
Understanding and Optimizing Your ALE Data Distribution: Minimizing Data Volume

For site licenses and volume subscriptions, call 1-781-751-8799. 85

Arthur Wirthensohn is a
senior consultant at EDS
Switzerland and a member
of EDS’s international
Technical Leadership Network.
Currently, he is the project
manager and technical lead
of the Enterprise Application
Integration (EAI) department,
which delivers SAP-related
services such as ALE/EDI,
SAP Business Workflow, Web
Application Server, Data
Migration, and ABAP
Programming Services.

(complete bio appears on page 104)

If you are involved in setting up or maintaining data distribution for a
business process using SAP’s Application Link Enabling (ALE), you
have a role to play in ensuring that the distribution performs well and
uses system resources efficiently. Whether you are a network or system
administrator, a programmer, an application integration specialist, or
a business process consultant, a thorough understanding of how ALE
works will enable you to contribute to your team’s efforts to optimize
your distributed business process. This is the second installment of a
two-part article series designed to provide you with that knowledge.

Though individual ALE distributed business processes vary
widely, each with its own combination of business scenario, business
process, and technical environment, there are two factors that affect the
performance of all ALE data distributions — the capacity and availability
of processing resources, and the volume of data to be distributed.

The first installment of this article series, published in the
November/December 2003 SAP Professional Journal, dealt with issues
relating to processing capacity and availability. Optimizing distributions
at this level requires a deep understanding of how ALE data distributions
work — how they utilize work processes, how processing loads can be
distributed, when and how to couple or decouple ALE processes, and
when and how to use packets for processing. In that article, system
administrators learned how to set up the system in a way that provides
ALE with enough system resources without negatively affecting other
system users. Application integration specialists and business process
consultants learned how to design and customize the process properly.

This second installment shows you how to optimize your data
distribution by minimizing the amount of data to be processed. An

Understanding and Optimizing
Your ALE Data Distribution:
Minimizing Data Volume

Arthur Wirthensohn

SAP Professional Journal January/February 2004

86 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

SAP standard distributed business process — without
any filters — usually creates much more information
than is actually needed on the receiver side of the
distribution. For example, a purchase order might
contain a lot of text that is important for the purchaser,
but not relevant for the supplier. In a standard mes-
sage, this unnecessary text might be forwarded to
the receiver system. System resources are consumed
as the text is created, transmitted, and posted.
Minimizing the data volume so that only the necessary
data is transmitted is a key way to optimize an ALE
data distribution.

If you are a programmer, an application integra-
tion specialist, or a business process consultant, you
can use what you learn here to reduce the system load
of a distributed business process so that it consumes
as few system resources as necessary every step of the
way, from the sender system to the receiver system.
First, you’ll learn how to analyze the data to discover
what data is required and what is not. Then, you’ll
see exactly where in the distribution process you can
minimize the data using ALE tools and features.
Finally, you’ll get a detailed explanation, with exam-
ples, of how to implement the tools and features that
yield the biggest performance gains.

A prerequisite for understanding this article is a
basic knowledge of ALE and SAP Business Workflow.
Previously published articles in SAP Professional
Journal are a good resource for that knowledge.1

Data Analysis — Identifying
Essential, Nonessential, and
“Nice-to-Have” Data
There are two basic ways that you can reduce the data
volume of an ALE distribution. You can minimize:

• The data of a single message

• The number of messages to be
distributed

In either case, you need to determine what data
is essential for the business process on the receiver
side. Then you can eliminate the nonessential data
from the distribution — a key step in reducing data
volume. Let’s look at how to analyze each scenario
so that you can make this determination.

Analyzing the Data of a Single Message

Not every record and field in a message (IDoc or
XML) will be required by the target business object2

of the distribution process. If a sales order is being
created in the receiver system, for example, then
only the data necessary to create the sales order is
required. You will need to analyze the records and
fields of the message to see what is needed and what
is not. This analysis is necessary whether you have a
standard SAP ALE distribution or a custom distribu-
tion, because the requirements of each business
process are almost always different. For example, in
one scenario the order reason field in a sales order
might be mandatory, while in another scenario the
field is not used.

Be aware that the IDoc structure of a business
object does not always correspond to the data struc-
ture of the business object. For example, a very
common business process is to create an ORDERS
IDoc from a purchase order on the sender system
and then post that ORDERS IDoc as a sales order on
the receiver system. If you compare the structure
elements of two different types of orders (e.g., a sales
order and a purchase order) and the corresponding
IDoc, however, you will see that the structure of the
purchase order (Figure 1) is different from the struc-
ture of the ORDERS IDoc (Figure 2), which in turn

1 “Real-Time, Outbound Interfaces to Non-R/3 Systems Made Simple
with Change Pointers, Message Control, and Workflow” (Premiere
Issue); “Data Transformation in SAP Standard ALE Distributed
Business Processes: How to Ensure an Efficient, Effective Imple-
mentation” (July/August 2003); and “Understanding and Optimizing
Your ALE Data Distribution: Controlling ALE Processing” (November/
December 2003).

2 The term business object is used here in the sense of an object type in
SAP’s Business Object Repository. Material master, G/L account, and
customer sales order are examples of business objects. An instance
of a business object is the data representation of the real-world object
identified by the key of the object type. For example, customer
number 1000 might be an instance of a business object.

Figure 1 Main Structure Elements of a Purchase Order

Understanding and Optimizing Your ALE Data Distribution: Minimizing Data Volume

For site licenses and volume subscriptions, call 1-781-751-8799. 87

Figure 2 Main Portion of an ORDERS IDoc Structure

SAP Professional Journal January/February 2004

88 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

is different from the structure of the sales order
(Figure 3).3

�� Tip

You can navigate through the structure of an
ORDERS IDoc by calling transaction WE30 or
WE60, entering ORDERS05 as the basic type,
and pressing the Display button.

If the IDoc structure of a message does not
correspond to the business object, you will first have
to determine what data is needed for the business
process (for example, what is required to create the
sales order) and then determine what elements of the
IDoc structure refer to the necessary data elements.
Refer to the IDoc documentation in transaction WE60
for a good explanation of the content of the IDoc’s
segments and fields. This information will help you
to discover the relationship of the IDoc fields to the
business document data.

�� Note!

In an ALE data distribution, you must send, at a
minimum, the mandatory segments of an IDoc.

You can learn what segments of an IDoc
are mandatory by using transaction WE60
(Documentation of IDoc Types) or transaction
WE30 (Develop IDoc Types):

• To use transaction WE60: Enter the IDoc you
are interested in, press the F8 button, and expand
the tree structure. Through SAP Release 4.6C (or
Basis Release 4.6D), you will get the tree struc-
ture of the IDoc in list form; as of SAP Web
Application Server (Web AS) 6.10, you will get an
HTML view of the IDoc. Regardless of how the
tree is displayed, a field in the header description
of the segment indicates whether the segment is
mandatory or optional.

• To use transaction WE30: Enter the IDoc you
are interested in, press the Display button (F7),
and expand the tree structure. Double-click on the
segment name (or mark the segment and press
F2). If the Mandatory seg. attribute is flagged on
the pop-up dialog box (Figure 4), the segment is
mandatory; otherwise, it is optional.

Figure 4 Properties of an IDoc Segment

Figure 3 Main Structure Elements
of a Sales Order

3 Due to space constraints, I have shown a reduced view of the structure
elements of the purchase order and the sales order. If you want to see
the entire structure of the business object graphically, go to transaction
SWO1 (Business Object Builder), enter BUS2012 (purchase order) or
BUS2032 (sales order), and press the Display button. On the following
screen, press the BO data model button and navigate to a description
of the business object. On the description screen, press the Graphic
button (or Ctrl+F3) to get a graphical overview of the structure of the
business object.

Understanding and Optimizing Your ALE Data Distribution: Minimizing Data Volume

For site licenses and volume subscriptions, call 1-781-751-8799. 89

Analyzing the Number of Messages
to Be Distributed

To minimize the number of messages (IDoc or XML)
to be sent, you have to determine which instances of
the business object you really need. Then you can
define the appropriate selection criteria by analyzing
the attributes common to the necessary instances.

Take, for example, a factory that produces goods
sold by independent sales companies. The factory and
the sales companies all have their own SAP systems,
which interface via ALE. The factory supplies the
sales companies with material master data to aid them
in placing their orders. In distributing this data, the
factory can choose to send each company only the
data that is relevant to that company by selecting
material masters according to sales organization.
In this scenario, then, the common attribute for the
material masters data would be the sales organization.

What to Do About “Nice-to-Have” Data

When your analysis reveals some necessary data and
some clearly unnecessary data, your course is clear:
you can simply eliminate the unnecessary data from
your ALE distribution. But what if your analysis has
also revealed some data that, while not absolutely
essential, would be nice to have on the receiver side?
How do you decide whether or not to distribute that
data? You’ll need to know what it costs in terms of
system capacity before you can make this decision.
I recommend the following strategy for deciding
whether or not to distribute this data:

1. Analyze the quantity of the data by counting the
corresponding segments in some existing IDocs
that carry the entire standard message.

2. Estimate how many of these IDocs will be
transmitted in a given period.

3. If the data benefits the business process enough
to justify the number of segments to be sent,
then by all means include those segments in your
minimized set of message data. Otherwise, leave
them out.

For example, the factory in the previous example
might consider transmitting the forecasting and con-
sumption data of the material masters to the sales
companies, because it would be nice for the sales
companies to get an idea of the factory’s production
trends. Analysis of the segments of existing material
master IDocs reveals that there are about 500 records
(segments) with forecasting and consumption data
per IDoc and about 10 records (segments) with the
material master data that are really required by the
sales company. There will be approximately 10,000
material master IDocs in an initial data transfer to
each sales company and about 100 IDocs with data
changes transferred each day. In this scenario, the
“nice-to-have” forecasting and consumption data
would have a serious performance and capacity
impact on the interface — 5,000,000 more records
in the initial transfer, and about 50,000 more each
day. The factory and sales companies would be
wise to find another way to get the forecasting and
consumption information to the sales companies.

Proof of Concept
You’ve analyzed the data and ascertained what must
be sent at a minimum. Now you need to verify that an
IDoc with the pared-down data set you have defined is
able to create the desired new instance of the business
object on the receiver system. A helpful tool for con-
ducting your proof of concept is the test tool for pro-
cessing IDocs (transaction WE19). Here are the steps:

1. Call the test tool (on the receiver system, of
course) and, in the select-option Existing IDoc,
choose an IDoc that has already successfully cre-
ated an instance of the business object in question.
This IDoc will serve as your reference for the test.

2. On the following screen, the test tool provides the
opportunity to add, change, and delete segments
and fields of the reference IDoc. Delete all the
information that, according to your analysis, is
not required.

3. Process the IDoc using standard inbound

SAP Professional Journal January/February 2004

90 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

processing (F8) and check the result in a monitor-
ing transaction (e.g., WE02). If you look at the
IDoc’s status records, you’ll see that the test tool
has added status 74 (IDoc was created by test
transaction) right after status 50 (IDoc added) to
indicate its origin (Figure 5).

If the posting was successful, check the result in
the corresponding business transaction as well
(e.g., VA03 if you tried to create a sales order).

The manipulated IDoc that you have just
processed is stored to the IDoc database. Therefore,
you can reuse it as a reference if you have to run
another test cycle.

�� Tip

The test tool for processing IDocs provides an
IDoc syntax check (F6). After deleting data on
the referenced IDoc, you can use the syntax check
to make sure that the IDoc still has the appropriate
structure. For example, the syntax check will issue
an error message if you have deleted a mandatory
segment.

Tools for Minimizing Data Within
the ALE Distributed Business
Process

SAP provides several tools and features you can use
for minimizing the data of an ALE distributed busi-
ness process. Some features involve reducing the
number of IDocs that are created, but the majority
involve filtering out the data that is not required.
The features you use will depend on the data you
have identified as nonessential. In some cases you
will have a choice of features and tools, and in other
cases you will have only one opportunity for eliminat-
ing the data from the process.

Figure 6 depicts the information flow of an
ALE distributed business process. It also identifies
seven points in this process where you can minimize
the data being distributed. In the sections that follow,
the discussion of each tool is identified by a number
that maps to the relevant point in the diagram.

Minimizing data is most effective in the beginning
of the process, because each record and message
induces system load at every processing step. The
sooner a record or message is eliminated, the less load
will be induced at each subsequent step. Putting this

Figure 5 Status Record 74 Is Added After the IDoc Is Processed

Understanding and Optimizing Your ALE Data Distribution: Minimizing Data Volume

For site licenses and volume subscriptions, call 1-781-751-8799. 91

principle into practice means trying to apply filters as
early in the distributed business process as possible —
in the trigger (➊) of the outbound application, for
example, rather than in the ALE layer (➍). The later
you apply a filter, the less effective it is.

There’s a small exception to this rule, however.
When filtering segments out of a message, look to fil-
ters that you can customize (for example, distribution
model filters, segment filters, and view filters) over
implementing the filter logic in a program exit earlier
in the process. A custom filter in the ALE layer (➍),
for example, will not consume much more system
resources than a program exit filter in the outbound
application (➋), since it is just the next processing
step, and the maintainability of the interface will also
be much better.

In the following sections, you will learn about

each of the tools and features you have at your
disposal for minimizing data, and where they are best
put to use. See my article in the July/August 2003
issue of this publication for a complete explanation of
the ALE process and its components, including the fil-
ters and user exits discussed here.

Restricting IDoc Creation in the
Outbound Program

When looking at the overall business process, the first
and most effective place to start minimizing data is at
the point where the outbound application is triggered
to create an IDoc (➊).

If possible, you should define and implement
your selections so that the only IDocs created by the
outbound application are those that will be needed
for the distributed business process. For an initial

Figure 6 Opportunities for Minimizing the Data of a Distributed Business Process

����������	
��������

������
��
���
���	��
��	� �������������

������

����������	
��������

������
��
���
��������
��	�

�������

���

�������

���

������
����

�������������
����

�������������
����

�������

����
����������
������������
��

�������

����
��������

���
�����

���
�����

����
����������
������������
��

�������

����
��������

������

������

�������
�� �

� �

�

�

�

�

��������
	���
��
��
�� !�����	

"������	
� !�������

�

��������
	���
��
��
 ����	

������
� !�������

�

SAP Professional Journal January/February 2004

92 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

transfer of master data, select only the material master
data that is required. For subsequent transfers of
changes to the original master database (delta data
transfers), restrict the trigger so that only necessary
data is transferred.

For example, suppose you have a material master
database with a total of 10,000 master data records,
and you need to distribute only those master data
records (about 500) that are associated with a single
specified sales channel. It would be wise to imple-
ment a filter in the outbound application’s selection
program that would apply to the initial data transfer
and would pass only the master data belonging to that
sales channel. In addition, you would have to imple-
ment the same filter conditions in the trigger of the
delta data transfer. The final section of this article will
show you how to limit the creation of IDocs in the
outbound application.

Filtering Records Using Program Exits in the
Outbound Application

Whether or not you can use program exits in the out-
bound application (➋) to filter records depends on the
outbound application and the intended purpose of the
program exits.

In outbound applications, some program exits —
i.e., user exits and Business Add-Ins (BAdIs) —
allow you to change the content of all data fields and
delete the data records of a message. These exits are
the ones you can use for filtering data. Material mas-
ter BAdI BADI_MATMAS_ALE_CR, for example,
allows you to change and delete records of the out-
bound material master IDocs — you could use it to
delete records of the sales view in the material master
message based on the content of the procurement type
field in the plant view, for instance.

Other exits are designed for implementing a
special function and usually can’t be used for filtering
records. For example, one program exit that you
cannot use for directly deleting segments is user exit
MGV00002 (Material Master: Read Values for Filter
Objects). This user exit reads filter object types and
their values from the master records.

To find out if you can use a program exit to filter
records, your best course of action is to set up a test
implementation of the program exit.

Begin by referring to the documentation (if it
exists) of the BAdI or user exit. Then look at the
exit’s changing or table parameters to see if the data
segments that you want to filter have parameters (the
names of these parameters often contain strings like
EDIDD or IDOC_DATA). If there are no parameters
for these data records, then there is no way for you to
use the exit to apply filters to them.

If there are parameters for the data records, you
then have to find out if the program exit will really
support changes to those parameters. Implement the
exit with code that deletes one or more of the data
records and test it. If after testing you still are not
sure whether the exit can delete the segments (for
example, you think you have implemented proper
program logic but the IDoc still has all its records),
debug the program exit and watch the parameter
of the data record to see if its data is passed to the
application that calls the program exit.

Defining a Subset of the Message Data

With most master data, you can define and implement
a data subset of the original message called a “reduced
message type” (➌). With this feature, you can ensure
that only your defined subset of data will be used to
create the master IDoc.

Using a reduced message type can provide an addi-
tional performance benefit if you are using the Shared
Master Data (SMD) tool to replicate changes in master
data. Normally, the fields of an IDoc are related to
fields in the business document, and most of these
fields — when they are customized as distribution-
relevant — act as triggers when changes occur (indi-
cated by the dotted arrow between the message type
and the trigger of the outbound application in Figure 6).
With a reduced message type, however, only changes
to the defined subset of the data — again, only those
fields that are customized as distribution-relevant —
will serve as triggers for the SMD tool.

Understanding and Optimizing Your ALE Data Distribution: Minimizing Data Volume

For site licenses and volume subscriptions, call 1-781-751-8799. 93

Filtering a Message in the ALE Layer of the
Outbound Process

The ALE layer of the outbound process (➍) provides
three different kinds of filters and a user exit that you
can use to restrict the data that is sent.

A distribution model filters a segment and
its subsegments according to whether the segment’s
content matches a defined filter value for a specified
field (called an “object type”). When applying this
type of filter to a field of an IDoc’s root segment, you
can control the further processing of the whole mes-
sage. In other words, if a filter condition on a root
segment isn’t met, then the entire message is neither
sent nor stored to the IDoc database. So, if you cannot
prevent the creation of an unneeded IDoc in the out-
bound application, you might at least be able to elimi-
nate it with a filter in the distribution model.

The other two filter types — segment filters
and views — can be used to adapt the scope of a
message’s record structure to the needs of a specific
business process.

You can apply a segment filter to any non-
mandatory segment of a message for a specific sender
system and receiver system. Segment filters are static,
which means they are not dependent on value-based
filter conditions — that is, the segment is always fil-
tered out as long as it belongs to the specified type
and partners. Its content is irrelevant. Normally you
would use a segment filter on the sender side for
filtering segments that are not relevant for a receiver
system. For example, a company with an SAP system
might send an ORDERS message to a partner with
an ERP system that cannot handle text information.
In this scenario, the sending company would statically
filter all text segments of the ORDERS message with
a segment filter. A segment filter can be useful on
the receiver side as well, when information (i.e., seg-
ments) sent by a partner cannot be handled by the
receiving partner.

A view is another static filter type. You define a
view as a subset of a given message type and assign it
to any distributed business process that contains the

message type that was parent to the view. The view
definition has no relation to the partners of a distrib-
uted business process, and views can be used in the
outbound process only. Take as an example a
company that has to send a shipping notification
(DESADV) to various sales companies, some of
which have different ERP systems and all of which
expect the same message structure. For easier mainte-
nance of the distributed business processes, the com-
pany can define a view for the DESADV message
and assign it to the partner definitions of the sales
companies. All partners will thus get the same subset
of the original DESADV message. If changes have to
be made later, the company only needs to maintain
that one view, which is effective for all of the sales
companies. Note that views are processed only by a
few outbound processes (e.g., DESADV, INVOIC),
however, so their usefulness for minimizing data is
very limited.

The remaining option for filtering messages in the
outbound process is user exit ALE00001. This user
exit allows you to delete data records of an IDoc dur-
ing version control processing. Getting this exit called
is a bit tricky. For more information on the conditions
under which this user exit is called, please refer to
the user exit documentation in transaction CMOD,
and to my article in the July/August 2003 issue of
this publication.

�� Note!

While Business Add-In IDOC_DATA_MAPPER
allows you to change field values in the data
segments of all IDocs, you cannot use it to directly
delete data segments, because you don’t have
update access to whole data segments. You can’t
use it to indirectly delete data segments either,
because it is called after the distribution model
filter in the outbound process, which means you
cannot use it to set values for the distribution
model filter. So, the only program exit you can use
to delete segments that can be applied to all IDocs
is user exit ALE00001.

SAP Professional Journal January/February 2004

94 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Filtering a Message in the ALE Layer of the
Inbound Process

At the beginning of the inbound process, the ALE
layer (➎) calls user exit ALE00001 for version con-
trol. In addition, the inbound ALE layer provides a
segment filter that works the same way as the segment
filter of the outbound process. The user exit is prima-
rily useful for effecting data transformations, while the
segment filter’s main function is to take a message the
sender regards as “standard” and adapt it to the busi-
ness process needs of the receiver. However, neither
the user exit nor the segment filter is very useful for
improving performance, because the reduction of the
data volume is limited to the inbound process.

Filtering Records Using Program Exits in the
Posting Application

In posting applications (➏), some program exits
(user exits and BAdIs) allow you to delete the data
records of a message or the structure records of the
business object to be posted. For instance, BAdI
BADI_MATMAS_ALE_IN allows you to delete
records of internal tables that correspond to the struc-
ture of material master document data, so you can
control data that should not be posted by the material
master posting application. Despite their ability to
reduce data volume by filtering records, however,
these tools have even less of an effect on performance
than segment filters in the inbound process.

Archiving and Reorganizing IDocs

All of the IDocs created on a system (whether inbound
or outbound) are stored in tables of the database (➐)
— e.g., tables EDIDC, EDID4, and EDIDS in SAP
R/3 4.x or R/3 Enterprise — so these tables grow con-
stantly as business processes are distributed. Even if
the size of these tables is not negatively affecting IDoc
processing performance, you can still improve overall
performance by reducing their size because IDoc
monitoring works faster when these tables are smaller.
Besides, there is not much to be gained by collecting
data that is no longer needed and is just consuming
database space!

For some pointers and ideas on archiving and
reorganizing IDocs and other ALE-related data
objects, please see the sidebar on the next page and
refer to the SAP library.4

Deleting IDocs

In some cases, IDocs will no longer be required —
in either the database or an archive — after an ALE
distribution is completed. These IDocs can be deleted
without being archived.

�� Note!

Before deleting an IDoc, be absolutely certain that
you do not need the IDoc data anymore. After the
IDoc is deleted, the data is irretrievably gone!

As of Web AS 6.20, you can use ABAP program
RSETESTD (transaction WE11) to delete IDocs and,
optionally, the data they reference (such as workflow,
application log, object relation, or communication
data). This program is intended for deleting IDoc
data created by SAP test tools, but you can use it
to delete any other IDoc data as well. Before using
RSETESTD in a production environment, be sure to
validate it thoroughly in a test environment.

For Further Information…

This discussion has highlighted the standard ALE
features and tools you can use to minimize the data
volume of your distributions. Because the tools that
allow you to restrict IDoc creation in the outbound
application can have the biggest performance impact,
the next section provides a more in-depth look at how

4 Navigate to mySAP Technology Components → SAP Web
Application Server → Middleware (BC-MID) → Application Link
Enabling (BC-MID-ALE): ALE Introduction and Administration →
Administration of ALE Functions → Optimizing ALE Performance.

Understanding and Optimizing Your ALE Data Distribution: Minimizing Data Volume

For site licenses and volume subscriptions, call 1-781-751-8799. 95

Notes on IDoc Archiving

To be able to use IDoc archiving properly, you need to keep the following points in mind:

At predefined points in the distribution process, ALE adds status records to an IDoc. It adds them
in table EDIDS (IDoc status records) and updates the status field in the IDoc’s control record (table
EDIDC). In an SAP system, you can decide, for each IDoc status, whether or not an IDoc with this
status in its control record can be archived.

To tell the system that a status is relevant for archiving, you must set the archive flag in table
STACUST to X. Maintain this table with transaction WE47 (Status Maintenance) and check the field
group Archiving to see if the status is set to archiving possible — some statuses are set to archiving
excluded, such as status 51 (Erroneous IDocs in SAP standard).

If you want to search for archived IDocs with transaction WE10 (IDoc Search for Business Content in
Archive), you will have to activate the archive info structure* for your IDoc archiving object:

1. To see if the archive info structure for your archiving object IDoc is activated, call transaction
SARJ (Archive Retrieval Configurator), enter SAP_IDOC_001 as the standard archive info
structure for the archiving object IDoc, choose Display, and then press the Technical data button.
If field Info structure active is not flagged in the pop-up screen, press the Activate button on the
initial screen of transaction SARJ. Note that if you have archived any IDocs without activating info
structures for them, you will have to set up info structures for those archive files (next step).

2. Still in transaction SARJ, navigate to Environment → Create Structure. A list of the existing
archive files will be displayed. Archives without an info structure have a red traffic light icon.
Mark those archives in the checkbox to the left of the traffic light icon and press the Set up
structures button (F7) to create an info structure. The screenshot below shows a Create
Structure screen with three archive files — two have info structures (the ones with green traffic
light icons) and one does not (the one with the red traffic light icon).

3. Once all the info structures are created, you can use transaction WE10 to search the archived
IDocs. Keep in mind that even though the IDocs are archived, each IDoc is represented through
one record in the info structure, which is part of the database, and thus the archived IDocs will
occupy database space.

�

�

�

green
light

* An info structure is a database table that acts as a pointer to an archived data object in the archive file system.

green
light

red
light

SAP Professional Journal January/February 2004

96 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

to use them. For more information on using any of
the features and tools that can be applied after the
outbound application is triggered (i.e., program exits,
reduced message types, the ALE layer filters, and
so forth), please refer to the SAP library and to my
previous article in the July/August 2003 issue of
this publication.

Restricting IDoc Creation in the
Outbound Application
As mentioned earlier in this article, one of the most
effective methods at your disposal for reducing the
data volume of an ALE distributed business process is
the selective creation of IDocs in the outbound appli-
cation. An outbound application that creates a master
IDoc might be triggered by one of several processes.
Depending on the process, you have different options
for selectively restricting the creation of IDocs.

Figure 7 lists the three master data processes
that trigger outbound applications and the means for
restricting IDoc creation that correspond with each
process. This section provides three detailed discus-

sions of how to minimize data volume when the out-
bound application has been triggered by one of these
processes. Of course, there are other types of out-
bound applications besides master data processes, but
minimizing master data volume is usually the most
rewarding way to improve performance — and you
may be able to apply the recommendations and tips
presented here to other types of outbound applications
as well.

Initial Data Transfer with an Executable
Program

When distributing master data, an initial data transfer
is usually required to build up the master data basis
on the receiver system. In SAP systems, an initial
data transfer is usually carried out by executable
programs that send the selected master data to the
receiver system. Generally, these programs provide
select-options for the master data key field, the
message type, and the classification. For example,
see Figure 8, which shows the select-options for Send
Material (transaction BD10) — material number,
class, and message type. Send Customers (transaction
BD12) provides select-options for customer number,
class, and message type.

Figure 7 Master Data Distribution

Process That Triggers the Outbound Application Means to Restrict IDoc Creation

Initial Data Transfer with an Executable Program • Select-options
• Classification
• Copying and extending select-options of the

standard program

Data Transfer of Changes Shared Master Data
(SMD) Tool

Workflow Event Linkage

• Reduced message type
• BAdI BDCP_BEFORE_WRITE (as of Web AS 6.20)
• Copying the standard change pointer processing

function module and adding selections

• Field restrictions of events for change documents
(transaction SWEC)

Request Master Data from the Source System via an
Executable Program

• Select-options
• Classification
• Copying and extending selections of the

standard outbound and inbound programs

Understanding and Optimizing Your ALE Data Distribution: Minimizing Data Volume

For site licenses and volume subscriptions, call 1-781-751-8799. 97

There are, of course, many exceptions. A case in
point is Send Characteristics (transaction BD91),
which provides the following select-options: the char-
acteristic’s name, validity, message type, and distribu-
tion lock. A distribution lock is directly linked to the
characteristic’s status. For instance, you might cus-
tomize a characteristic so that when it has the status
In preparation, it is “locked,” and when it has the sta-
tus Released, it is not locked. You could then selec-
tively send characteristics with the status Released.

To restrict the creation of IDocs, then, your first
step should be to investigate the select-options
provided for the master data. If these select-options
will not suffice (which is often the case), you will
need to judge whether it is worth copying the standard
program and adding custom select-options or imple-
menting the distribution model filter for further selec-
tions. Copying and extending the standard program
does not really enhance the maintainability of the sys-
tem. I recommend that course only if a huge amount
of data would otherwise have to be blocked by the dis-
tribution model filter.

Implementing custom select-options is an easy
task for an ABAP programmer. Normally a program
that sends master data will create an internal table
with all selected master data by evaluating the given
select-options. This internal table is a kind of “hit

list” of all master data to be sent and contains, at a
minimum, the master data keys. When adding custom
select-options to the program, the programmer simply
has to adapt the creation of the hit list or restrict the
hit list according to the custom selections.

After an initial data transfer, all changes to the
source master data and the newly created master data
have to be transferred in order to provide the receiver
with the actual data. Depending on the demands of
real-time data replication and data-selection require-
ments, changes might be transferred either by the
Shared Master Data (SMD) tool or through SAP
Business Workflow event linkage. Both functions
provide an opportunity to restrict IDoc creation. The
next two examples show you how.

Data Transfer of Changes: The Shared Master
Data (SMD) Tool

The Shared Master Data (SMD) tool is based on
change pointers, and change pointers are based on
change document items.5 So, change documents are

Figure 8 Send Material Master IDocs

5 A change document is identified by an object class (the business
object), an object ID (the instance of the business object), and a change
ID. The change document consists of a header record (table CDHDR)
with general data related to the change, such as date, user, and so forth,
and at least one item record (table CDPOS) with information about the
changed field.

SAP Professional Journal January/February 2004

98 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

the basis for SMD data replication. Each change
document item that relates to a distribution-relevant
field of a message type will result in the creation of a
change pointer.

Change pointers are stored either in tables BDCP
(change pointer) and BDCPS (change pointer status)
or in BDCP2 (a new table for change pointers as of
Web AS 6.20 — see the note below).

Transaction BD21 (program RBDMIDOC,
Creating IDoc Type from Change Pointers) will
process change pointers for the selected message type
in a batch. See Figure 9 for an example of a BD21
selection screen that will process change pointers for
message type MATMAS.

The delay time for data replication is controlled
by the intervals of RBDMIDOC batch job scheduling.
When a change pointer is processed by the SMD tool,

the change pointer process flag is set in table BDCPS
(BDCPS-PROCESS) or BDCP2 (BDCP2-PROCESS).

When change pointers are processed, all changes
to one instance of a business object are collected into
one IDoc per message type, so only the latest change
to an instance of a business object within one process-
ing batch will be transmitted. For each distribution-
relevant field that has changed, the entire segment that
contains the field is transmitted, along with all parent
segments and the mandatory segments of the IDoc.
Segments that do not contain changed fields and that
are neither parent to a segment with a changed field
nor mandatory for the IDoc will not be transmitted.

Ultimately, the creation and processing of change
pointers does not allow for much selectivity. The only
way to customize a subset of trigger fields for change
pointers of a whole message is by creating a reduced
message type. With a reduced message type, only

Figure 9 Processing Change Pointers

�� Note!

For performance reasons, the change pointer structure has been changed in Web AS 6.20 from a structure with
two tables (BDCP and BDCPS, which can be accessed with view BDCPV) to one with a single table (BDCP2).
Structures BDCP/BDCPS and BDCP2 coexist. To get an overview of which structure is valid for which message
type, look at view V_TBDA2X with transaction SM30 (Extended Table Maintenance). Change pointer processing
can be migrated to the new structure with report RBDCPMIG (see SAP Note 305462). Before migration, you must
first check to see whether the change pointer processing function module of the message type is able to process the
new structure. Field BDCP2SUP in table TBDME (transaction BD60) indicates if a message type’s change pointer
processing function module is compatible with the BDCP2 structure. With R/3 Enterprise, only a few message types
can be migrated to BDCP2. Note that to enhance upgrade performance, you should reorganize all unneeded change
pointers before upgrading to Web AS 6.20 (see SAP Note 513454).

Understanding and Optimizing Your ALE Data Distribution: Minimizing Data Volume

For site licenses and volume subscriptions, call 1-781-751-8799. 99

As of Web AS 6.10, you can implement BAdI
BDCP_BEFORE_WRITE to control changes before
they get posted to the change pointer tables. See
Figure 10 for a simple reference implementation that
suppresses change pointer creation for message type
MATMAS for any material master changes that user
DATAMIGR01 commits.

Figure 10 A Simple Reference Implementation for BAdI BDCP_BEFORE_WRITE

changes to fields defined in the reduced message type
can result in change pointer records. But if a message
type is not reducible, if you have to use the standard
message, or if you just want to switch off change
pointer creation, you will require some other way to
gain selective control over change pointer creation
or processing.

�� Note!

BDCP_BEFORE_WRITE is a filter-dependent BAdI in which the message type serves as the filter value. This
BAdI does not allow multiple implementations with the same filter value, however, which means there can be only
one active implementation for a filter value. For example, if you have an active BAdI implementation called
Z_SELECT_CP_MATMAS with message type MATMAS as the filter value, you cannot activate another BAdI
implementation with message type MATMAS as the filter value without first deactivating Z_SELECT_CP_MATMAS.
You can, however, implement and activate BAdIs with other message types as filter values.

SAP Professional Journal January/February 2004

100 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

For SAP Releases 4.6x, you have to do one of the
following to gain control over change pointer creation
and processing:

• Implement SAP Note 420562, which describes a
modification that provides features similar to
BAdI BDCP_BEFORE_WRITE (it’s a small
modification, but it is a modification on the stan-
dard, nonetheless).

• Create a copy of the message-type-dependent
SMD function module (FM) that processes the
change pointers, and replace the name of the orig-
inal FM with the new copy of the FM in field
IDOCFBNAME of customizing table TBDME
(transaction BD60, which controls the SMD pro-
cessing of FMs per message type). Then you can
add coding with your custom selections to the
copied FM. You can code your selections right
into the FM or define a custom BAdI in the FM
and add the selections in implementations of that
BAdI. The standard FMs for SMD change pointer
processing usually follow the naming convention:

MASTERIDOC_CREATE_SMD_<mestyp>

where <mestyp> represents the corresponding
message type.

�� Note!

This approach allows you to selectively process
change pointers, but it does not affect the creation
of change pointers. Therefore, you will have to
periodically reorganize the change pointers that
have been excluded from processing.

Data Transfer of Changes: Workflow Event
Linkage

Workflow event linkage with master data is based on
SAP Business Workflow events that are triggered by
change documents. In transaction SWEC (Events for
Change Documents), you can customize the trigger

conditions for events at a fine level of detail by setting
field restrictions on the events based on the change
document. There, you can specify at the field level
whether or not an event should be triggered. You can
even define logical conditions — for example, when
a new value is different from an old value, or when a
value has changed to a specified constant. When your
conditions are met in one or more specified fields, the
event is triggered.

In event linkage, an event is linked with a receiver
function module (a remote-enabled function module)
as defined in the event linkage transaction SWETYPV
(Type Linkages). The event will pass the object ID of
the instance of a business object to the function mod-
ule. The function module calls the ALE outbound
application that creates the IDoc. The event linkage
interface thus allows you to be highly selective about
which IDocs are created, and it works in near-real
time. But implementing and maintaining it requires
more know-how (including SAP Business Workflow,
ALE, and ABAP programming) than implementing
and maintaining the SMD tool. Another issue with
this interface is that in SAP Business Workflow and
ALE, Remote Function Calls (RFCs) are not queued.
This means that if you change the same master data
twice in quick succession, there is the possibility that
the second change will be processed before the first
change in the distributed business process, with the
result that the second change is overwritten by the first
change in the target object. This issue can only be
resolved by using the event queue (to make sure that
the workflow RFCs are in the right order) and imple-
menting a queued RFC with an inbound queue or by
serializing the master IDoc (both features will help get
the IDocs processed in the right order).

For more information on the event queue, refer to
the online documentation (http://help.sap.com) under
SAP NetWeaver Components → SAP Web Application
Server → Business Management (BC-BMT) →
WebFlow Engine (BC-BMT-WFM) → Reference
Documentation → Workflow System Administration
→ Event Manager Administration → Event Queue
Administration. For information on queued RFCs,
go to SAP NetWeaver Components → SAP Web
Application Server → Middleware (BC-MID) →

Understanding and Optimizing Your ALE Data Distribution: Minimizing Data Volume

For site licenses and volume subscriptions, call 1-781-751-8799. 101

Remote Function Call (BC-MID-RFC) → Queued
Remote Function Call (qRFC). For details on IDoc
serialization, see SAP NetWeaver Components → SAP
Web Application Server → Middleware (BC-MID) →
Application Link Enabling (BC-MID-ALE) → ALE
Introduction and Administration → Administration of
ALE Functions → Serialization of Messages.

For a good introduction to setting up interfaces
based on SMD or SAP Business Workflow event link-
age, see Amy Stapleton’s article “Real-Time,
Outbound Interfaces to Non-R/3 Systems Made
Simple with Change Pointers, Message Control, and
Workflow” in the Premiere Issue of this publication.

Selective Retrieval of Master IDoc Data —
Request Master Data from the Source System
via an Executable Program

The previous two scenarios — initial data transfer and
transfer of changes — represent a “push” technology,
because the source system that contains the data to
be distributed “pushes” the data to the receiver sys-
tem. Now we’ll look at SAP’s “pull” technology for
master data, where the receiver system can request
data from the source system.

In this scenario, a request IDoc is sent to the
source system. The request IDoc transmits the
requested message type and the select-options of
the master data to be requested. The source system
processes the request IDoc and returns the requested
IDocs. The programs for requesting master data usu-
ally provide select-options for the master data key
field and for classification — for example, transaction
BD11 (Get Material) provides select-options for mate-
rial number and classification, and transaction BD13
(Get Customers Master) provides select-options for
customer number and classification.

When restricting the data that is sent in this sce-
nario, it’s best to use the program’s standard select-
options. Enhancing the program’s interface by adding
custom selections can be quite awkward. While the
request IDoc itself can transmit any select-options,
you have to adapt the program on the sender side to
add new select-options. Likewise, you have to adapt

the program on the source system side to enable it to
process the additional selection criteria. In some
cases, however, you’ll want to enhance the program’s
interface, so here I will show you how.

�� Note!

Adding custom select-options to a program’s
interface requires some familiarity with ABAP
development. If you do not have sound ABAP
skills, ask an ABAP programmer to assist you
with the steps in this section.

Follow these steps to enhance a program’s inter-
face with additional select-options:

1. Using transaction SE38 (ABAP Editor) or SE80
(Object Navigator), create a new program by
copying the original sending program to the cus-
tomer namespace. Add the desired select-options
to the new program and add each select-option’s
record to the internal table that gathers the selec-
tion data for the request IDoc. For example,
T_REQIDOC is the internal table for the program
that requests material master data (RBDFEMAT).
Figure 11 shows a record from T_REQIDOC for
a material master select-option with an object
value of MATNR. Each record in T_REQIDOC is
represented in the request IDoc as one segment of
type E1ALER1.

2. Create a new function module on the system
that will receive the request IDoc by copying
the inbound function module that processes the
request IDoc on the source system side — e.g.,

Figure 11 A Select-Option Record

SAP Professional Journal January/February 2004

102 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

copy IDOC_INPUT_MATFET, which requests
the material master, to customer namespace
Z_IDOC_INPUT_MATFET. Adapt the coding to
the additional selection criteria. Don’t forget to
copy the top include entries and the relevant user-
defined include files of the function group.

Next we need to customize the control tables that
enable the newly created inbound function module to
be used in the ALE inbound process — i.e., we must
define a new process code for the extended request
inbound function module. Follow these steps:

1. Define the processing characteristics for the newly
created inbound function module. In transaction
SM30 (Extended Table Maintenance) create an
entry for the new function module in view
V_TBD51 (Characteristics of Inbound Function
Modules), as shown for inbound function module
Z_IDOC_INPUT_MATFET in Figure 12. Give
the new function module the same “input type”
and “dialog allowed” attributes as the original.

2. Assign the newly created function module to a
message type. In transaction WE57 (Assign
Function Module to Logical Message and
IDoc Type), copy the settings of the original
function module to the new function module
(Z_IDOC_INPUT_MATFET in Figure 13).

3. Define a new process code for the extended
request inbound process. In transaction WE42
(Inbound Process Code), create a custom process
code and give it a name and a description —
ZMTF and Fetch Material (Custom) in Figure 14
— and then duplicate the settings of the original
inbound process code.

4. Associate the new process code (ZMTF in the
example) with the inbound function module
and object definitions (see Figure 15). Using

Figure 12 Define the Characteristics of the Newly Created Inbound Function Module

Figure 14 Create a New Process Code

Figure 13 Assign a Message Type

Understanding and Optimizing Your ALE Data Distribution: Minimizing Data Volume

For site licenses and volume subscriptions, call 1-781-751-8799. 103

Figure 15 Associate the Process Code with the Inbound Function Module and Object Definitions

Helpful Hints

For a sound overview of an IDoc’s segments and fields, browse through the IDoc structure using
transaction WE30 or WE60.

Use the syntax check of the test tool for processing IDocs (transaction WE19) to verify that the
minimized IDoc retained the appropriate structure.

Create and change instances of the target business object with transaction WE19 to determine
whether the minimized IDoc will support the desired distributed business process.

If you require read access to archived IDocs, be sure to create archive info structures for those
archive files, which will allow you to use transaction WE10 to search the archived IDocs for control
and business data. Keep in mind that creating archive info structures consumes database space.

For more information about ALE:

• Refer to previously published SAP Professional Journal articles on ALE (see www.SAPpro.com).

• The SAP Service Marketplace (http://service.sap.com/netweaver) contains excellent
presentations in the ALE and EDI section. To download the presentations, choose Application
Link Enabling from the Related Technology Topics… dropdown list.

• Search the SAP Notes for ALE-related topics.

• Refer to the SAP online help at http://help.sap.com under SAP NetWeaver Components → SAP
Web Application Server → Middleware (BCMID) → Application Link Enabling (BC-MID-ALE).

�

�

�

�

�

SAP Professional Journal January/February 2004

104 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

transaction SM30 (Extended Table Maintenance),
copy the control information of the original
process code to table TBD52 (Function Modules
for Inbound ALE-EDI).

Conclusion
If you take one lesson away from this article, let it be
this: You will get the biggest performance gains by
minimizing data volume at the beginning of the dis-
tributed business process. Whenever possible, create
data transfer messages (IDocs) only for the data that
must be transferred. Then filter out all segments of
the created messages that you do not need.

This two-part article series has provided you with
a good foundation for optimizing the processing of an
ALE data distribution and reducing the system load by
minimizing the data to be processed. To find further
opportunities for improving performance, I recom-
mend searching the SAP Notes database. It contains
many practical tips on ALE performance.

Optimizing ALE distributed business processes
is a complex task. To ensure your success in setting
up and maintaining a stable and efficient ALE distri-
bution, my highest recommendation is to assemble a
distribution team that possesses all the requisite tech-
nical skills as well as good communication skills.

Arthur Wirthensohn is a senior consultant at EDS
Switzerland and a member of EDS’s international
Technical Leadership Network. He has worked
both as a project manager and product manager
in the ERP and IT integration business for many
years, mainly in the retail, consumer products,
manufacturing, and trade industries. For the
past two years, Arthur was the product manager
responsible for Application Services for SAP
systems. Currently, he is the project manager
and technical lead of the Enterprise Application
Integration (EAI) department, which delivers
SAP-related services such as ALE/EDI, SAP
Business Workflow, Web Application Server,
Data Migration, and ABAP Programming
Services. Arthur can be reached at
arthur.wirthensohn@eds.com.

