPRO (Customizing), via
menu path SAP Web Application Server → Basis
Services → Records Management, or via transaction
SRMCUSTOMIZING.13 The activity names we’re
interested in are Create Content Model and Maintain
Attributes for a Content Model.

Figure 8 Implementation Guide for SAP Records Management

13 Transaction SRMCUSTOMIZING is a shortcut that opens the relevant
section for SAP Records Management in the Implementation Guide
started with transaction SPRO.

SAP Professional Journal May/June 2005

102 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Creating a new content model is easy. All you
have to do is launch the Create Content Model activity
from the IMG for SAP Records Management
(Figure 8), and a wizard appears to guide you through
the process. Before launching the wizard, be sure to
create a customizing transport request, since you’ll
need to enter this number on one of the screens.
You’ll also need to define a package (e.g.,
ZRM_DEMO) into which the wizard will place the
objects it generates.

�� Note!

Content models are created and managed within a
set of services included as part of SAP Web AS
called the Knowledge Provider. The Knowledge
Provider provides a toolset and a set of runtime
components that allows client applications like
SAP Records Management to manage multiple
versions of information objects14 in various
languages and formats. In the context of this
article, however, we will use it only to define the
attribute set for the example record.15

To avoid getting off track, the steps here will focus
purely on the task at hand and not seek to explain
much about the Knowledge Provider or its
Document Modeling Workbench tool. See the
sidebar on pages 104-106 for additional
background information on the Knowledge
Provider.

Here’s what each wizard step does and the key
values to enter to create a content model for the
example:

1. The first screen explains the purpose of the wiz-
ard. No entries are needed.

2. The second screen solicits basic input (see
Figure 9). You have to enter a package name,
a transport request number, and a prefix for the
names of the objects that are generated. I rec-
ommend that you enter values similar to those
shown in Figure 9. It is important to use a value
starting with “Z” for the prefix of the object
names, since the objects need to be created
within the customer namespace.

3. The third screen asks which type of content model
you want to create. To create a content model
for a record, highlight Records, as shown in
Figure 10.

4. The fourth screen asks whether you wish to use
shared or separate tables to store the data. We rec-
ommend using separate tables to improve per-
formance and simplify reporting.

5. The fifth screen asks whether you want to store
the content in the SAP R/3 database or in an exter-
nal location like the standard SAP Content Server
or a third-party content server. For performance
reasons, we strongly recommend that you store
digital records in the database of your SAP appli-
cation server.

6. The sixth screen indicates that you’ve successfully
completed all input.

If all goes well, the wizard creates a new content
model called Customer Record and its associated
tables in the SAP R/3 database. You can verify that
the process completed successfully by opening pack-
age ZRM_DEMO within the ABAP Workbench (or
the Document Modeling Workbench, discussed next).

We’re now ready to add an attribute to our new
content model. Since SAP Records Management
content models are defined and managed by the
Knowledge Provider (see the sidebar on pages 104-
106), we do this within the Knowledge Provider’s cen-
tral design tool, the Document Modeling Workbench.

14 The term information object is used instead of document because the
Knowledge Provider can handle more than just Microsoft Word and
Excel documents, for example. Indeed, the content model we’ll create
here represents a record in SAP Records Management, which is surely
not a document in the traditional sense. The Knowledge Provider then
provides the functionality to coordinate multiple versions of these
records.

15 The Knowledge Provider probably comes across as overly complex
for the task of defining a content model. Leveraging the Knowledge
Provider provides many other technical benefits, however, that are
beyond the scope of this article.

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 103

Figure 9 Enter a Description for the Content Model

Figure 10 Select a Type for the Content Model

SAP Professional Journal May/June 2005

104 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Understanding the Knowledge Provider

The Knowledge Provider offers a set of generic backend services that support the management of
documents in the SAP system. These services are used in many different SAP applications to provide
document management functionality — e.g., the SAP Document Management System (DMS), SAP
Knowledge Warehouse, mySAP CRM Content Management, and SAP Records Management.* Similar
to data dictionary services, Knowledge Provider services belong to the infrastructure layer of the SAP
system, and in most cases you won’t even know that the Knowledge Provider is running behind the
application you are using. It is worth getting to know the basic principles of the Knowledge Provider,
since it underlies so many SAP applications involving digital documents and adds a considerable
number of functional enhancements to these applications.

What It Does

Have a look at the screenshot below.

The screenshot shows the XML representation of a digital record (in this case, a personnel record),

* The DMS centrally stores information records (stubs) for documents, so that they can be referenced easily from SAP trans-
actions. SAP Knowledge Warehouse is a system that offers SAP training and system documentation and allows you to
adapt this content to special customer situations. mySAP CRM Content Management stores and manages information
(documents, graphics, multimedia files, etc.) related to CRM business objects (products, catalogs, business partners, etc.).

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 105

which is stored in the Knowledge Provider and is hidden from the end user.** As you can see, there is a
one-to-one representation between the elements of a record structure and the elements included in its
corresponding XML document — the Knowledge Provider stores and retrieves XML documents that SAP
Records Management interprets as hierarchies of documents and other elements.

In addition to managing the digital record structure, the Knowledge Provider also manages documents
(such as Microsoft Word documents and notes attachments) that are included in digital records. In fact,
the Service Provider Framework includes a special service provider for such documents.***

The Knowledge Provider services provide SAP applications with independence from a document’s
storage repository (e.g., database, SAP Content Server, third-party archive system, file system), and
independence from the document’s format (e.g., .tif, .pdf, .doc). Furthermore, the Knowledge Provider
supports versioning, multiple languages, and attribute definition, among others, for the applications it
underlies. The services are implemented in ABAP and are a standard part of the SAP Basis system.

How It Works

There are two key terms you need to know to understand how the Knowledge Provider works: logical
documents (also known as logical information objects) and physical documents (also known as physical
information objects).

An easy way to understand logical and physical documents is to consider an example scenario: drafting a
legal contract. When negotiations start, assume a first draft of the contract is written in Microsoft Word.
The two parties check details and propose changes. During this process, several versions of the contract
are created. Assume also that since Company A’s headquarters is in Walldorf, Germany, and Company
B’s headquarters is in Redmond, Washington, the contract is translated into German and English. Finally,
imagine that the final version of the document will be printed in PDF form (to protect it from changes) and
that it will be published as an HTML page to the intranets of both companies.

In this example, the contract is a single logical document, since from a business perspective there is just
one object — “contract.” The contract document exists in multiple versions, in multiple languages (English
and German), and in multiple formats (Microsoft Word, PDF, HTML, etc.). We would say that there are
many (concrete) physical documents that represent the logical document. Each physical document
corresponds to exactly one version of the document, is written down in exactly one language, and is
stored in exactly one format.

This is the model that the Knowledge Provider uses. The logical documents, physical documents, and
attributes that relate to a particular type of document (e.g., a contract) are organized in a content model,
which is defined in the Knowledge Provider’s Document Modeling Workbench (transaction DMWB).

(continued on next page)

** Users never maintain these XML documents directly; they use the Records Browser to make changes. You can think of the
Records Browser as a highly specialized XML editor for SAP Records Management.

*** Both the Service Provider Framework and the Knowledge Provider are general infrastructure concepts that are used in SAP
Records Management. While the Knowledge Provider solves problems that arise from the management of documents, the
Service Provider Framework enables different information objects to take part in a single application. In other words, the
Service Provider Framework offers integration; the Knowledge Provider offers document functionality.

SAP Professional Journal May/June 2005

106 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Launch the Document Modeling Workbench via
transaction DMWB and follow these steps:

1. When you start the Document Modeling
Workbench, you’ll see a list of SAP applications
that use the Knowledge Provider internally.
In this article, we are only interested in SAP
Records Management, so open the SRM node
as shown in Figure 11. In the tree, you’ll see
subfolders for attributes (IO attributes), logical
and physical information objects (LOIO classes
and PHIO classes16), plus a few other objects
we need not concern ourselves with. Our goal
here is simply to define a new IO attribute called
CustomerNumber and assign it to the LOIO class
that represents the logical information objects.

2. Create a new IO attribute. Right-click on the
IO attribute folder and choose Create from
the context menu. In the pop-up that appears
(see Figure 12), enter a technical name
(e.g., ZRM_CUSTOMER) and a description
(e.g., CustomerNumber) for the attribute, and then
click on the Enter button (). A new attribute
called ZRM_CUSTOMER will appear in the list
of IO attributes. The attribute appears in blue to
indicate that it is not yet active.

16 IO attributes are input/output attributes, LOIO is short for logical infor-
mation object, and PHIO stands for physical information object.

�� Note!

A logical information object is a conceptual
document or record — such as a legal contract
document or a customer record in SAP Records
Management (refer to the contract example in
the sidebar on pages 104-106). A physical
information object is the actual version of the
logical information object in a particular language
and format (e.g., version 2 of the contract, in
English, and in PDF form). Each content model
contains a logical document class (LOIO class)
and a physical document class (POIO class)
that together form the content model. IO
attributes are defined independently, but are
assigned to a logical document class or a
physical document class.

�� Note!

The terms “logical information object” and
“physical information object” are used instead of
logical document and physical document because
the Knowledge Provider can handle more than just
Microsoft Word and Excel documents, for example.
Refer to the sidebar on pages 104-106.

One great feature of this design is how easy it is to retrieve documents. Normally, users have to sift
through tens or hundreds of documents on a file share to locate the needed version and format. When
using applications that leverage the Knowledge Provider, the user only needs to identify the desired
logical document and specify the preferred version, language, and format. Often, a few of these values —
like language — can be specified by the program automatically based on the user’s logon information or
the business context (e.g., a workflow may only be interested in retrieving the most recent version). If a
format or language isn’t available, the Knowledge Provider can even propose the closest “fit” to the user’s
request. In this way, the Knowledge Provider provides a flexible framework that all SAP applications can
freely use to manage documents with many versions, languages, and formats.

(continued from previous page)

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 107

Figure 11 The Document Modeling Workbench Initial Screen

Figure 12 Creating a New IO Attribute

SAP Professional Journal May/June 2005

108 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

3. To maintain the details for this attribute, double-
click on the attribute name and enter VIQMEL for
the table name and KUNUM for the field name as
shown in Figure 13 (recall that in Figure 7 we
noted VIQMEL-KUNUM as the table field
underlying the customer number attribute of the
service notification business object).

�� Note!

Entering these table and field values in the IO
attributes provides a reference to the semantic
description for VIQMEL-KUNUM in the data
dictionary. When maintaining the record
attributes, the help text and value help
will be taken from this data dictionary description.

4. Save and activate the new attribute by clicking
on the Activate button ().

5. We next need to bind the attribute to the content
model we defined for our record. Navigate back
to the Document Modeling Workbench initial
screen (Figure 11) and expand the LOIO classes
node. Look for the record class
ZRM_RECORD_V and double-click on the cus-
tomer record subclass ZRM_REC01_V below it
(see Figure 14). A screen like Figure 15 will
appear, on which you can add the attribute.

�� Note!

The actual compiled logical object class is
ZRM_REC01, which appears under ZRM_REC01_V
in the hierarchy. ZRM_REC01_V, which is a
subclass of record class ZRM_RECORD_V, is a
virtual working copy of the logical object class used
for making any changes to the actual class. When
you click on the Activate button after making
changes, the system generates an updated version of
the “real” class (ZRM_REC01).

Figure 13 Defining the Details of the New IO Attribute

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 109

Figure 14 Hierarchy of Logical Document (LOIO) Classes

Figure 15 Details of the Logical Document (LOIO) Class

SAP Professional Journal May/June 2005

110 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Figure 16 Navigating to the Registry of Service Providers and Element Types

Figure 17 Updating the Content Model for Customer Records

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 111

�� Note!

Recall that we earlier specified “ZRM” (refer back
to Figure 9) as the prefix the wizard should use
when creating the content model. The wizard also
automatically includes the word “RECORD” in
generated SAP Records Management classes,
which makes them easy to spot in the Document
Modeling Workbench.

�� Note!

You may be wondering why we’re adding the
attribute to the logical class instead of the physical
class, and whether this decision is arbitrary. The
short story is that, for SAP Records Management,
the logical class should be used for version-
independent attributes, while the physical class
should be used for version-dependent attributes.
Since the customer number forms the identity
of our example customer record, and it is not
expected to change across versions of a given
customer record, we’ve chosen to add the
CustomerNumber attribute at the logical
class level.

6. Once you’ve added the CustomerNumber attribute
to the logical class, click on the Activate button
() to regenerate the class.

7. The final, critical step is to tell SAP Records
Management to use the new content model as
the basis for customer records. Navigate to the
Registry17 (transaction SRMREGEDIT) and
expand the S_AREA_RMS item (which contains
the objects and parameters associated with SAP
Records Management), as shown in Figure 16.
Then navigate to the SRM_SP_RECORD service

provider, expand the list of element types, right-
click on theZSRM_SPS_CUSTOMER_RECORD
element type, and choose Change from the con-
text menu. Finally, navigate to the Connection
Parameter Values tab (see Figure 17), change
the DOCUMENT_CLASS parameter from
SRM_REC00 (the standard record content
model currently specified for the example) to
ZRM_REC01 (the newly created content model),
and save to complete the update.

�� Note!

We recommend that you delete any records in
your test environment that are based on the
element type ZSRM_SPS_CUSTOMER_RECORD
to avoid potential data inconsistencies.

�� Note!

If the ZSRM_SPS_CUSTOMER_RECORD element
type isn’t present in your Registry, refer to the
January/February 2005 article for details on
how to create it.

Step 2: Add a Service Notification Node
to the Record Model

We now need to enhance the existing record model by
adding a new node for service notifications. We also
want to define this node as the position in the record
where links to new notifications are automatically
inserted.

Since elements within record models are based on
element types, we must first define an element type
for service notifications so that we can add this type of
node to the model. This will be an element type for an
information object that is derived from the service
provider for business objects (SRM_SP_BOR).

17 See the January/February 2005 article for complete details on the
Service Provider Framework and how to work with the underlying
Registry.

SAP Professional Journal May/June 2005

112 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

�� Note!

A record model is a template that defines the structure
of a record and which content (in terms of element
types) is allowed or needed in a digital record (see the
sidebar on pages 90-91). Each record derives from a
single record model. The January/February 2005
article describes in detail how a record model is
defined using the Records Modeler.

To create an element type for service notifications,
follow these steps:

1. Open the Registry (transaction SRMREGEDIT)
and expand the SAP Records Management area
S_AREA_RMS.

2. Right-click on the entry for the service provider
for business objects (SRM_SP_BOR) and choose
Create from the context menu.

�� Note!

If it is difficult for you to carry out these steps,
have a look at the January/February 2005 article,
where the Registry was discussed in detail.

3. On the Attributes tab, enter the element type ID
ZSRM_SPS_BO_SERV_NOTIFIC and the short
description Service Notifications.

4. On the Connection Parameter Values tab, specify
the following:

- BOR_OBJECT_TYPE: BUS2080

- LOGICAL_SYSTEM: NONE

- METHOD_BOR_OBJECT_DISPLAY:
DISPLAY

5. On the Classification tab, specify the following:

Figure 18 Definition of the Services Structure Node

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 113

- TYPE: SRM_BUSINESSOBJECT

- RMS_ID: Z_DEMO_RMS_ID

We next need to define a new structure node
(folder) and a new model node (object placeholder)
for our notifications in the customer record model
(see the sidebar on pages 90-91 for more on structure
and model nodes). If you read the January/February
2005 article, most of the steps involved will be famil-
iar. The one new concept is that of anchors, which are
symbolic names that are assigned to nodes so that you
can reference the nodes more easily. Without anchors,
nodes in SAP Records Management are identified by
a node number, which can be hard to remember. Plus,
node numbers can sometimes change during record
redesigns; anchors protect you from such changes.

Here’s how to add the new node and anchor to the
record model:

1. Start the Records Organizer (transaction
ORGANIZER). Right-click on the element type

Record Models and select Find from the context
menu to search for the record model Customer
Record Model. Switch to change mode ().

2. Add a new folder called Services just after the
Invoices node, but before the Correspondence
node. Right-click on the Correspondence node
and choose “Create on same level before” from
the context menu. As shown in Figure 18, iden-
tify the node as a structure node named Services.
Specify at least 1 instance with a maximum of 1
instance, which defines the cardinality of the node
as 1:1 (meaning that exactly one folder named
Services will appear in all records that are derived
from this model). Set the Visible in Role field to
All Roles, so that all SAP R/3 user roles can view
the folder.

3. Define an object placeholder for the actual service
notification links. Right-click on the newly cre-
ated Services structure node and choose “Create
one level below” from the context menu. As
shown in Figure 19, identify the node as a model

Figure 19 Definition of the Service Notifications Model Node

SAP Professional Journal May/June 2005

114 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

node and name it Service Notifications. Specify
at least 1 instance with a maximum of * instances,
which defines the cardinality of the node as 1:n
(meaning that at least one and up to an unlimited
number of service notifications can be inserted);
otherwise, the function module’s call to
BAPI_RECORD_ADDELEMENT, which we
define in the next section, will fail after the first
service notification is inserted. Set the Visible in
Role field to All Roles, so that all SAP R/3 user
roles can view the links. Restrict the type of
objects that can be assigned to the node to service
notifications by setting the Elmt Type field to the
ZSRM_SPS_BO_SERV_NOTIFIC element type
we defined earlier.

�� Note!

You can add nodes freely to existing record
models, but the system will prevent you from
deleting them. This protects existing records based
on the model from corruption.

4. Next, define an anchor by entering ANCHOR in
the attribute field along with an anchor name in the
value field. The name you choose must be a
unique name for the record model. As you can see
in Figure 19, we’ve chosen the name BUS2080,
which is the name of the service notification
object. Whatever name you choose, remember it
because you’ll need it when defining the function
module (more on this in the next section).

�� Tip

To simplify coding maintenance, choose anchor
names that clearly explain the type of content to
be inserted. For example, if you want to insert
business objects, consider specifying the name
of the business object type to be inserted (e.g.,
we specified BUS2080, which is the name of the
service notification object in the Business
Object Repository).

5. Finally, to apply the changes to the record model,
click on the button and save the model.

While it’s taken quite a few steps, we’ve now
made the necessary updates to our SAP Records
Management configuration — i.e., all customer
records will have a CustomerNumber attribute that
users can (and should) complete, and all records will
include a placeholder into which we can insert service
notifications using the BAPIs explored earlier (refer
back to Figure 5).

We’re now (finally!) ready to write the function
module to make the updates happen and configure the
system to call the function module when new notifica-
tions are created in the SAP system.

Setting Up the Event Linkage
In this section, we look at how to use the event link-
age concept to automatically add a link to a service
notification in a customer record. The idea behind
event linkages is to separate the occurrence of an
event — e.g., the creation of a business object — from

�� Note!

In the SAP system, the event linkage concept is
primarily designed to support the needs of SAP
Business Workflow. Workflows often need to
be started upon events occurring in business
applications. The idea of a loose coupling instead
of a hard-coded call is ideally suited for making
the workflow integration into applications
configurable.

In the case of our example, we don’t want to start
a workflow when a notification is created; we just
want to add the notification to a record, and we
don’t need any user interaction in order to do
so. Because the event linkage concept has been
developed in a generic way, we can use it for our
purposes. The difference is that we are dealing
with a different receiver type and that the
receiver is started using a different receiver
function module.

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 115

the applications that want to react to the event. This
way, the creator of the event doesn’t have to care
about the applications. To be more precise, the appli-
cation creating an event doesn’t need to make any
kind of call to potentially interested applications; it
doesn’t even have to know these applications exist.
This separation frees developers from having to man-
age the specific ways that the applications communi-
cate with each other and the specific interfaces that

have to be agreed upon. Instead, there is just one
generic method of communication: one application
publishes an event and other applications may receive
this event. You can think of the event publisher as a
radio program broadcast and of the event receivers as
radios tuned to that particular station.

Let’s get started. To set up the event linkage in
the system, we use transaction SWETYPV. Figure 20

Figure 20 Event Type Linkage of BUS2080

�� Note!

It would also be possible to link a workflow to the “created” event of the notification and insert the notification
into the customer record in a background step of the workflow. However, this would produce some unnecessary
overhead without yielding any advantages. The situation would be different if inserting notifications into the record
required user interaction. Consider a faxed document that has been scanned into the system and must be inserted
into a record. In this scenario, user interaction might be required to classify the document and identify the record.
Workflow is ideally suited to cases like this.

SAP Professional Journal May/June 2005

116 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

shows the configuration of the linkage we need to
react to the creation of a service notification:

• The Object Category, Object Type, and Event
fields identify the event we want to link to.

• The Receiver Type field allows you to enter an
identifier (without system checks) that distin-
guishes our event linkage from other event link-
ages to the same event. In the example, we
specify CUST_RECORD as the receiver type.

• The Receiver Call field specifies the type of call
that is made when the event occurs and the
Receiver Function Module field specifies the
name of the function module we will implement
(Z_RECORD_INSERT in the example).

• The Check Function Module field evaluates
if the linkage should be executed at all and the
Receiver Type Function Module field can
dynamically determine the receiver type during
runtime; neither of these are relevant for the
example because we want the system to call the
function module whenever an event is raised.

• The Destination of Receiver field specifies an
RFC destination if the receiver runs in a remote
system. We assume that the example takes place
inside a local system, so this field is not relevant
for our purposes here.

• The Linkage Activated option is used to switch
the linkage on or off.

• The Enable Event Queue option activates a
mechanism that can reduce system load if
needed. This simple example does not require
this functionality.

• The Behavior Upon Error Feedback field speci-
fies if the linkage is deactivated, marked, or
unchanged if errors occur within the event
receiver.

• The Receiver Status specifies the current status
of the linkage.

�� Note!

You may be wondering, “What if we can’t locate
a business object event to link to for a given
scenario?” There are a few workarounds. First,
you should check if you can use a customer exit
or a similar concept instead, such as Business
Add-Ins (BAdIs), Open FI, etc. These concepts
all allow you to add new functionality without
modifying SAP-provided development objects.

Alternatively, you can also implement a custom
event and register the event in the Business Object
Repository. While this involves making a system
modification, it’s arguably a small one with a
result that justifies some additional effort in
upgrade projects.

Now that we’ve bound the service notification
event to the event receiver function module, we next
need to implement the function module.

Writing the Event Receiver
Function Module
The event receiver function module interface must
be the same as the interface of function module
SWW_WI_CREATE_VIA_EVENT to work properly,
so for convenience, we can just copy this function
module into our own example function module,
Z_RECORD_INSERT. In the importing parameters,
the values for the event name (CREATED), the
receiver type (CUST_RECORD), the object type
(BUS2080), and the automatically generated object
key — i.e., the number of the notification — will
be passed to our function module during runtime.
The other parameters are of no relevance to our
implementation.

The implementation consists of three major steps:

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 117

1. Determine the customer number associated
with the service notification.

2. Find the record for the customer.

3. Insert the service notification into the record.

Figure 21 lists the complete code for the receiver
function module. Let’s take a closer look at how the
code executes the implementation steps.

Step 1: Determine the Customer Number
Associated with the Service Notification

For the first step (lines 31-43), we make use of a
BAPI of the service notification business object type,

BAPI_SERVNOT_GET_DETAIL. This BAPI
returns, among other data, the service notification’s
header data for a given notification number, which
includes the customer number in field CUST_NO of
structure BAPI2080_NOTHDRE.

Step 2: Find the Record for the Customer

In the second step (lines 45-67), we use
BAPI_RECORD_GETLIST of the record object
type to find the record for which the attribute
ZRM_CUSTOMER matches the value determined in
the first step. There should only be one customer
record per customer number. The record is identified
by the document class and object ID fields.

1 FUNCTION z_record_insert.
2 *"---
3 *"*"Local interface:
4 *" IMPORTING
5 *" VALUE(EVENT) LIKE SWETYPECOU-EVENT
6 *" VALUE(RECTYPE) LIKE SWETYPECOU-RECTYPE
7 *" VALUE(OBJTYPE) LIKE SWETYPECOU-OBJTYPE
8 *" VALUE(OBJKEY) LIKE SWEINSTCOU-OBJKEY
9 *" VALUE(EXCEPTIONS_ALLOWED) LIKE SWEFLAGS-EXC_OK DEFAULT SPACE

10 *" EXPORTING
11 *" VALUE(REC_ID) LIKE SWELOG-RECID
12 *" TABLES
13 *" EVENT_CONTAINER STRUCTURE SWCONT
14 *" EXCEPTIONS
15 *" READ_FAILED
16 *" CREATE_FAILED
17 *"---
18
19
20 DATA: ls_notif_header TYPE bapi2080_nothdre,
21 lt_property_selection TYPE TABLE OF bapipropqy,
22 ls_property_selection TYPE bapipropqy,
23 lt_resulting_list TYPE TABLE OF bapidoctab,

Figure 21 Code for the Event Receiver Function Module

(continued on next page)

SAP Professional Journal May/June 2005

118 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Step 3: Insert the Notification into the
Record

The third step (lines 69-103) is the one that requires

the most thought. We want to add a new element to
the record. Earlier we mentioned that this is easily
accomplished by calling the BAPI
BAPI_RECORD_ADDELEMENT. There is one issue

24 ls_cust_record_id TYPE bapidoctab,
25 lv_anchor TYPE bapisrmrec-anchor,
26 lt_element_sp_poid TYPE TABLE OF bapiproptb,
27 ls_element_sp_poid TYPE bapiproptb,
28 ls_return TYPE bapiret2,
29 lv_element_description TYPE bapiedescr.
30
31 *** 1. get customer no. from service notification header
32 ls_notif_header-notif_no = objkey.
33
34 CALL FUNCTION 'BAPI_SERVNOT_GET_DETAIL'
35 EXPORTING
36 number = ls_notif_header-notif_no
37 IMPORTING
38 notifheader = ls_notif_header.
39
40 * build display name of notification as element in the record
41 CONCATENATE ls_notif_header-notif_no ls_notif_header-short_text
42 INTO lv_element_description
43 SEPARATED BY space.
44
45 *** 2. find customer record
46 * define search criteria
47 ls_property_selection-propname = 'ZRM_CUSTOMER'.
48 ls_property_selection-option = 'EQ'.
49 ls_property_selection-sign = 'I'.
50 ls_property_selection-propval_lo = ls_notif_header-cust_no.
51 APPEND ls_property_selection TO lt_property_selection.
52
53 * perform search
54 CALL FUNCTION 'BAPI_RECORD_GETLIST'
55 EXPORTING
56 rms_id = 'ZSRM_DEMO_RMS_ID'
57 sps_id = 'ZSRM_SPS_CUSTOMER_RECORD'
58 IMPORTING
59 return = ls_return
60 TABLES
61 property_selection = lt_property_selection
62 resulting_list = lt_resulting_list.
63
64 READ TABLE lt_resulting_list INTO ls_cust_record_id INDEX 1.

Figure 21 (continued)

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 119

we need to address that threatens the data integrity of
our records, however: If the record is locked for edit-
ing by another user, the BAPI will be unable to insert
the notification into the record. We can tell when this

happens because BAPI_RECORD_ADDELEMENT
will return a “record locked” error message in its
RETURN exporting parameter. Usually, for this kind
of error, you would retry the insertion at a later point

65 IF sy-subrc <> 0.
66 * ...error: no customer record exists for this customer
67 ENDIF.
68
69 *** 3. add new element to record
70 * set sp poid of BOR object
71 ls_element_sp_poid-name = 'BOR_OBJECT_TYPE'.
72 ls_element_sp_poid-value = objtype.
73 APPEND ls_element_sp_poid TO lt_element_sp_poid.
74
75 ls_element_sp_poid-name = 'BOR_OBJECT_ID'.
76 ls_element_sp_poid-value = objkey.
77 APPEND ls_element_sp_poid TO lt_element_sp_poid.
78
79 *
80 CALL FUNCTION 'SRM_RECORD_ADDELEMENT'
81 IN BACKGROUND TASK
82 EXPORTING
83 objectid = ls_cust_record_id-objectid
84 documentclass = ls_cust_record_id-docclass
85 sps_id = 'ZSRM_SPS_BO_SERV_NOTIFIC'
86 anchor = 'BUS2080'
87 description = lv_element_description
88 IMPORTING
89 return = ls_return
90 TABLES
91 element_sp_poid = lt_element_sp_poid
92 EXCEPTIONS
93 anchor_not_found = 1
94 not_authorized = 2
95 parameter_error = 3
96 container_not_found = 4
97 container_is_locked = 5
98 max_number_of_elements = 6
99 poid_is_wrong = 7

100 internal_error = 8
101 OTHERS = 9.
102
103 COMMIT WORK.
104
105 ENDFUNCTION.

Figure 21 (continued)

SAP Professional Journal May/June 2005

120 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

in time, which would require a fair amount of addi-
tional coding.

Fortunately, there is an easier way. SAP Basis
supports a flavor of RFC called transactional RFC
(tRFC) that automatically logs failed function calls for
subsequent execution by an administrator. Function
modules called as tRFCs are registered in a general
database table for asynchronous execution. After
COMMIT WORK, these function modules are executed
in a separate work process. If an error occurs, all

changes are rolled back and the function module can
be restarted at a later point in time by an administrator
using transaction SM58 (the tRFC Monitor). At any
time, an administrator can use transaction SM58 to
look up function modules that are waiting to be exe-
cuted. The monitor shows the status of the function
module call and, if in error status, the exception that
has been raised (Figure 22 shows an example). After
resolution of the error, the call can be restarted by
selecting Edit → Execute LUW from the tRFC
Monitor application menu.

Figure 22 An Error Displayed in the tRFC Monitor

�� Note!

tRFC technology was designed to enable developers to build applications that need to commit data across multiple
systems either all at once or not at all (e.g., a bank transaction that posts a debit to one system and a credit to
another).

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 121

Programmatically, invoking SAP function mod-
ules via tRFC is easy: just add IN BACKGROUND
TASK to the CALL FUNCTION statement after the
function module name.

For example, in the code listing for our event
receiver function module (lines 80-81 in Figure 21),
we’ve called the function module
SRM_RECORD_ADDELEMENT as follows :

CALL FUNCTION 'SRM_RECORD_ADDELEMENT'
IN BACKGROUND TASK

Let’s now have a closer look at the
SRM_RECORD_ADDELEMENT interface. The import
parameters OBJECTID (line 83) and DOCCLASS
(line 84) serve to identify the record. SPS_ID (line
85) is the element type of the element to be inserted

into the record and ANCHOR (line 86) denotes the
position at which it is inserted (as defined in the
record model). DESCRIPTION (line 87) is the dis-
play text that the element will have in the record. The
table parameter ELEMENT_SP_POID (line 91) is a
list of name-value pairs of the SP-POID parameters
of the element to be inserted — i.e., the parameters
that identify an element of a service provider. For the
BOR service provider, the SP-POID parameters are
BOR_OBJECT_TYPE and BOR_OBJECT_ID.

The Completed Example
With the final piece of the puzzle — the function
module — in place, the example is complete. When
a new service notification is posted in the SAP sys-
tem, a link to the new notification is automatically
added to the customer record. The result is displayed

�� Caution!

To use the tRFC technique, a function module has to be RFC-enabled and it should return its errors as function
module exceptions instead of in an exporting parameter such as RETURN (which would get lost because of the
asynchronous call). SAP Records Management offers such function modules in addition to the BAPIs. In our case,
we need the function module SRM_RECORD_ADDELEMENT.

�� Note!

The tRFC technique is still not an optimal way of handling the errors that can occur during background processing
for record updates — there is no automated mechanism to restart the failed calls. Because of this, in an integration
project with a large US customer, the SAP Records Management development team developed a tool that handles the
calls between the application (in that case, SAP Supplier Relationship Management) and SAP Records Management
in a more sophisticated way: A scheduled job picks up function calls that have been registered periodically for
execution and repeats the execution after a configurable amount of time, and depending on the type of error that has
occurred. SAP plans to make this tool available in the standard delivery of SAP Records Management (check
http://service.sap.com/recordsmanagement for the latest news).

SAP Professional Journal May/June 2005

122 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

in Figure 23, which shows service notifications
inserted into the customer record at the defined loca-
tion. Double-clicking on one of the service notifica-
tion items in the record displays the details of the
service notification (Figure 24).

Using the Example
While you can productively use the solution presented
in this article with ease, there are a few scenarios that
could occur that you might be wondering how to han-
dle — after all, users could potentially grow frustrated
if the record includes links to deleted notifications, or

if the service notifications are assigned to the wrong
customer record. Here are a few possible scenarios
and ways to easily address them:

Data, except for the customer number, in the
service notification changes: This is a potential
problem that our example application addresses
proactively. Because the customer record holds
only a reference to the notification, not the notifi-
cation itself, changes are inherently reflected.

The customer number in the service notifica-
tion changes (e.g., because an agent acciden-
tally assigned the wrong number to the
notification): Because this information is used to

�

�

Figure 23 Service Notifications Added to the Record

Improve the Efficiency of Your SAP Records Management Implementation with Automated Record Updates

For site licenses and volume subscriptions, call 1-781-751-8799. 123

assign the notification to a record, the reference to
the notification would have to be removed from
one customer record and added to another cus-
tomer record. Depending on the volume, you
could do this manually, or you could set up an
automatic update mechanism similar to the one
described in this article.

The service notification is deleted: This would
require you to also delete the reference to the noti-

�

fication from the record. Again, depending on the
volume, this can be done manually or you can use
the method described in this article to delete the
reference automatically.

Conclusion
This article has shown you how to use event linkage

Figure 24 Details of the Selected Service Notification Item

SAP Professional Journal May/June 2005

124 www.SAPpro.com ©2005 SAP Professional Journal. Reproduction prohibited. All rights reserved.

to automatically update records in SAP Records
Management when business events occur in an SAP
system (e.g., when records are created, changed, or
deleted). We encourage you to try your hand at this
technique as it will greatly reduce the burden on SAP
Records Management users and increase the ROI for
your implementation.

As keeping references up to date is a universal
requirement, SAP has developed a more permanent
mechanism — as part of SAP Web Application Server
7.0 — that allows you to display record content
dynamically. In this solution, the user can see folders
and elements within a record that are not actually part
of the record persistence. Nevertheless, the tech-
niques presented in this article — event linkage and
tRFC in particular — will remain useful to you
throughout your SAP career.

Joachim Becker is Product Manager of SAP
Records Management. He has a degree in
mathematics from the University of Heidelberg,
Germany. In his degree dissertation, Joachim
discussed wavelet algorithms, which are used to
analyze digital images, for example. He joined
SAP in 1995 as a developer in the Financials area,
and also worked as a trainer and consultant. Since
1999, Joachim has assumed various product
management responsibilities in SAP’s Technology
Development department. He is an expert in
Business Process Technology in general, and has
focused on the areas of Workflow, Document
Management, and Communication. Currently,
Joachim works as a Process Architect on the
definition of the newly announced Business
Process Platform. He is also one of the authors of
the book “SAP Records Management,” which was
published by SAP PRESS in March 2005 (currently
available in German only). He may be contacted
at joachim.becker@sap.com.

Ulrich Spinola has long-term international
project and project management experience in
the areas of SAP Records Management and
Workflow. He is the architect of the process
management components of SAP Records
Management. In addition to his work in
development and consulting, he speaks at
conferences and publishes articles about SAP
Records Management. He is also a coauthor of
the book “SAP Records Management,” published
by SAP PRESS in March 2005. So far, only a
German edition is available. Ulrich may be
contacted at ulrich.spinola@sap.com.

