Functions to Automate and Enhance Your BW Reports in Excel

The following examples illustrate some of the functionality supported by the BEx API. See March 2004 BW Expert (page 10) for the complete list of functions and their corresponding numbers. Note that this is a partial list of the functions and some of the code offered below is used to combine features and build new functionality.

Functions 1 and 2 can be combined along with the following code to establish a connection with the server:

Public Function LogonToYourBW()

' create Logon & RFC-Handle

 logonToBW = False ‘ clear connect Flag the flag can be used to find out if connected or not

 'load SAP functionality by opening BEX file (use your installation path)

 Workbooks.Open (“c:\sappc\bw\sapbex.xla”)

 With Run("sapbex.xla!sapbexGetConnection") ‘ call the connection

 ' Set the params for Auto logon

 .client = “YOUR CLIENT NO”

 .user = “YOUR BW USER”

 .Password = “YOUR BW PWD” ‘ I recommend to create a dummy reporting user for this task

 .Language = “YOUR LANGUAGE YOU LIKE TO USE FOR QUERY DISPLAY (i.E. “EN”)”

 .SystemNumber = “YOUR SYSTEM NO” ‘

 .ApplicationServer = “YOUR SERVER Name OR IP-ADDRESS”

 .UseSAPLOgonIni = FALSE 'important for automatic connection

 .logon 0, True ‘ This will provide a dialog to appear

 If .IsConnected <> 1 Then

 .logon 0, False

 If .IsConnected <> 1 Then Exit Function

 Else

 Set g_oFunction = CreateObject("SAP.Functions")

 Set g_oFunction.Connection = g_oConnection

 End If

 End With

 Run "sapbex.xla!sapbexinitConnection" ‘ this will enable the connection you just created

 logonToBW = True

End Function
Function 7 can be used to refresh queries in an active workbook. To refresh all queries, set the first parameter to True and use the following code:

If Run("sapbex.xla!SAPBEXrefresh", True) = 0 Then

Else

 MsgBox " Error in Refresh"
To refresh a single query, reference a valid cell in the query (navigation or filter area or result area)

‘Set the values for Variables

Dim rngVar as Range

Set rngVar = YOUR_VARIABLE_SHEET.Range(“A2:H3”)

Run "SAPBEXsetVariables", rngVar

If Run("SAPBEX.xla!SAPBEXrefresh", False, ActiveSheet.Range("C7")) = 0 Then

Else

 MsgBox "Error in Refresh”

End If

Function 8 and 9 allow you to change the drill down status in a report, either across or down, to hide certain areas while providing some basic functionality to users. The code below is to create a button for users to drill down or across (horizontal or vertical). Note the following values for myDrillState:

myDrillState = 0

No drilldown”

myDrillState = 1

Drilldown is vertical

myDrillState = 2

Drilldown is horizontal

Coding for user button:

Sub btn_Customer_Click()

 Dim myDrillState As Integer

 Dim myFilterCell As Range

 ‘Set your filter cell

 Set myFilterCell = ActiveSheet.Range(“C13”)

 ‘Now get the actual status

 If Run("SAPBEX.XLA!SAPBEXgetDrillState", myDrillState, myFilterCell) = 0 then

 myState = Run("SAPBEX.XLA!SAPBEXgetDrillState_currentState")

 ‘ Depending on found ststus set the opposite (toggle) state

 If myState = 0 Then

 If Run("SAPBEX.XLA!SAPBEXsetDrillState", 1, myFilterCell) = 0 Then

 Else

MsgBox “Error in Drill”

 End If

 Else

 If Run ("SAPBEX.XLA!SAPBEXsetDrillState", 0, myFilterCell) = 0 Then

 Else

 MsgBox “Error in Drill”

 End If

 End If

 End If

End Sub

Function 12 allows more complex commands to be executed than those available from the context menu. The code below sorts first by text (SOAT) , then by characteristic by key (SOAK). To set the code up, first search your trace file for the OLAP function:

XLA:

13:31:28 calling OLAP function

XLA:

- function code: SOAT

XLA:

- array: Sheet1!C30:EI87

XLA:

- Called AllowSetForegroundWindow, Result: True(<>0 is good)

...

...

XLA:

13:32:20 calling OLAP function

XLA:

- function code: SOAK

Use the OLAP references to drill by a specific hierarchy level (HX03), in the case Level 3 (HX06 would be Hierarchy eXpand Level 06):

Function SetBexCommand()

'Function to change the hierarchy Drill Level as Example

Dim strCommand As String

Dim myCell As Range

strCommand = "HX03"

‘ Can be any valid (Navigation Area or Data Area Range)

‘ I am setting the command to my customer in cel D11

Set myCell = Range(“D11”)

If Run("sapbex.xla!SAPBEXfireCommand", strCommand, ActiveSheet.Range(strMyCell)) = 0 Then

Else

MsgBox “Error in Hierarchy Command”

End If

End Function

Function 14 validates a function in a particular cell (Note: It is recommend that you use this function before the SAPBEXfireCommand to avoid errors in your code)

Function SetBexCommand()

Dim strCommand As String

Dim myCell As Range

strCommand = "HX03"

Set myCell = Range(“D11”)

If Run("sapbex.xla!SAPBEXCheckCommand", strCommand, ActiveSheet.Range(strMyCell)) = 0 Then

If Run("sapbex.xla!SAPBEXFireCommand", strCommand, ActiveSheet.Range(strMyCell)) = 0 Then

Else

MsgBox “Error in Hierarchy Command”

End If

End If

End Function

Function 15 turns on text information not implemented in an active workbook.

The following values can be used:

selectGroup = blank or "*": Show all text elements

selectGroup = "C": Show only general text elements (created by, changed on,...)

selectGroup = "F": Show filter only

selectGroup = "V": Show variables only

This example uses selectGroup = "C" to insert data into a footer in Excel
Function Get_text_Elem()

Dim selectGroup As String

Dim myRange As Range

 selectGroup = "C"

 Set myRange = ActiveSheet.Range("C23")

 If Run("SAPBEXshowTextElements", selectGroup) = 0 Then

 Else

 MsgBox "Error in Textelements"

 End If

End Function
Function 16 provides access to the Report Report Interface (RRI) to jump directly to another query.

View as Jump target

Private Sub CommandButton1_Click()

 If Run("SAPBEX.XLA!SAPBEXjump", "v", "My jump view", ActiveSheet.Range("D19")) = 0 Then

 Else

 MsgBox "ERROR in Jump Target"

 End If

End Sub

Query Jump target via RSBBS

Private Sub CommandButton1_Click()

 If Run("SAPBEX.XLA!SAPBEXjump", "r", "QURY0001", ActiveSheet.Range("D19")) = 0 Then

 Else

 MsgBox "ERROR in Jump Target"

 End If

End Sub

Function 18 automatically saves your workbooks.

Private Sub CommandButton1_Click()

 If Run("SAPBEX.XLA!SAPBEXsaveWorkbook") = 0 Then

 Else

 MsgBox "ERROR WB save"

 End If

End Sub
Function 19 opens workbooks without the BEx toolbar.

Private Sub CommandButton1_Click()

Dim strWBID As String

Dim strTmp As String

strWBID = "2A024RULBDK33U5BNZH60433U"

strTmp = Run("SAPBEX.XLA!SAPBEXreadWorkbook", strWBID)

 If strTmp = "" Then

 MsgBox "ERROR WB Read"

 End If

End Sub

Function 20 translates the human friendly name to the GUID being stored on the BW server.

Private Sub CommandButton1_Click()

Dim strWBName As String

Dim strWBID As String

strWBName = "Testquery Jump"

strWBID = "2A024RULBDK33U5BNZH60433U"

strWBID = Run("SAPBEX.XLA!SAPBEXreadWorkbook", strWBName)

 If strWBID = "" Then

 MsgBox "ERROR get WBID"

 End If

End Sub

Function 21 can be used to dynamically insert queries into an Excel workbook. There are two ways of using the function:

1. Boolean Value TRUE for the second parameter of that function, which will insert the query where you defined the active cell.

2. Leave the second function value blank, which open a new Workbook for a particular query.

Private Sub CommandButton1_Click()
Dim strQueryID As String

Dim strTmp As String

strQueryID = "85RFOO9I0FXTZOK5GP6X2UVNA"

ActiveWorkbook.Sheets("Sheet1").Range("A10").Select

strTmp = Run("SAPBEX.XLA!SAPBEXEmbedQuery", strQueryID)

 If strTmp = "" Then

 MsgBox "ERROR Insert Query"

 End If

End Sub

Combine Functions 4, 5, and 10 to create multiple function calls. Function 3, 4, and 10 can be combined to first stop the automatism in BEX, then collect all function calls, and execute the functions in batch:

Run "sapbex.xla!SAPBEXpauseOn()" ‘This will stop all automatic refreshes by SAP

‘Set the values for Variable 1

If Run("SAPBEX.xla! SAPBEXSetFilterValue",YOUR_1_VARIABLE_VALUE,””, Sheets("Query_A").Range("B7")) = 0 Then

 Else

MsgBox "Function failed"

 End If

‘Set the values for Variable 2

If Run("SAPBEX.xla! SAPBEXSetFilterValue",YOUR_2_VARIABLE_VALUE,””, Sheets("Query_A").Range("B5")) = 0 Then

 Else

MsgBox "Function failed"

 End If
Run "sapbex.xla!SAPBEXpauseOn()"‘This will turn on all automatic refreshes by SAP and execute all functions since PauseOn

