Achieving Platform-Independent Database Access with Open SQL/SQLJ

Achieving Platform-Independent
Database Access with Open SQL/SQLJ —
Embedded SQL for Java in the

SAP Web Application Server

Andreas Fischbach and Adrian Gorler

Andreas Fischbach,
Java Server Technology
Group, SAP AG

Adrian Gorler,
Java Server Technology
Group, SAP AG

(complete bios appear on page 30)

The Java programming language has two important qualities that are
indispensable for developing large-scale business applications:

» Javaadlowsyou to write entirely platform-independent code — akey
premise of the language is “write once, run anywhere.” At design
time, the Java compiler checks the source code for syntax and
semantics errors and converts it to platform-independent byte code.
At runtime, this byte code is executed by a Java virtual machine
regardless of the platform on which it is running.

« Javaisavery safe programming language with strict design-time
checks. Many issues (such as uninitialized variables) that would
lead to runtime errorsin other languages are detected at design
timein Java

Starting with Release 6.20, the SAP Web Application Server
(Web AS) contains a full-fledged J2EE" server that provides standard
Java application support for SAP environments. However, business
applications usually store persistent datain arelational database, and
although J2EE offers a standard for object persistence (entity beans),
you might want to use relational persistence to achieve full control
over the database access layer. So what support does Java provide for
developing relational persistence code? |sthere an offering with the
same qualities — platform independence and design-time checks —
as the Java programming language itself?

Unfortunately, Java alone does not offer a satisfying solution. Java
relies on Java Database Connectivity (JDBC), which is merely an API

* Java 2 Platform, Enterprise Edition.

For site licenses and volume subscriptions, call 1-781-751-8799. 3

SAP Professional Journal January/February 2004

for executing SQL statements on the database and
processing the results. Because JDBC doesn’'t use a
standardized SQL grammar, the SQL statements are
not checked. Typically, you need to manually adapt
JDBC code to the individual target database and test
it very thoroughly. And since JDBC is adynamic pro-
tocol, the SQL statements sent to the database cannot
be checked at design time, so errors might only be
detected during productive use.

SQLJ (or “SQL Java’) takes adifferent approach.
SQLJis an ISO? standard for accessing relational data-
bases from Java by embedding static SQL statements,
which can be checked at design time, directly in the
Java code, providing the statement-checking capabil -
ity that the IDBC API lacks. SQLJ does not specify
the SQL grammar to be supported by the databases
accessed, however, so you still need to adapt the code
to the target database.

Release 6.30 of the Web AS offers an all-encom-
passing solution for developing relational persistence
code — Open SQL for Java. A key part of thisframe-
work is Open SQL/SQLJ, which is an implementation
of SQLJthat istruly platform-independent. With
Open SQL/SQLJ, you can write persistence code that
runs on any database supported by Web AS 6.30 with
equivalent syntax and semantics, which will be
checked at design time. It relieves you of the burden
of adapting the persistence code to the target database.
With Open SQL/SQLJ, the ability to “write once, run
anywhere” and perform strict design-time checks
becomes areality for persistence code.

Thisarticleisthefirst in a series on Java persis-
tencein the 6.30 release of the Web AS. It provides
an introduction to using Open SQL/SQLJ for develop-
ing database-centric web applications with the SAP
NetWeaver Developer Studio, SAP's new develop-
ment environment for Java-based applications. We
will first introduce you to the Open SQL for Java
framework. We will then explain the fundamental
concepts of SQLJ and walk you through a series of
examplesthat illustrate how to apply the most impor-

> International Organization for Standardization (www.iso.or g).

tant features of Open SQL/SQLJ. Finally, you will
learn how Open SQL/SQL Jfitsinto the NetWeaver
Developer Studio and the Web AS. Note that some
familiarity with Java programming, especially using
JDBC, is assumed.

An Introduction to Open SQL
for Java

Writing persistence code with JDBC, which istailored
to accommodate many different databases, is very
cumbersome. Although SQL isan I SO standard,
individual databases understand awide variety of SQL
dialects with many syntactical variants. In addition,
the supported data types and type properties differ
greatly between databases.

Open SQL for Java’ is anew SAP framework
contained in Web AS 6.30 that was devel oped to level
these differences between individual databases and
JDBC drivers. Figure 1illustrates the architecture
of thisframework. The heart of Open SQL for Java
isthe “Open SQL checker,” which checks SQL
statements for conformance with the Open SQL
grammar. This grammar is a subset of the |SO stan-
dard SQL-92 that is syntactically recognized by all
databases supported by Web AS 6.30. The Open SQL
grammar roughly comprises SQL-92 Entry Level.*
All SQL statementsthat are part of this subset are
guaranteed to execute with identical semantics on any
of the supported databases.

To abstract from the names and properties of the
data types supported by individual database vendors,
the Open SQL framework contains a“logical catalog”
that is independent of the underlying database. The
logical catalog is available at runtime in the J2EE
server, aswell as offline at design timein the
NetWeaver Developer Studio. All database tables
arefirst created in the design time catalog and

® A future article will cover Open SQL for Javain more detail.

* For more information on the Open SQL grammar, refer to the SAP
NetWeaver Developer Studio product documentation (see the sidebar
on page 30).

4 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Figure 1 The Open SQL for Java Framework

Java Program

Open Lo Open
SQL/sQLJ : SQL/JDBC

logical catalog

A A

SQLJ Open SQL
Runtime Checker

I logical catalog
(offline)

i

v

at runtime

........ at design time

Database

~ @@

then deployed to the J2EE server. As part of the
deployment, the datatypesin the logical catalog are
mapped to the data types of the database being used,
and then the actual databasetableis created.

Overview of Basic SQLJ
Concepts

As afoundation for the examples that follow,
we begin with adiscussion of SQLJ and how it
works. You need to understand the following
fundamental concepts:

e How the SQLJ standard evolved

e Therole of the SQLJtranglator as a preprocessor
e SQLJstatements and syntax

» Connecting to databases via a connection context

e Processing result sets with iterators

Evolution of the SQLJ Sandard

SQLJisastandard that specifies the interoperation
between the Java programming language and SQL.

It was developed by a consortium of companies com-
prising Cloudscape, Compag, IBM, Informix, Oracle,
Sun, and Sybase. SQLJwas originally filed asan
ANSI standard consisting of three parts:

e SQLJ Part 0— Object Language Bindings
(for using embedded static SQL in Java)

e QLI Part 1 —SQL Routines Using the Java
Language (for using Javain stored procedures)

e SNLJPart 2—SQL Types Using the Java
Programming Language (for using Java with
user-defined data types)

In 2000 and 2002, an extended version of SQLJ
was adopted as an | SO standard:

e 1SO/IEC 9075-10: 2000 — SQL/Object Language
Bindings (SQL/OLB)

* |SO/IEC 9075-13:2002 — SQL Routines and
Types Using the Java™ Programming Language
(SQL/JRT)

Open SQL/SQLJisthe SAP implementation of
SO 9075-10, which is an extension of the original
SQLJPart 0 standard. Thisimplementation consists
of two pieces of software — the SQL J trandator,
which processes the SQL J source code at design
time, and the SQL J runtime, which executes SQLJ
at runtime.

The SQLJ Trandator

SQLJ alows you to embed SQL statements directly
in the Java source code. The grammar of the SQLJ
source code is standard Java, extended by special
SQLJ statements that start with the token #sgl.
Obviously, the standard Java compiler (javac) cannot
understand these SQL J statements. Therefore, as a
first step, a preprocessor called the “ SQLJ trand ator”
trandates the SQL J source file into an intermediate
Javafile. Inthisfile, the SQLJ statements are

For site licenses and volume subscriptions, call 1-781-751-8799.

SAP Professional Journal January/February 2004

Figure 2 ISO Standard SQLJ Translator

Figure 3 The Open SQL/SQLJ Translator

SQLJ
Source File

\ 4

(SQLJ Translator]

\ 4 \4

Intermediate . .
Java File Profile File
\ 4 \4
. Vendor-
javac Specific Profile
Customizer
\ 4 \ 4
Java Customized
Class File Profile File

SQLJ
Source File

v

[Open sQL/sqQLJ Translator]

\ 4

Intermediate
Java File

Java
Class File

replaced by callsto the SQLJ runtime. The Java
compiler trandates this intermediate Javafile to
Java byte code, which can be executed by any Java
virtual machine.

In the reference implementation of SQLJ, the
intermediate Java files do not contain the embedded
SQL statements. Instead, they are stored in separate
profilefiles that are used at runtime for program
execution. Theintention was that these profile files
would be customized for the database by a vendor-
specific post-processor called a* profile customizer”
in order to adapt the statements to the specifics of the
vendor database (as shown in Figure 2). However,
SQL J does not specify the SQL subset that a profile
customizer must be able to understand. Therefore,
in the SQL J reference implementation, the porting
problem remains unsolved.

In the SAP implementation, the Open SQL/SQLJ

trandator takes a slightly different approach (as
shown in Figure 3). Thetrandator itself is capable

of performing platform-independent syntax and
semantics checks. Thus Open SQL/SQLJ requires

no profile customization. The Java code produced

by the Open SQL/SQLJtranslator is entirely platform-
independent and can be executed against the accom-
panying Open SQL/SQLJ runtime without any
additional profilefiles.

At design time, the Open SQL/SQLJ trandlator
performs syntax and semantics checks via the same
SQL checker used by Open SQL/JDBC” at runtime.
This ensures that Open SQL/SQLJ and Open SQL/
JDBC use the same Open SQL grammar. The build
environment automatically triggers the translation
process. Asaresult, you never need to work with

* The Open SQL for Java framework also includes Open SQL/JDBC,
which provides standard database access via JDBC with dynamic SQL.

6 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Figure 4 Embedded SQL in Java
int selectCol (Ctx ctx) throws SQLException {
int var;
. . . sQLJ
#sql [ctx] { Select col into :var FROM tab };

o

return var;

the intermediate Java file — you always modify the
SQLJ sourcefile.

SQLJ Statements and Syntax

Figure 4 shows the various elements of SQLJ source
code. SQLJ statements start with the keyword #sq|
and end with asemicolon. The SQL text isenclosed
in curly brackets ({...}). Javacode, aswell asthe
additional SQLJ keywords #sqgl, context, iterator, and
with, are case-sensitive. However, SQL statement
text is case-insensitive. The SQL text may also
contain “host variables,” which are prefixed with a
colon. Host variables are embedded Java variables
that are used to exchange values between Java and
SQL. Open SQL/SQLJ supportsthe full set of SQL
statements specified by the Open SQL grammar, as
well as single row queries, the transaction demarca-
tion statements COMMIT and ROLLBACK, and the
iterator conversion statement CAST.

Connecting to Databases via a Connection
Context

A database connection specifies the database, the
session, and the transaction to be used. In SQLJ, the
database connection is represented by the “connection
context.” A connection context is an instance of a

user-specified classthat is declared using an SQLJ
context declaration of the form:

#sql <modifiers> context
<java class name> ;

From this declaration, the SQL J translator gener-
ates a Java class <java class name> that implements
the interface sglj.runtime.ConnectionContext. This
connection context is constructed from a JDBC
connection, which istypically obtained from a
JDBC DataSource looked up in the Java Naming
and Directory Interface (JNDI):

Context jndiCtx =
new InitialContext () ;

DataSource dataSource =
(DataSource) jndiCtx.lookup (
"jdbc/SQLJ EXAMPLE") ;

Connection connection =
dataSource.getConnection () ;

Ctx ctx = new Ctx(connection) ;

For convenience, you can directly associate a
connection context class with aJDBC DataSource.
In this case, the declaration takes the following
form instead:

For site licenses and volume subscriptions, call 1-781-751-8799.

SAP Professional Journal January/February 2004

#sql <modifiers> context
<java class name>
[with (dataSource =
" <data source name> ")] ;

The default constructor of the context then auto-
matically obtains the connection from the associated
DataSource:

Ctx ctx = new Ctx () ;

In Open SQL/SQLJ, all queries and DML® state-
ments must use an explicit connection context. In
other words, these types of statements must contain
an expression that designates the connection context
object on which it will be executed. Otherwise, a
syntax error will be issued.

Processing Result Setswith Iterators

In JDBC, you access the result set of a query through
the JIDBC ResultSet interface. Thisinterface allows
you to process result sets with any number of
columns. However, it offers only generic getter
methods that are not specific to the column type.
Using a JDBC ResultSet can be very error-prone
because type safety is not guaranteed. Any errors
will only be detected at runtime.

SQLJ greatly facilitates processing result sets
returned by queries. As opposed to JDBC, you do not
need to access the JDBC result set directly. Instead,
SQLJalowsyou to declare a*“result set iterator” with
awell-defined (i.e., permanently defined at design
time) number of strictly typed result set columns.
SQL J supports two types of result set iterators —
“positional iterators’ and “named iterators.” The posi-
tional iterator specifies only the types of the result set
columns. The named iterator aso specifies the col-
umn names and has accessor methods with the same
names as the result set columns. These named acces-
sor methods make named iterators much more useful
and easy to use than positional iterators. Therefore,
we concentrate on named iterators in our examples.

° DataManipulation Language (DML).

You declare named iterators using the following
syntax:

#sql <modifiers> iterator
<java class name> (
<java datatype> <java id>
(, <java datatype> <java ids>)*);

From this declaration, the SQLJ trandlator gener-
ates a Java class <java class name> with named
accessor methods that retrieve the values of the result
set column with the corresponding name. Iterator
compatibility with the result set column is automati-
cally checked at design time. Thus an iterator isa
very convenient and type-safe way to access the result
Set columns.

Putting Open SQL/SQLJ to Work
with Some Examples

Now that you are familiar with the basic concepts of
SQLJ, let’'s take a closer look at Open SQL/SQLJ at
work. To provide a practical foundation for learning,
we will walk through a series of examplesthat illus-
trate the key features of Open SQL/SQLJ.

In the following examples, we want to focus on
how to use Open SQL/SQLJ. To avoid detracting
from the persistence code, we use small example
Java classes to demonstrate the interesting features.
These classes all implement the interface SgljExample
(see Figure 5), which defines arun method with the
signatureinline 8":

public void run (PrintWriter pw)
throws SQLException;

The run() method takes PrintWriter pw as a
parameter, and the example classes write their simple
output using the println method of the PrintWriter
supplied.

" Note that line numbers have been added to the code listings for your
convenience.

8 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Figure 5

The Interface SqljExample (SqljExample.java)

package com.sap.sqglj.examples;

import java.io.PrintWriter;
import java.sqgl.SQLException;

public interface SgljExample {

1
2
3
4
5
6
7
8 public void run (PrintWriter pw)
9

}

throws SQLException;

In the last section of thisarticle, you will learn to
build a suitable framework that wraps the example
classes discussed in the article in a Java servlet that

executes in Web AS 6.30 and displays the output in a
web browser.

Figure 6

The Data Model Used for the Examples

Our examples use a simple data model that consists
of two database tables— TMP_SQLJ_EMP (shown
in Figure 6), which contains employee data, and

Table TMP_SQLJ_EMP in the NetWeaver Developer Studio Table Editor

File Edit Mavigate Search Project Run ‘Window
S
|-

Help
s MRS R RA

3£ Dictionary - TMP_SQL]_EMP - SAP NetWeaver Developer Studio B

Sii=lkd

-

=1 || (3 Dictionary Explarer ables x
Mlle2 | = & Edit table Al
= || = & Sali_tables
= =1 3 Dictionaries General Information
=0 a' Dictionary Describe the table
[+ Daka Types
= Table:
[+ 7] Database Tables |TW—SQU—EMP
Description: |
™ Multi-client enabled
Columns
Define the columns of the table
ER PEBDFDOHD EHE
Column Name | key | Simple Type Package | Simple Type | Buit-In Type | Length | Decimals | Mot Ml | Descri
EMP_ID v integer |
FIRST_NAME string 32 |
LAST_MAME | | string 32)
[" A A I |
DEP_ID & integer |
Dictionary Explorer | Navigator
55 Outine 1% x _[ﬂ
= [I]] TMP_SQLI_EMP 12l | L
+-[% EMP_ID Columns Indexes | Technical Settings
#- [FIRST_NAME = ;
+ LAST NAME Tasks (0 ikems) L ov x
+ [saLARy |] ¢ | pescription Resource | In Folder Location
+[DEPID
(& Indexes
Fa Wirltable

For site licenses and volume subscriptions, call 1-781-751-8799.

SAP Professional Journal January/February 2004

Figure 7

Table TMP_SQLJ_DEP in the NetWeaver Developer Studio Table Editor

| Column Mame

| Key | Simple Tvpe Package | Simple Type | Built-In Tvpe | Length | Decimals | Mot kull | Description

DEP_ID o

integer

TMP_SQLJ DEP (shownin Figure 7), which
contains department data. The two tables are related
by the column DEP_ID. (Wewill look at how to
create these tables in alater section.)

Connection Context for the Examples

All of our example classes connect to the database
using a JDBC data source that can be looked up in
the INDI under the name jdbc/SQLJ_EXAMPLE. To
access this data source, in line 3 of Figure 8 (Ctx.sqlj)
we declare a connection context class named Ctx that
al of the examples will use:

#sql context Ctx with
(dataSource =
"jdbc/SQLJ_EXAMPLE") ;

This declaration associates the connection context
class Ctx with the data source jdbc/SQLJ_EXAMPLE.
From this declaration, the SQL J trandlator generates a
Java class named Ctx. The default constructor of this
class automatically looks up jdbc/SQLI_EXAMPLE in
JINDI and obtains a connection from the data source.

Figure 8 The Connection Context (Ctx.sqlj)

1 package com.sap.sglj.examples;

2

3 #sgl context Ctx with (dataSource
= "jdbc/SQLJ EXAMPLE") ;

Example #1: Executing DML
Statements

In our first example, weillustrate the basic technique

of using SQL Jfor executing SQL statements on the
database. The DML statements INSERT, UPDATE,
and DELETE are agood place to start because they
produce no result set.

The example in Figure 9 (SmpleSatement.sqlj)
initializes the data model for the examples that
follow. To ensure reproducible results, wefirst erase
al datafrom the database tables TMP_SQLJ EMP
and TMP_SQLJ DEP. We then create an entry
for the Human Resources department in the table
TMP_SQLJ DEP.

In order to access the database, we first create
an instance ctx of the connection context class Ctx.
Because the connection context class Ctx is associated
with a data source, we can obtain a connection simply
by calling its default constructor in line 10:

Ctx ctx = new Ctx() ;

Next, using the connection context ctx, in
lines 14-26 we execute the SQL J statements that
are necessary to initialize the data model on the
database:

#sql [ctx]
{ delete from TMP SQLJ DEP };
[...]
#sql [ctx]
{ delete from TMP SQLJ EMP };
[...]
#sql [ctx]
{ insert into TMP SQLJ DEP
(dep_id, name)
values (1, 'Human Resources') };

Remember that every executable SQLJ state-
ment starts with the token #sgl. Immediately after

10 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Figure 9 Source Code for the DML Statements Example (SimpleStatement.sqlj)

1 package com.sap.sqlj.examples;

2

3 import java.io.PrintWriter;

4 import java.sqgl.SQLException;

5 import sqglj.runtime.ExecutionContext;

6

7 public class SimpleStatement implements SgljExample

8

9 public void run(PrintWriter pw) throws SQLException ({

10 Ctx ctx = new Ctx() ;

11 ExecutionContext ecx = ctx.getExecutionContext () ;

12

13 try {

14 #sgl [ctx] { delete from TMP SQLJ DEP };

15 int rc = ecx.getUpdateCount () ;

16 pw.println(rc +

17 " row[s] deleted from table TMP_ SQLJ DEP.
");

18

19 #sqgl [ctx] { delete from TMP SQLJ EMP };

20 rc = ecx.getUpdateCount () ;

21 pw.println(rc +

22 " row[s] deleted from table TMP_ SQLJ EMP.
");

23

24 #sgl [ctx] {

25 insert into TMP_SQLJ DEP (dep id, name)

26 values (1, 'Human Resources') };

27 rc = ecx.getUpdateCount () ;

28 pw.println(rc +

29 " row[s] inserted into table TMP_SQLJ DEP.
");

30 #sql [ctx] { commit work };

31 } finally {

32 ctx.close() ;

33 }

34 }

35 }
this token, you specify the connection context under any circumstances, in lines 31-33 we call the
instance [ctx] on which the statement is to be exe- close() method in the finally block corresponding
cuted. The SQL statement text is embedded in curly to the try block that encloses the SQL J statements
brackets, and the SQLJ statement is terminated with (lines 13-33):
asemicolon.

try {

In the J2EE server, al applications share the [...]
same connection pool, so we must not forget to } finally
close the connection context after usage. To ensure ctx.close();
that the used connections are returned to the pool J

For site licenses and volume subscriptions, call 1-781-751-8799. 11

SAP Professional Journal January/February 2004

Closing the connection context in the finally block
ensures that the underlying database connection,
which is a scarce resource, is aways closed and the
associated resources are freed.

Example #2: Specifying
Parameters in SQL Statements
with Host Variables

Very rarely (such asin the previous example) you
can statically specify al values contained in an SQL
statement by SQL literals. More commonly, SQL

statements require the use of parameters that are
assigned at runtime. In SQLJ, Java variables or even
complex Java expressions can be parameters of SQL
statements. You embed these host variables and host
expressions directly in the SQL statement text. Inthe
Open SQL framework, the SQL J trandator has access
to an offline representation of the database schema
that contains the JDBC typesfor al database columns
involved in the SQLJ statement. It usesthistype
information to perform strict type checks to ensure
that the Java type of the host variable or the result
type of the host expression can be safely used at its
syntactical position in the SQL statement.

Figure 10 Source Code for the Host Variables Example (HostvarStatement.sqlj)
1 package com.sap.sglj.examples;
2
3 import java.io.PrintWriter;
4 import java.sql.SQLException;
5
6 public class HostvarStatement implements SqgljExample
7 private Ctx ctx = null;
8
9 private void insertEmployee (
10 PrintWriter pw,
11 int empId,
12 String firstName, String lastName,
13 int salary, int depId)
14 throws SQLException {
15 #sqgl [ctx] {
16 insert into TMP_SQLJ EMP
17 (EMP_ID, FIRST NAME, LAST NAME,
18 SALARY, DEP_ID)
19 values
20 (:empId, :firstName, :lastName,
21 :salary, :depld) };
22 pw.println ("Employee " +
23 lastName + ", " + firstName +
24 " inserted.
") ;
25 }
26
27 public void run(PrintWriter pw) throws SQLException (
28 String[] departments = ({
29 "Financials",
30 "Research and Development" };
31
32 ctx = new Ctx();
33

12 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

In our next example, we use host variables to
further populate TMP_SQLJ DEP, the table of
departments. Thistechnique allows usto use a
single INSERT statement that is executed with differ-
ent parameters for each row to be inserted. An array
named departments contains the names of the
departments to be inserted.

Asin the previous example (Figure 9), in
Figure 10 (Hostvar Satement.sqlj) we start by
obtaining a connection context instance named ctx in
lines 28-32:

Figure 10 (continued)

String[] departments = ({
"Financials",

"Research and Development" };

ctx new Ctx () ;

To insert the data, we loop over the array
departments and insert each array element. On every
iteration, we assign the department name to the Java
host variable name. To demonstrate the use of a host
expression, we also inserted a Java expression (the
loop counter i + 2) asthe department ID. Before the

34 try {

35 for (int i = 0; i < departments.length; i++) {
36 String name = departments[i];
37 #sgl [ctx]

38 insert into TMP_SQLJ DEP
39 (dep_id, name)

40 values (:(i + 2), :name) };
41 pw.println ("Department "

42 + name

43 + (Il

44 + (1 + 2)

45 + ") inserted.
") ;

46 }

47 pw.println ("
") ;

48 insertEmployee (pw, 1,

49 "Johnny", "Weissmueller", 1000, 1);
50 insertEmployee (pw, 2,

51 "Mark", "Spitz", 2000, 2);

52 insertEmployee (pw, 3,

53 "Jenny", "Thompson", 350, 2);
54 insertEmployee (pw, 4,

55 "Janet", "Evans", 350, 2);

56 insertEmployee (pw, 5,

57 "Michael", "Gross", 4000, 3);
58 insertEmployee (pw, 6,

59 "Grant", "Hacket", 100, 4);

60 insertEmployee (pw, 7,

61 "Vladimir", "Salnikov", 500, 4);
62

63 #sgl [ctx] { commit work };

64 } finally {

65 ctx.close() ;

66 }

67 }

68 }

For site licenses and volume subscriptions, call 1-781-751-8799.

13

SAP Professional Journal January/February 2004

statement is executed, the Java expression is evaluated
and the result taken as the input value (lines 35-46):

for (int i = 0;
i < departments.length;
i++) |

String name = departments[i];
#sql [ctx] {
insert into TMP_SQLJ DEP
(dep_id, name)
values (: (i + 2), :name) };

[...]

To fill the data model with some employees, we
create an insertEmployee() method (lines 9-25):

private void insertEmployee (
PrintWriter pw, int empId,
String firstName,
String lastName,
int salary, int depId)
throws SQLException {
#sql [ctx] {
insert into TMP_SQLJ EMP
(EMP_1ID,
FIRST NAME, LAST NAME,
SALARY, DEP_ID)
values
(:empId,
:firstName, :lastName,
:salary, :depld) };
pw.println (
"Employee " +
lastName + ", " + firstName +
" inserted.
") ;

This method will be called with different argu-
ments for each employeeto beinserted. Again, we
must not forget to close the connection context in the
finally block (lines 34-66):

try {

[...1]

} finally {
ctx.close () ;

}

If you have used JDBC before, this simple
example strikingly illustrates the benefits of using
the SQL J host variable approach instead of the
JDBC setXxx() methods. In JDBC, correctly deter-
mining the ordinal position and type of the host
variablesin an SQL statement can be very error-
prone. This problem is especialy prevaent if the
number of parameters changes during development.
In SQLJ, you are completely relieved from this
burden because the respective checks are performed
at design time.

Example #3: Retrieving Single
Row Result Sets with a Single
Row Query

So far, we have only executed DML statements

that manipulate data. Now, we are going to use
simple queries to retrieve data from the database.

If the result set returned by a query contains only one
row, you can fetch the result set columns directly into
host variables without using aresult set iterator. In
SQLJ, you can easily perform this operation with a
“single row query.” Typically, you use this technique
to retrieve asingle row of datathat is uniquely identi-
fied by its primary key.

v Tip

In contrast to a general SELECT statement, a
single row query must not be a UNION and must
not contain a GROUP BY, HAVING, or ORDER
BY clause.

In Figure 11 (SngleSdlect.sqlj), weuse a
single row query to determine the first name and
last name of an employee with agiven ID empld
(lines 13-25):

14 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Figure 11 Source Code for the Single Row Query Example (SingleSelect.sqlj)
1 package com.sap.sqlj.examples;
i import java.io.PrintWriter;
4 import java.sqgl.SQLException;
2 public class SingleSelect implements SqgljExample(
; public void run(PrintWriter pw) throws SQLException ({

9 Ctx ctx = new Ctx();

10 try {

11 int empId = 5;

12 String firstName, lastName;

13 #sqgl [ctx] {

14 select FIRST NAME, LAST NAME

15 into :firstName, :lastName

16 from TMP_SQLJ EMP

17 where emp id = :empId };

18 pw.println (

19 "The name of the employee with the id "
20 + empId
21 + " is "
22 + firstName
23 45 n n

24 + lastName

25 + ".
");

26

27 int maximum;

28 #sgl [ctx] { select max(salary)

29 into :maximum

30 from TMP SQLJ EMP };

(continued on next page)
another single row guery to determine the maximum

#eal [ctx] | salary of all employees (lines 28-30):

select FIRST NAME, LAST NAME ary of all employees (lines 28-30):

into :firstName, :lastName

from TMP_SQLJ EMP
where emp id :empId };
pw.println (
"The name of the employee
with the id " + empId +
u + firstName +
+ lastName +
" .
") ;

is n

However, asingle row query is not restricted to
retrieving data with afully specified primary key.
You can use it for any statement that returns a result
set with exactly onerow. In our example, we use

#sql [ctx] {
select max (salary)
into :maximum
from TMP SQLJ EMP };

v Tip

According to SQL syntax, the INTO clause must
immediately follow the SELECT list.

For site licenses and volume subscriptions, call 1-781-751-8799.

15

SAP Professional Journal January/February 2004

Figure 11 (continued)

31 pw.println (

32 "The maximum salary of all employees is "
33 + maximum + ".");

34 } finally {

35 ctx.close() ;

36 }

37 }

38 }

Example #4: Processing
Multi-Row Result Sets with
a Named lterator

Generdly, a query produces aresult set with multiple
rows. SQLJoffers apowerful tool called a*“named
iterator” for processing a multi-row result set in a con-
venient way. A named iterator is aJava class that can
be thought of as an SQL cursor with awell-defined
number of strictly typed and named columns. Inthis
next example, we use a named iterator to retrieve the
names of all employees.

In Figure 12 (MultiSelect.sqlj), we start by declar-
ing the named iterator class Employeelter with the
columnsemp_id, first_name, and last_name (lines 8-9):

#sql private static iterator

Employeelter (int emp_id,
String first name,
String last name) ;

From this declaration, the SQLJ trand ator gener-
ates an iterator class Employeelter with the following
three accessor methods (with names that match the
columns): emp_id(), first_name(), and last_name().

Because the iterator is used only in this class,
we declared it as a private static inner class of
MultiSelect. If you intend to use an iterator class
in other classes, you would declare an iterator in a
separate source file as a (public) top-level class,
alowing reuse of theiterator class.

In order to use the iterator, we declare an instance
variableiter of type Employeelter. Then we assign
the result of aquery toiter (lines 14-18):

Employeelter iter;

#sql [ctx] iter = {
select emp id, first name,
last name
from TMP SQLJ EMP };

After this assignment, the iterator points to
the position before the first row of the result set.
You typically process a named iterator in aloop
(lines 20-29):

while (iter.next ()) {
pw.println(iter.emp id() +
" " 4+ iter.first name() +
" " 4+ iter.last name() +
"
") ;

}

iter.close() ;

On every iteration, the next() method advances
the iterator to the next row of the result set. Then the
generated accessor methods emp_id(), first_name(),
and last_name() extract the values from the respective
result set columns. The loop terminates when the
return value of the next() method indicates that no
more result set rows are available.

Asin our previous examples, we close the
connection context in the finally block (lines 30-32).

16 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Figure 12 Source Code for the Named Iterator Example (MultiSelect.sqlj)
1 package com.sap.sqglj.examples;
2
3 import java.io.PrintWriter;
4 import java.sql.SQLException;
5
6 public class MultiSelect implements SgljExample{
7
8 #sqgl private static iterator Employeelter

9 (int emp id, String first name,

10

11 public void run(PrintWriter pw) throws SQLException
12 Ctx ctx = new Ctx();

13 try {

14 Employeelter iter;

15

16 #sgl [ctx] iter = {

17 select emp id, first name,
18 from TMP_SQLJ EMP };
19

20 while (iter.next ()) {

21 pw.println (

22 iter.emp id()

23 + v

24 + iter.first name ()
25 + v

26 + iter.last name ()
27 + "
") ;

28 }

29 iter.close() ;

30 } finally {

31 ctx.close() ;

32 }

33 }

34 }

String last name) ;

last name

Example #5: Obtaining Return
Values from the Execution
Context

Let'srevisit our first example (refer back to Figure 9).

There, in line 14, we used a DELETE statement as an
example of asimple SQLJ statement:

#sql [ctx]
delete from TMP SQLJ DEP };

If this statement fails to execute on the database,
an SQLException will be thrown. We could catch this
exception and handle the error situation appropriately.
But if the statement executes successfully, how would
we determine the number of database rows affected
by the statement? In JDBC, thisinformation is
returned by the executeUpdate() method of the JDBC
Satement used to execute the DELETE. However, in
SQLJ, aDELETE statement has no return value.

You obtain thisinformationin SQLJin a

For site licenses and volume subscriptions, call 1-781-751-8799.

17

SAP Professional Journal January/February 2004

different way. Every executable SQLJ statement
(SELECT, INSERT, UPDATE, DELETE) runsin an
“execution context,” which is an instance of the class
sqlj.runtime.ExecutionContext. The execution context
givesyou control over certain parameters that affect
the execution of a statement, such as the maximum
number of rowsto be returned by aquery. It also
allows you to retrieve information related to the exe-
cution of a statement, like warnings returned by the
database or, asin our example, the update count. |f
not otherwise specified, a statement runsin the default
execution context of the current connection context.

In our example, we execute the DELETE state-
ments using the default execution context, which is
obtained from the getExecutionContext() method
of the connection context (line 11 in Figure 9):

ExecutionContext ecx =
ctx.getExecutionContext () ;

From this execution context, we obtain the update
count of the DELETE statement executed through the
getUpdateCount() method (lines 14-17 in Figure 9):

#sql [ctx]
delete from TMP SQLJ DEP };
int rc = ecx.getUpdateCount () ;
pw.println(rc +

" row[s] deleted [...].
");

Example #6: Achieving Better
Performance via Batch Updates

In a previous example (refer back to Figure 10), we
inserted data consecutively for multiple employees
into the table TMP_SQLJ EMP. For each employee,
we executed a separate INSERT statement. All of
these statements are basically identical, but parame-
terized differently. However, every execution requires
multiple roundtrips between the application server and
the database. First the statement is prepared, then the
parameter (host variable) dataistransferred, and
finally the statement is executed.

You can dramatically improve performance by
using “batch updates” instead of a series of identical
statements. With this technique, the update statement
is prepared once. Next, the parameter values of al
statements in the batch are collected on the application
server and sent to the database in a single roundtrip.
Finally, the database executes the statement using the
parameter batch. Thus the batch execution requires
only one roundtrip, and the database can process the
datawith ahighly efficient array operation.

Batch updates are a new, optional feature of the
SQLJ standard; individual SQLJimplementations are
not required to support it. 1n SQLJ, the execution
context of a statement controls batching. Therefore,
to use batching according to the SQLJ standard, you
must follow these steps.

1. Enable batching on the execution context.

2. Execute aseries of batchable statements that are
mutually batch-compatible.

3. Execute the parameter batch on the execution
context.

4. Disable batching on the execution context.

Unfortunately, the SQLJ standard does not specify
exactly which statements are batchable, nor does it
define the criteriafor batch compatibility. Therefore,
if you develop persistence code according to the SQLJ
standard, you cannot rely on statement batching.

The standard requires further extension in order to
precisely define the criteriafor batchability.

Even though batching is an optional SQLJ
feature, SAP has chosen to support it in Open
SQL/SQLJ. Theimplementation is compatible
with the SQLJ standard, but the criteriafor batchabil-
ity are precisely defined, and the usage is dightly
simplified. All DML statements are batchable in
Open SQL/SQLJ. However, they are batchable
only if executed viaa special subclass
(com.sap.sgl.BatchExecutionContext) of the class
slj.runtime.ExecutionContext. On any instance of
BatchExecutionContext, batching is an immutable
property of the class— it is always enabled and
cannot be switched off. To ensure that all statements

18 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

in abatch are compatible, Open SQL/SQLJ requires
abatch to comprise only statements with identical
source code position. In other words, each batched
statement must occupy the same position in the
source code.

Therefore, to use batching in Open SQL/SQLJ,
you must follow these steps:

1. Create an instance bctx of BatchExecutionContext.

2. Execute aseries of statements with identical
source code positions on bctx.

3. Execute the batch on bctx.

In this next example, we modify the previous
example (once again, refer back to Figure 9) to use
batch updates. Here we use batching to more effi-
ciently insert additional employeesinto the table
TMP_SQLJ EMP. In Figure 13 (Batching.sqlj), we
start by creating a connection context and an instance
of BatchExecutionContext (lines 30-31):

ctx = new Ctx () ;
bctx =
new BatchExecutionContext () ;

Figure 13

The only necessary change to the
insertEmployee() method is to denote the batch execu-
tion context bctx in the square brackets of the context
clause (lines 17-23):

#sql [ctx, bectx] {
insert into TMP_SQLJ EMP
(EMP_ID, FIRST NAME, LAST NAME,
SALARY, DEP_ 1ID)

values
(:empId, :firstName, :lastName,
:salary, :depld) };

All consecutive calls of the insertEmployee()
method add employee data to the batch, instead of
directly inserting the data into the database table.
Before committing the changes, we must execute the
batch using the executeBatch() method of the batch
execution context bctx (lines 47-49):

bctx.executeBatch () ;

#sql [ctx] { commit work };

Source Code for the Batching Example (Batching.sqlj)

package com.sap.sqglj.examples;

import java.io.PrintWriter;
import java.sql.SQLException;

W J o0 Ul WN B

private Ctx ctx = null;

import com.sap.sql.BatchExecutionContext;

public class Batching implements SgljExample

9 private BatchExecutionContext bctx = null;
10

11 private void insertEmployee (

12 PrintWriter pw,

13 int empId,

14 String firstName, String lastName,

15 int salary, int depId)

16 throws SQLException

(continued on next page)

For site licenses and volume subscriptions, call 1-781-751-8799. 19

SAP Professional Journal January/February 2004

Figure 13 (continued)

17 #sqgl [ctx, betx] {

18 insert into TMP_SQLJ EMP

19 (EMP_ID, FIRST NAME, LAST NAME,
20 SALARY, DEP_ 1ID)

21 values

22 (:empId, :firstName, :lastName,
23 :salary, :depld) };

24 pw.println ("Employee " +

25 lastName + ", " + firstName +

26 " inserted.
") ;

27 }

28

29 public void run(PrintWriter pw) throws SQLException
30 ctx = new Ctx();

31 bctx = new BatchExecutionContext () ;

32

33 try {

34 insertEmployee (pw, 8,

35 "Ian", "Thorpe", 1100, 1);

36 insertEmployee (pw, 9,

37 "Giorgio", "Lamberti", 3000, 2);
38 insertEmployee (pw, 10,

39 "Franziska", "van Almsick", 750, 2);
40 insertEmployee (pw, 11,

41 "Michael", "Phelps", 3000, 3);
42 insertEmployee (pw, 12,

43 "Joerg", "Hoffmann", 100, 4);

44 insertEmployee (pw, 13,

45 "Hannah", "Stockbauer", 700, 4);
46

47 bctx.executeBatch () ;

48

49 #sgl [ctx] { commit work };

50 } finally {

51 ctx.close () ;

52 }

53 }

54 }

Example #7: Mixing SQLJ with
JDBC to Implement Dynamic SQL

In SQLJ, the statement text of the embedded SQL is
static and cannot be changed at runtime. Obviously
this approach is insufficient, because you sometimes

need the ability to use dynamic SQL. For example,
you might want to select all rows of a database
table matching a collection of key values. You
cannot specify thistype of query with static SQL
in SQLJ. Therefore, you need to use JDBC for
dynamic SQL.

20 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Fortunately, Open SQL/SQLJ and Open
SQL/JIDBC use the same SQL checker and execute
statements using the same runtime, so the two can
seamlessly interact with each other. Open SQL/SQLJ
and Open SQL/JDBC can share the same database
connection and database transaction, and SQL J result
set iterators and JDBC result sets are mutually con-
vertible. Asaresult, onelogical unit of work can
comprise both SQLJ and JDBC operations.

In thisfinal example, we illustrate the cooperation
between SQLJand JDBC. Suppose we want to derive
alist of employees who work in a particular set of
departments. The departments are identified by their
IDs, which are contained in the array depArray that
isknown only at runtime. For the purposes of this
example, let’s assume that the size of thisarray isalso
unknown, so we cannot specify the query statically.
Instead, in Figure 14 (DynamicSQL.sqlj), we dynami-

caly create an SQL statement that contains the depart-
ment IDs as an IN condition of the WHERE clause
(lines 19-27):

StringBuffer stmtText =
new StringBuffer() ;
stmtText . append (
"SELECT first name,
FROM TMP_ SQLJ_ EMP
WHERE emp id IN (") ;

last name

for(int i = 0;
i < depArray.length;
iv+)
stmtText .append (Integer.toString (
depArray[i]l)) ;

if (i + 1 != depArray.length)
stmtText .append (", ") ;
}
}

stmtText .append (") ") ;

Figure 14 Source Code for the Dynamic SQL Example Using SQLJ and JDBC (DynamicSQL.sqlj)

int[] depArray = { 1, 3 }; // supposed to be known only at runtime

1 package com.sap.sqlj.examples;

2

3 import java.io.PrintWriter;

4 import java.sqgl.SQLException;

5 import java.sqgl.Connection;

6 import java.sql.Statement;

7 import java.sqgl.ResultSet;

8

9 class DynamicSQL implements SgljExample {

10

11 #sgl private static iterator Employeelter

String last name) ;

12

13 public void run(PrintWriter pw) throws SQLException ({
14 Employeelter iter;

15

16

17 Ctx ctx = new Ctx() ;

18

19 StringBuffer stmtText = new StringBuffer() ;
20 stmtText .append ("SELECT first name,

WHERE emp id IN (") ;

21 for(int i = 0; 1 < depArray.length;
22 stmtText .append (Integer.toString (depArray[i]))

(String first name,

last name FROM TMP_SQLJ EMP

ivd) |

(continued on next page)

For site licenses and volume subscriptions, call 1-781-751-8799.

21

SAP Professional Journal January/February 2004

Figure 14 (continued)

stmt .executeQuery (stmtText .toString()) ;

n 4L

23 if (1 + 1 != depArray.length)

24 stmtText .append (", ") ;

25 }

26 }

27 stmtText .append (") ") ;

28

29 Connection conn = ctx.getConnection () ;
30 Statement stmt = conn.createStatement () ;
31 try {

32 ResultSet rs =

33 #sgql iter = { CAST :rs };

34 try {

35 while (iter.next ()) ({

36 pw.println (

37 iter.first name() + "

38 iter.last name() + "
");
39 }

40 } finally {

41 iter.close() ;

42 }

43 } finally {

44 stmt.close () ;

45 }

46 }

47 '}

To execute the statement via JDBC, we obtain
the JDBC connection conn underlying the SQL J con-
nection context ctx using the getConnection() method
of the connection context. From this connection, we
create a statement object stmt on which we execute
the dynamically created query that returns the JDBC
result set rs (lines 29-45):

Connection conn
ctx.getConnection () ;

Statement stmt
conn.createStatement () ;

try {
ResultSet rs stmt . executeQuery (
stmtText.toString()) ;

[...]

} finally {
stmt.close() ;

}

The special SQLJ CAST statement converts a
JDBC result set into an SQL Jiterator. Here, we
convert the JIDBC result set rsto the SQLJ iterator
iter and processit as before (lines 33-42):

#sql iter = { CAST :rs };

try {
while (iter.next ()) {
pw.println (
iter.first name ()
iter.last name ()

}

} finally {
iter.close() ;

}

Closing the iterator iter and the statement stmt
in finally blocks (lines 40-45), we ensure that the
dependent resources (i.e., the underlying JIDBC
result set) get released in case of an error.

4L n n 45
+ "
") ;

22 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Now we'll show you how to run our Open
SQL/SQLJ examplesin your SAP environment.

Open SQL/SQLJ in SAP Web AS 6.30

There are no prerequisites for using Open
SQL/SQLJ in Web AS6.30. The Open SQL/SQLJ
runtime is deeply integrated into Web AS 6.30 and
isavailable out of the box. Open SQL/SQLJ runs
on any Open SQL connection. All data sources
created in the JDBC Connector Service of Web AS
6.30 return Open SQL connections by default.
Therefore, you can use these connections directly
with Open SQL/SQLJ.

Open SQL/SQLJ in the SAP Net\Weaver
Developer Sudio

The NetWeaver Developer Sudio supports primary
devel opment tasks such as editing, translating, and
debugging Open SQL/SQLJ sources, aswell as
deploying the archives that are created as a result
of the development project. In general, you can
use SQLJ anywhere that you can use Java. The
Open SVL/SQLJ trandator is transparently
integrated into the NetWeaver Developer Sudio.

It checks the SQL statements against an offline
representation of the database schema (the
“logical catalog”), which is provided to the Open
SOL/NLJ tranglator by a dictionary project

that contains the schema of the tables created

in this project.

Developing the Example
Application

To help you get started, we will now show you,
step by step, how we used Open SQL/SQLJin the

NetWeaver Developer Studio to develop our exam-
ples. For ease of use, we also provide a framework
that wraps the examples in a simple web application
S0 you can view their output in abrowser. To
develop, deploy, and execute an application that
runs the examplesin this article, follow this process:

1. Create and deploy the dictionary project and
database tables.

2. Create the web application and the sources for
the examples:

- Create the project for the web application.
- Createthe HTML page.
- Create the interface SgljExample.
- Createthe Java servlet.
- Create the example classes.
3. Assemble and deploy the web application.
4. Run the application.

So, start the NetWeaver Devel oper Studio and fol-
low along as we describe each of these steps.® To get
the expected results, make sure to enter everything
exactly as shown.

Creating and Deploying the Dictionary Project
and Database Tables

Thefirst step isto create and deploy adictionary
project. It contains the catalog information of the
database tables used and provides thisinformation to
the Open SQL/SQLJtrandator. To create adictionary
project, choose File — New — Project — Dictionary
— next from the main menu. Enter glj_tables asthe
project name and select Finish.

Next, declare the table definitions with the table
editor. Open the project tree, mark the item Database
Tables, and choose create table in the context menu.

® If you are new to the SAP NetWeaver Developer Studio, please refer to
the product documentation for detailed instructions (see the sidebar on

page 30).

For site licenses and volume subscriptions, call 1-781-751-8799.

23

SAP Professional Journal January/February 2004

Figure 15 Deploying the Dictionary Project

File Edit Mavigate 3Search Project Run Window Help

B} - e M K| = | S Q-
5 [w X Sli_tables TMP_SOLI_EMP
2| |6 Edit table
= ?;:, o 5 Activate raw language suppart ormation

[{3 Close project el
j [Delete [TMP_SQL_DEP |
G% Reload ’7
5@ [Pizpely nk enabled
-, Create Archive lurnns of the table
& Rebuild Praject 4 -—'_é % ‘:’f/ = Ee;j
Mame | Key | Simple Tw
]
Properties L

Dictionatry Explarer | Mavigator

Choose the table names, column names, and data
types as shown in Figures 6 and 7 (refer back to

pages 9 and 10). Pressthe Save All Metadata button
in the menu bar to save the table schema. Then
deploy the table description on the Web AS to create
the database tables on the database. Mark the project
name Sglj_tables in the project tree and choose Create
Archive on the context menu.

Finaly, to deploy the created archive into the
Web AS, choose Deploy on the same Sqlj_tables
context menu (as shown in Figure 15).

Creating the Web Application and Source Code
for the Examples

As aframework for running the examples, we develop
asimple web application that usesan HTML page
asthe user interface and a Java servlet to process user
input and display the result. Here we show you how
to create this application.

Start by creating aweb project to organize the
source files. From the main menu, choose File —
new — Project — J2EE — Web Project — next. Enter
Sglj_serviet as the project name and select Finish.

Now we can develop our examplesin this project.
Thefirst step isto create a new Java package. Inthe
context menu of the project, choose new — package,
enter com.sap.sglj.examples as the package name,
and select Finish. The J2EE Explorer view then
opens, which is where you create the Java and SQLJ
sourcefiles.

Begin by creating the HTML page from which
you invoke the servlet:

1. From the main menu, choose File — new — other
— J2EE — Web — HTML File — next.

2. Choose webContent as the folder and index as
the page name (as shown in Figure 16).

3. Enter the HTML code as shown in Figure 17.

Figure 16 Creating the HTML Page

xNew T 1]

HTML File
Create a new HTML file &

Select a folder :

| Sqlj_servletiwebContent

= {as Sqlj_servet
-[= webContent

HTML Marne:] indez|

< Back ek | Finish | Cancel

24 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Figure 17

Source Code for the HTML Page (index.html)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML >

<BODY BGCOLOR="#FFFFFF">

<hr>

<FORM METHOD="GET"

ACTION="./servlet/com.sap.sqglj.examples.SqgljRunner">

<table>

<tr><td><INPUT TYPE="radio" checked name="examplesg"
value="0">SimpleStatement</td></tr>

<tr><td><INPUT TYPE="radio" name="examples"
value="1">HostvarStatement</td></tr>

<tr><td><INPUT TYPE="radio" name="examples"
value="2">SingleSelect</td></tr>

<tr><td><INPUT TYPE="radio" name="examples"
value="3">MultiSelect</td></tr>

<tr><td><INPUT TYPE="radio" name="examples"
value="4">Batching</td></tr>

<tr><td><INPUT TYPE="submit" value="Execute'">

</table>

</FORM>

<hr>
</BODY>

</HTML>

Next, create the interface SgljExample by follow- 2. Enter the appropriate package name and class
ing these steps: name (com.sap.sqlj.examples and SgljExample),
and select Finish.
1. From the main menu, choose File — new —
other — Java — Interface — next. 3. Enter the source code for SgljExample (Figure 18).

Figure 18

Source Code for the Interface SqljExample (SqljExample.java)

package com.sap.sqglj.examples;

import java.io.PrintWriter;
import java.sqgl.SQLException;

public interface SgljExample {

public void run (PrintWriter pw) throws

}

SQLException;

For site licenses and volume subscriptions, call 1-781-751-8799.

25

SAP Professional Journal January/February 2004

Figure 19 Creating the Java Servlet Now follow these steps to create the Java servlet
aENew IE that processes the input data and displays the result:

Servlet

1. From the main menu, choose File — new —
other — J2EE — Web — Serviet — next.

‘Web Project |Squ_serv|et

Servlet Mame | Sqlifunner

2. Choose the names shown in Figure 19 and
select Finish.

Serviet Type]HTTP Serviet

Lbb@u

Servlet Package] com.sap.sqli.examples Browse

Enter the source code for the class SgljRunner
shown in Figure 20.

I Use Single Thread Maodel

lger_vyte(t)Methods v st - s Before we can create the SQLJ source files,
i B st W we must tell the SQL J translator where to find the
™ dotead() ™ dooptions() I™ doTracst) offlinelogical catalog data. To do this, we create

areference to the dictionary project Sglj_tables
(which we created earlier). On the context menu of
the project Sglj_serviet, choose properties — Java
<Back T = Build Path — Projects. Select the project Sqlj_tables
and select OK (as shown in Figure 21).

Figure 20 Source Code for the Java Servlet (SqljRunner.java)

package com.sap.sqglj.examples;
import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SgljRunner extends HttpServlet {

protected void doGet (
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException (

PrintWriter out = response.getWriter () ;
try {
SgljExample example = null;
Integer radio =
Integer.valueOf (request.getParameter ("examples")) ;

switch (radio.intValue()) {
case 0: example = new SimpleStatement () ;

26 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Figure 20 (continued)

break;

case 1: example = new HostvarStatement () ;

break;

case 2: example = new SingleSelect () ;

break;

case 3: example = new MultiSelect () ;

break;

case 4: example = new Batching() ;

break;

case 5: example = new DynamicSQL() ;

break;

default: out.println("invalid selection") ;

}

if (example!=null)
example.run (out) ;

}

catch (Exception ex) {

}

out.println ("Example failed " + ex.getMessage()) ;

Figure 21

Declaring a Reference to the Dictionary Project

rzﬁProperI:ies for Sqlj_servlet [
Infa Java Build Path

-External Tools Builders
Java Build Path

Java Compiler
Javadoc Location

Required projects on the build path:

Java Task Tags [A1=# 5qlj_tables
Patterns

Project References
-Templates

UML Profiles

‘Web Service Consistency Chec

(=]

[Source P Projects] Il Libraries 1 T} Order and Expart 1

Select Al
Deselect Al

Default output Folder:

..‘_J—J _._’._j { Sqli_servlet/bin

Browse. ..

[a]4 | Cancel]

For site licenses and volume subscriptions, call 1-781-751-8799.

27

SAP Professional Journal January/February 2004

Figure 22 Creating the SQLJ Source
3 New SOLI Source = x|
SOLI-Source
Create a SQL)-Source
Source Folder: | Sqli_servlet/source Browse. ..
Package: | com.sap.sqglj.examples Browse. ..
I Enclosing bvpe:] ;
Mame: |Ctx|
Modifiers: 1+ public " default " privat " protected
[abstract [final I~ stal
Superclass: | java.lang. Object Browse,..
Interfaces: [add...
‘Which method stubs would vou like ko create?
I public static void main(Stringl] args)
[~ Constructars From superclass
[Irherited abstract methods
< Back | 1 Finish | Canicel ‘

Figure 23 Editing the SQLJ Source Code

52 JZEE Development - Ctx.sqlj - SAP NetWeaver Developer Studio

File Edit Mavigate Search Project Run Window Help

S-EDRA][-k -%-|| P [-

=gl - 126 v x || Towsg X

|87 2@

= ﬂa package com.sap.sgl).examples;

=E qulp_servlet

@ %Fiterllleglstry #sgl context Ctx with

S gen_sql) " re "
datas - db LJ EXAMPLE™):

& 1P Registry (dataSource Jelbe/S0LJ_ 1
@ Listerer Regitry

‘ Servlet Registry
=2 source
= com
= sap
=i sqlf

JZEEE... JEED... |Packag... »

Figure 24 The Connection Context (Ctx.sqlj)

1 package com.sap.sglj.examples;

2

3 #sgl context Ctx with (dataSource
= "jdbc/SQLJ EXAMPLE") ;

Finaly, create the SQLJ source files for the exam-
ples by following these steps:

1. From the main menu, choose File — new —
other — persistence — SQLJ Source — next.

2. Enter the appropriate package and class names
for the connection context as shown in Figure 22,
and select Finish.

3. Asyou can seein Figure 23, you can now enter
the source code. We'll start with the first exam-
ple, which is the connection context (Ctx.sqlj) —
enter the source code shown in Figure 24.

4. Repeat steps 1-3 for creating the SQLJ source
filesfor each example, using the code shown in
Figures 9-14. Be sure to use the correct names
for each example.

Assembling and Deploying the Application

Before we can run the application, we must create a
web archive (WAR) and an enterprise application
archive (EAR) that contains the application. For this
purpose, create aweb application project that bundles
the web resources (in this case, only the Sglj_serviet)
into aweb archive. Choose File — new — project —
J2EE — Web Application Project — next from the
main menu. Name the project Sglj_war and add aref-
erence to the web project Sglj_serviet.

In order to deploy the application, we also need
an enterprise application project that bundles al
components of the application (in our case, the
Sglj_war project). To create an enterprise application
project, choose File — new — project — Enterprise
Application Project — next from the main menu.
Name the project Sglj_ear and select Next. Add a
reference to the web application project Sglj_war
and then select Finish. In the context menu of
the Sglj_ear project, use the menu item new —
data-source-aliases to create the alias referenced in
the class Ctx. Enter SQLJ EXAMPLE asthe alias
name and select Finish. In the same context menu,
use the item Build ear file to create an EAR file that
contains the entire example application.

28 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Achieving Platform-Independent Database Access with Open SQL/SQLJ

Figure 25 J2EE Explorer View

mJZEE Development - Ctx.sqlj - SAP NetWeaver Devel

File Edit Mavigate Search Project Run Window Help
N-DR AR TAES

"9 1ZEEE S0 OE @ EE v %
= Sqlj_ear
|-/ META-INFfapplication. xm|
Sqlj_war
% META-INF application-jZee-engine.xml
[;& META-INF/data-source-aliases. xml
[i.,] Sqlj_ear.ear
- @ Sqli_servlet
@ Filter Reqistry
+-[gen_sqlj
&% 15 Registry
% Listener Registry
- ﬂ Serviet Reqgistry
@ SqljRunner
-8 source
-3 com
= sap
=3 sal
-

& Q0 ¥ | i

1M Batching.sqlj
M e, sqlj
1M Dynamics oL, sqlj
1M HostvarStatement. sqlj
1M Multiselect . sqlj
1M Simplestatement. sqlj
B Singleselect sqlj
J] SqliExample.java
J] SqliRunner.java
-2 webContent
@ indes.Html
- [E] Sqli_war
'_E,:_J Sqlj_wear war
|- |53 WEB-INFfweb . xml
@ SqljRunner
% WEB-INF f'web-j2es-engine. xml

JZEE Explorer | J2EE DiC Ex... |Package Ex... |Mavigator

Finally, in the context menu of the EAR file
(Slj_ear.ear), use the menu item deploy to deploy the
EAR fileinto the Web AS. 1t isnow ready for use.

If you created all of the sources, projects, and
archives exactly as described, the J2EE Explorer of
the NetWeaver Devel oper Studio should now look like
Figure 25.

Figure 26 Running the Example Application
F

File Edit View Favorites Tools Help

Back v - J _,'1 ﬁ @Searm _# JFavorites JHIswry _=j-=’ =

Agcl'ess[hitkp: localhost: 50000/ conkextRoat| LI G0 Links

* SimpleStaternent
" HostvarStatement
" SmgleSelect

" MMultiSelect

" Batching

" DynamicSQL

Execute

&] Done g{ Local intranet

Running the Application

To run the example, start your web browser and
connect to your J2EE engine using the URL

http: //<hostname> : < portnumber > /contextRoot

where <hostname> and <portnumber> are the
hostname and the port number of your J2EE server.
You will see apage similar to Figure 26. The output
of the examples will appear in your web browser. Run
the examples from top to bottom to ensure that the
data used in the examplesis properly initialized.

Helpful Hints

¥l Remember to create the reference from the

SQLJ project to the dictionary project. Otherwise, the
table descriptions will be unknown, and the translation
of the SQLJ sources will fail.

¥ Make sure that your data sources are configured
to return Open SQL connections. Otherwise, Open
SQL/SQLJ contexts will not accept the connection.

vl For embedding static SQL statements, use Open
SQL/SQLJ. For embedding dynamic SQL statements,
use Open SQL/JDBC. And remember that the Open
SQL for Java framework gives you the power to
combine both static and dynamic SQL statements

in the same Java source.

For site licenses and volume subscriptions, call 1-781-751-8799.

29

SAP Professional Journal January/February 2004

M Feel freeto extend the output of these examples
if you are interested in exploring more details (such
asthe return values of special methods).

M If the NetWeaver Developer Studio GUI changes
in future releases, please refer to the documentation of
your release to determine the appropriate steps.

Conclusion

Release 6.30 of the SAP Web Application Server pro-
vides a powerful framework for database access using
relational persistence. Open SQL for Java comprises
aplatform-independent syntax and semantics checker.
It guarantees that SQL statements embedded in Java
code will execute on all supported databases with
equal syntax and semantics, relieving you from the
burden of worrying about persistence code portability.
With Open SQL/SQLJ, you can access a database
using static SQL that is automatically checked at
design time. When you need dynamic SQL, you

Further Reading

ISO standards (available at www.iso.org)

e SQL 92: ISO/IEC 9075:1992, Information
technology — Database Languages — SQL

. SQLJ: ISO/IEC 9075-10:2000, Information
technology — Database languages — SQL —
Part 10: Object Language Bindings (SQL/OLB)

SAP NetWeaver Developer Studio Product
Documentation

e Open SQL/SQLJ Developer
Documentation: SAP Web AS for J2EE
Applications — Development Manual —
Developing Web Applications — Developing
Business Logic — Java Persistence —
Relational Persistence — Open SQL/SQLJ

e Open SQL/SQLJ APl Documentation:
SAP Web AS for J2EE Applications —
Reference Manual — Java Persistence
Reference — SQLJ Runtime API

e Open SQL Grammar: SAP Web AS for J2EE
Applications — Reference Manual — Java
Persistence Reference — Open SQL
Reference — Open SQL Grammar

simply use Open SQL/JDBC instead. There are no
restrictions — Open SQL/SQLJ and Open SQL/JDBC
are fully interoperable. You can mix static SQL (using
Open SQL/SQLJ) and dynamic SQL (using Open
SQL/IDBC) in the same Java source, trouble-free.

With this framework, Open SQL/SQLJ solves
the problems of portability and design-time checking
with static SQL without sacrificing the flexibility of
dynamic SQL, making devel oping database-centric
applications easier, more efficient, and more enjoyable.

Andreas Fischbach studied Commercial
Information Technology and received his diploma
in 1996. During that same year, he joined the
SAP/Informix porting team, where he was
responsible for |nformix-specific aspects of the
SAP R/3 system. In 2001, Andreas started working
on Java persistence in the Java Server Technology
group. He focuses mainly on relational persistence,
in particular SQLJ. Additionally, Andreasis
engaged in object persistence with JDO. He

can be reached at andreas.fischbach@sap.com.

Adrian Gorler studied physics at the Ruprecht-
Karls-University of Heidelberg, Germany, where
he specialized in Computational Biophysics. He
received his doctorate at the Max-Planck-Institute
for Medical Research, Heidelberg, and did post-
doctoral research work in various international
laboratories. In 1999, Adrian joined SAP and
became a member of the Business Programming
Languages group, where he worked as a kernel
developer responsible for the implementation and
maintenance of Open SOL as well as Native SQL
in ABAP. Since 2001, Adrian has been a member
of the Java Server Technology group, where he has
been working on the implementation of Open SQL
for Java, especially Open SQL/SQLJ. He can be
reached at adrian.goerler @sap.com.

30 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

