
63For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

A Developer’s Guide to Making
Applications More Effective, Easier
to Learn, and Simpler to Use

Jonathan Pokress

Jonathan Pokress, CPIM, is
an independent consultant
and president of Bluenote
Consulting Group, Inc.
(www.bluenoteonline.com),
based in Charlotte, North
Carolina. He has spoken on
numerous occasions on
both technical and
managerial topics,
including web-enablement
with the SAP Internet
Transaction Server,
development methodology,
and user interface design.

Let’s face it. R/3 isn’t an easy system to learn or use, at least for most
end users. Few of us who have interacted with users over the years
would contest this, and most would probably attribute it to the large
amount of functionality that R/3 provides. While this is fair — after
all, R/3 reflects the unavoidable complexities of our businesses — I
propose it is also because, when it comes to designing applications, we
sometimes forget our most important role as developers: to be user
advocates. It’s not our fault. From school onward, we’ve been
rewarded based on whether our applications work, not whether they
are effective, learnable, and usable.

So let’s change that. Let’s make our applications more effective,
easier to learn, and simpler to use. There are only two things we need
to do to make things right:

• Identify the production applications (and business processes!) that
users currently struggle with and try to simplify them.

• Use the knowledge derived from our real-world experiences to
build better applications going forward.

Sound “pie in the sky”? It isn’t. This article will arm you, the
developer, with the working knowledge and resources you need to
achieve both goals. By bringing together best practices, guidelines, and
tools gleaned from both established industry experts1 and my own
experiences, this article will:

(complete bio appears on page 85)

1 Over the last few decades, independent and institutional research from Jakob Nielsen, Apple,
IBM, Xerox, Microsoft, ISO, the SAP Design Guild, and others has made great strides in
understanding the issues that affect system usability. This article draws heavily on this body
of work, aiming to collect, distill, enrich, and organize it for the benefit of R/3 application
developers in particular.

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.64

• Clarify what makes an R/3 application “easy
to use”

• Detail how you can immediately improve the
usability of your new applications

• Help you identify currently used applications that
can, and should, be simplified

• Explain how to simplify these target applications,
including when to use each technique presented

• Provide the tools you need to be successful2

By the time you finish reading this article, you
will have the knowledge and tools you need to make
a difference in your own applications. Let’s roll up
our sleeves and get started.

Understanding the Elements
of Usability

A great deal of research has been done on the topic
of usability over the last two decades. Researchers
have proposed several models to help us better
understand the components of usability. But
let’s skip the theory and jump straight to the good
stuff. Empirical data reveals that well-designed

Is R/3 Hard to Use?

One example of improving usability is to develop custom R/3 transactions to consolidate information
onto one screen that might otherwise span several. However, this begs the question: Is the very need
to develop such transactions evidence that SAP has produced an overly complicated product? I
propose that this is not the case.

In Release 4.6, SAP has addressed many of the usability deficiencies found in earlier releases. Still,
most people I’ve spoken with still classify R/3 as hard to use. When struggling to post a delivery, for
example, it is quite frustrating to run into errors that make no sense to someone like me — a developer
often possessing incomplete functional knowledge — and leads to the feeling that SAP could have
“made things easier.”

But let’s be fair. SAP has a very tough job to do. Imagine developing a software package from scratch
that accommodates just about every major business process within a modern corporation, in which
each piece has to interact properly so that no data is lost. Add on that the package must accommodate
both large and small organizations across different industries, and that the software must allow entire
modules and functions to be enabled, disabled, or supplanted by external systems. It’s remarkable SAP
has accomplished so much in the face of these challenges.

Now to the point. When people, myself included, say that R/3 is hard to use, I feel that we’re not
so much stating that R/3 is complicated, but rather that modern business is complicated. This
understanding may not make running transactions any easier, but at least we know where to more
accurately place the blame.

2 The R/3 Usability Toolkit is a set of resources I have assembled from
various sources, including my own experiences, and contains a
reference of best practices, a questionnaire, and a checklist. This
toolkit is available for download from www.SAPpro.com.

65For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

applications have the following 13 elements3 in
common:

1. Transparency: Applications should tell users
what the system is doing (and has done) at all
times, and without excessive delay. Without
sufficient transparency (e.g., if a user is not aware
that the system is done processing or isn’t sure if
data has been saved when exiting), tasks seem to
take much longer than necessary and data errors
become more likely.

2. Functional Clarity: In easy-to-use applications,
all titles, labels, messages, and other communica-
tions use contextual language that users can relate
to. Data, functions, and options also have a
logical location and order. Think of how many
support calls result from vague error messages or
illogically placed buttons or functions!

3. Safety: Users should be able to move freely
within or among your applications. The applica-
tion should always, however, indicate when data
might be lost and (via confirmation prompts, for
example) allow users to proceed or cancel the
operation as appropriate. Users should also be
allowed to enter data in a variety of formats
without the system malfunctioning or misinter-
preting the data and, when possible, be able to
undo their actions. Recall how frustrating it can
be when a screen forces you to correct a date
format, for example, before allowing you to exit.

4. Consistency: Organization, navigation, and
terminology should be consistent in applications
across the entire system and, when possible,
across all systems with which a user will interact.
Have you ever noticed a particular R/3 transac-
tion that just didn’t “feel right”? Or, if you’ve
ever performed translations, you know how much
more work it is when custom programs use
slightly different abbreviations for the same term
(e.g., Mat # versus Mat no.).

5. Flexibility: Application screens should provide
sufficient guidance for inexperienced users with-
out encumbering experienced users. The applica-
tion should also accommodate varying levels of
experience. For example, users new to R/3 (or
your particular application) usually find screens
with many items difficult to comprehend and
frequently turn to online help. In contrast, more
experienced users usually want a lot of data and
functionality per screen to minimize navigation,
and rarely use online help. Try to strike a balance
so both types of users can use your application
efficiently and effectively.

6. Efficiency: Application screens should include
only what is necessary. Commonly used func-
tions and data should be placed early within the
application to minimize overall navigation. It’s
important to figure out which business processes,
functions, and data will be executed the most and
use this as a guide for minimizing the required
number of mouse-clicks, tabs, etc.

7. Visual Clarity and Aesthetics: An application’s
interface should promote understanding and the
perception of quality. All objects, options, and
instructions should be readily accessible, so that
the user doesn’t need to remember the location
or meaning of any elements. This topic is a
field in itself, and, in my experience, is one of
the most underrated among technologists. An
application’s look-and-feel directly affects how
quickly users can learn it, how useful it is, and
how its quality is perceived (which is a reflection
on you, the developer). How would you feel
about a car with the engine of a Ferrari but the
design and aesthetics of a Yugo?

8. Utility: The application’s data and functionality
should address user needs across geographic or
divisional boundaries, and anticipate those of
likely future users. The application’s design
should incorporate state-of-the-art UI components
to provide the maximum functionality with min-
imum code, and its final form should be validated
against the original design. Perhaps you share
my experience that teams often do not spend

3 The elements proposed here have been compiled, tailored, and
expanded from a variety of authoritative sources to apply to R/3
application development. See the resources sidebar on page 85 for
more details.

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.66

enough time figuring out what to build before
they start building it. The result is almost always
a product that never quite meets user needs and
evolves through a series of Band-Aids.

9. Constructiveness: System status messages
should be written in terms that are meaningful
to users, pleasant in nature, and respectful of
user intelligence and experience. They should
describe the problem fully and suggest a course
of action. Ask yourself how many standard R/3
messages you’ve come across that are incompre-
hensible or offer no information on next steps.
How did it make you feel? Now ask yourself
how many you’ve written the same way.

10. Responsiveness: The application or report should
respond to user requests and actions in a reason-
able amount of time and, if possible, should
allow the user to abandon a process with a long
wait time.

11. Fault Tolerance: The application should seek to
prevent, minimize, and recover from execution
errors or the loss of data. Code defensively —
always ask yourself questions like: What can go
wrong with this code? What happens if no data is
retrieved during a SELECT? What happens if a
save fails? When an error does occur, the appli-
cation should, whenever possible, allow the user
to recover instead of aborting. Once you are
nearly done developing a piece of code, it is a
good idea to review all LOOPs, SELECTs
(especially those with a FOR ALL ENTRIES
clause), CASE statements, etc., and ensure that
you have handlers in place just in case the
“worst” happens, which it usually does once
the application is in production.

12. Accessibility: Users should be able to quickly
and easily access concise documentation for their
specific tasks or questions, empowering them to
solve problems and explore the application’s
functionality on their own. It is important to keep
the following considerations in mind: How fre-
quently is the documentation accessed? Are
color-blind people disadvantaged by any specific
color schemes you used? Also, unless the appli-

cation is entirely self-explanatory, is both step-
by-step and task-oriented documentation easily
accessible? Do users know where to find it?

13. Privacy: Users should feel confident that
private data will remain private, and that no
one will be able to “steal their identities” when
accessing or posting data. Ask your friendly
neighborhood security administrator for the best
way to lock down applications — by placing
authorization groups in the programs’ attributes
or assigning authorization objects to transaction
codes, for example.

Understanding the elements of usability is an
important first step toward building better applica-
tions for your users (these 13 elements are also
summarized in Figure 1 for your convenience). My
R/3 Usability Toolkit, presented next, organizes its
recommendations and heuristics4 around this impor-
tant framework.

How to Develop More
User-Friendly Applications

While the 13 usability elements are important, they
don’t provide what developers really need: specific
recommendations, metrics, and tools with which to
develop better applications going forward. I created
the R/3 Usability Toolkit for exactly this reason. The
toolkit consists of the following three components:

� Usability Best Practices Reference: This refer-
ence is a Word document containing general
guidelines and specific best practices for develop-
ing easy-to-use R/3 applications. For consis-
tency, the recommendations are grouped by the
usability elements just introduced (e.g., “Func-
tional Clarity”) and subgrouped by topic (e.g.,
“Menus”). A table of contents is included so that

4 Heuristics are specific guidelines and rules of thumb. The R/3
Usability Toolkit contains a large checklist of heuristics I’ve specifi-
cally tailored to R/3 development. My hope is that this checklist will
enable you to spot about 80% of usability issues before going live
with a new application.

67For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

Figure 1 Critical Elements of Application Usability

Usability Element Description

Transparency Applications should tell users what the system is doing (and has done) at all times, and
without excessive delay.

Functional Clarity In easy-to-use applications, all titles, labels, messages, and other communications use
contextual language that users can relate to. Also, data, functions, and options have a
logical location and order.

Safety Users should be able to move freely within or among your applications. The application
should always, however, indicate when data might be lost, and (via confirmation
prompts, for example) allow users to proceed or cancel the operation as appropriate.
Users should also be allowed to enter data in a variety of formats without the system
malfunctioning or misinterpreting the data and, when possible, be able to undo their
actions if necessary.

Consistency Organization, navigation, and terminology should be consistent in applications across
the entire system and, when possible, across all systems with which a user will interact.

Flexibility Application screens should provide sufficient guidance for inexperienced users without
encumbering experienced users.

Efficiency Application screens should include only what is necessary. Commonly used functions
and data should be placed early within the application to minimize overall navigation.

Visual Clarity and An application’s interface should promote understanding and the perception of quality.
Aesthetics All objects, options, and instructions should be readily accessible, so that the user

doesn’t need to remember the location or meaning of any elements.

Utility The application’s data and functionality should address user needs across geographic
or divisional boundaries, and anticipate those of likely future users. The application’s
design should incorporate state-of-the-art UI components to provide the maximum
functionality with minimum code, and its final form should be validated against the
original design.

Constructiveness System status messages should be written in terms that are meaningful to users,
pleasant in nature, and respectful of user intelligence and experience. They should
describe the problem fully and suggest a course of action.

Responsiveness The application or report should respond to user requests and actions in a reasonable
amount of time and, if possible, should allow the user to abandon a process with a long
wait time.

Fault Tolerance The application should seek to prevent, minimize, and recover from execution errors or
the loss of data.

Accessibility Users should be able to quickly and easily access concise documentation for their
specific tasks or questions, empowering them to solve problems and explore the
application’s functionality on their own.

Privacy Users should feel confident that private data will remain private, and that no one will be
able to “steal their identities” when accessing or posting data.

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.68

Demystifying Common User Complaints About R/3

To truly improve application usability, developers need to do something we rarely get (or take) the time
to do: listen, observe, and interact with users, who are generally the best barometers of an application’s
design. Drawing conclusions from user feedback can be tricky, though, since the feedback usually lacks
specifics. Thus, to be effective, you need to learn to convert vague comments into specific items to
investigate. Here are four common examples.

Example #1: “The System Is Too Complicated”

Possible causes include:

� Overload: The application might be presenting too much data or functionality at one time.
Try to restrict screens to no more than 20 fields, 4 pushbuttons, and 5 toolbar buttons.*

� Sub-optimal delivery: The application might be presenting data or functionality in a way that is
distracting or difficult to comprehend. Remember to group related data and functionality.

� Excess: The application has unnecessary functionality or data. Remember the 80/20 rule when
designing main application screens — i.e., design your main application screens with the data or
functions that are applicable to 80% of your audience, and move the highly specialized features to
separate screens. Alternatively, consider using authorizations to display only functionality or data
that is relevant to certain user groups.

Example #2: “I Don’t Understand Where to Get the Information I Need”

Possible causes include:

� Conflicting model: The positioning or grouping of functionality or data doesn’t match the user’s
mental model (e.g., the user identifies “net weight” as a shipping-related field, but it is placed on a
tab labeled “Accounting” to accommodate FI users).

� Unclear navigation objects: When navigation objects like menus, tabs, and buttons don’t clearly
summarize their content or function, users are forced to rely on recall to locate information or
functionality. Use clear, meaningful labels to avoid the inevitable “Where do I do this?” phone calls.

� Non-intuitive navigation: The user cannot remember where to find data or functionality, or perhaps
the user cannot access it from his or her current location in the application. Try to keep all main
navigation points globally visible throughout the application (e.g., through tabs or toolbar buttons).

you can find principles relating to specific topics
quickly and easily.

� Usability Checklist: The checklist is a practical,
comprehensive list of things to double-check for
new (and existing) applications. It will help you
catch common, high-impact usability issues that

can be easily avoided. The checklist is a Word
template so you can pull it up and make entries
without modifying the original.5

* These limits are appropriate when designing for experienced users, who can digest far more data and functionality than
inexperienced users. Reduce these limits when designing for novice users.

5 When you make changes to a Word template document and attempt
to save it, Word asks you for a filename and saves it as a new
document instead of modifying the actual template.

69For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

Example #3: “It’s Too Hard to Do One Simple Thing”

Possible causes include:

� Multi-hop process: Business processes that involve more than one transaction force users to
spend a lot of time navigating around between different screens. Also, users often have to memorize
data from one screen for use in another. Consider simplifying the process by developing a single
wrapper transaction.

� Needle in a haystack: Is the user looking for a specific piece of information in a sea of data?
Especially when designing reports, consider whether users are likely to use the data in aggregate
or in parts, and aim to help them get the information they need as quickly as possible.

� Low performance: The transaction or report in question might be taking a long time to save or
run. Observe the user’s actions and propose ways to mitigate the problem if performance
cannot be remedied by a technical change (e.g., have the user try specifying more data on the
report’s selection screen).

� Unclear errors: Check if the user is running into undecipherable error messages or locks and
address the problem.

� Inability to locate data or functionality: Refer back to Example #2.

Example #4: “The System Is Telling Me Something, But I Don’t Understand What I’m
Supposed to Do”

Possible causes include:

� Lack of clarity: The message or visual cue doesn’t clearly express what happened. Be sure
to explain errors completely and succinctly, and use terminology that is easy for users to
understand.

� No details: The message or visual cue tells you what happened, but doesn’t clearly explain what
to do next. This is common, and you have no doubt experienced it yourself. Provide appropriate
details on the necessary next steps.

� User inexperience: The user is told to perform a task that he or she doesn’t know how to do. This
situation is unavoidable to some extent. To mitigate it, make sure that documentation is available
and that users know where to get one-on-one help.

� Usability Questionnaire: Sometimes there is
just no substitute for picking users’ brains,
especially when investigating usability issues
with already-deployed applications. Unfortu-
nately, end users aren’t always that good
at precisely identifying or expressing the
sources of their dissatisfaction (for pointers on

interpreting user feedback, see the above sidebar
“Demystifying Common User Complaints
About R/3”). The questionnaire is designed
to help you pinpoint areas for further investiga-
tion, and can even reveal that the problem is
not technical in nature (e.g., some problems
are political).

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.70

� Note!

I created the R/3 Usability Toolkit by combining
research from a variety of authorities with my
own development experience, and then tailoring
it to the specific needs and working environments
of R/3 developers. It is by no means a complete
work, and I encourage you to expand the tools as
your own knowledge and experience grows.

Next, I’ll explain how and when to use each tool
in the toolkit and provide tips for setting you on the
road to success. For your convenience, Figure 2
provides a summary of each tool, and of the discus-
sion to follow.

The Usability Best Practices
Reference

An essential part of the toolkit, the reference is prob-
ably the tool you’ll use first and expand with your
own ideas. Containing over 200 specific do’s and
don’ts for building more usable (and functional)
applications, the reference is also useful as a basis for
developing an IT policy document (e.g., peer-review
quality assurance sheets).

To get the most out of the reference, download
and read through it while this article is still fresh in
your mind. Then, print it out and tack it up on your
office or cubicle wall and review it periodically. You
can also review specific guidelines when doing a
specific task, like writing status messages.

As you will notice when you read it, there are a
few themes that run throughout the Usability Best
Practices Reference. In the following sections, I
present six of the most important themes for you as
“lessons,” citing what I feel are the most commonly
violated best practices for each, and pointing out
some useful tips to keep in mind.

Lesson #1: Present Data and Functionality
in Digestible Chunks

Frequently violated best practices include:

� Especially for inexperienced users, try to
keep the amount of information on each
screen manageable (i.e., a maximum of
20 fields, 4 pushbuttons, and 5 toolbar
buttons).

� To avoid visual overload, display no more than
10 icons on a screen at once for novice users and
15 for expert users.

� To help streamline the user decision-making
process, screens should display only essential
information.

� For toolbar icons, buttons, and menus that rely
upon an item being selected, keep them disabled
until that item is selected. Where this is not
possible, if no object has been selected and the
function is executed, issue a “Please select a line
and retry” message.

� Tips

• Experienced users will be able to learn, use,
and benefit from a complex transaction like
VA01 (Create Sales/Returns Order) more
readily than inexperienced users.

• If a field is needed by only 20% of users, ask
yourself if there is a way to detect these
users (e.g., via a particular security
authorization) and hide the field for all
other users.

• When copying fields from a structure or
table onto a screen you are designing, it’s
often tempting to include extra fields that
are not really necessary. Avoid this impulse.

71For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

Figure 2 A Summary of the R/3 Usability Toolkit

Tool

Usability Best
Practices
Reference

Usability
Checklist

Usability
Questionnaire

Description

What it is/does:

• Summarizes guidelines and best practices for developing easy-to-use
R/3 applications

• Organized around the 13 key elements of usability

When and how to use it:

• Read it today and periodically reread it

• Expand it with your own best practices

• Share it with your teammates and managers

What it is/does:

• Helps you spot common, high-impact usability issues that can be easily
avoided

When and how to use it:

• Designers should skim through it after assembling a prototype to spot issues

• Developers should use it after development is complete

• Testers should use it during the usability testing phase

• Expand it with your own items

What it is/does:

• Helps you assess users’ perception of usability and level of satisfaction

• Helps you determine what users don’t like about a suspect application and
solicit suggestions for improvement

When and how to use it:

• For new applications, distribute it to test users to get initial feedback, and then,
a month or more after go-live, distribute it to a small cross-section of users
(five or so) as a barometer

• For suspect existing applications, distribute it to users periodically after go-live

• Expand it with your own items

Lesson #2: Communicate Clearly and Efficiently

Frequently violated best practices include:

� Field labels should be brief, familiar, and
descriptive.

� Make sure that button and tab labels, text ele-
ments, and selection texts employ end-user termi-
nology. Interview a cross-section of users, pro-
pose several alternatives, and go with the text that
is most widely understood.

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.72

� After development, review all possible messages
by looking at the application’s message classes.
Ensure that the messages employ end-user termi-
nology or cross-application R/3 terminology that
users will learn during training.

� Label fields consistently throughout the
application.

� Use color with discretion — only to draw atten-
tion, communicate organization, indicate status
change, or establish relationships.

� Tips

• R/3 applications often use cryptic
abbreviations like “CoTL” or “S”
(especially for column headers).
Provide more descriptive values or
more comprehensible tool tips for
your users.

• Many applications use colors carelessly,
which makes the interface difficult to learn
and use. In R/3, this is particularly true
with reports. When designing reports,
use background/font color sparingly,
consistently, and with purpose.

Lesson #3: Design Strategically

Frequently violated best practices include:

� When analyzing user needs, remember to identify
both current and potential end users.

� After completing your analysis, including stake-
holder interviews, validate your final design
parameters and assumptions with users before
beginning development.

� After validating user needs, begin designing the
application by creating a prototype that reflects
the final product as closely as possible. Only

when users actually see what the final product
will look like are they really able to conceptualize
what might be wrong or needs improvement.

� Take into account users’ likely environments when
designing a solution. For example, consider the
input device they will be using (PDA, laptop, PC),
which determines screen size, color scheme, key-
board functionality, etc.

� Tips

• Other user groups will inevitably fall in love
with what you did for one group. Avoid
building in any assumptions that would make
it impossible to roll out the same code to
these envious users.

• Always validate business assumptions before
you start coding! For example, let’s say
that a developer meets with users and
records the assumption that each delivery
item will have only one batch, only to find at
a subsequent meeting that this assumption is
not true in certain cases. Or suppose a
developer records an assumption that all
boxes will contain barcodes, and upon
review with other warehouse staff discovers
that a particular brand of goods has no
barcode. Catching these errors before
development will save you a lot of time and
effort (and headaches) down the road.

Lesson #4: Develop Prudently

Frequently violated best practices include:

� For international applications, whenever possible,
use field labels that have already been translated.

� Leverage the most recent user interface elements
available in your R/3 system whenever possible.

� Use radio buttons when only one object can be
selected at a time.

73For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

� Use checkboxes only when more than one object
can be selected at a time from a list.

� Tips

• Keep in mind that a wireless scanner
might be of more use than a desktop
PC for some warehouse workers, and
therefore a keyboard may not be used
at all.

• If “Mat no.” has already been translated
as an abbreviation for Material number,
use that term instead of a new label like
“Material no.,” which would then also have
to be translated.

• For reports use table controls instead of
step loops and ALV instead of plain lists to
provide maximum functionality with the
minimum code.

Lesson #5: Develop Defensively

Frequently violated best practices include:

� In reports, encourage users to specify search
criteria to ensure finite runtimes.

� Be sure to provide a WHEN OTHERS clause for
all CASE statements. It will happen in produc-
tion sooner or later!

� Safeguard applications from unauthorized entry
by adding authorization groups to programs and
authorization objects to transaction codes.

� Provide data on a “need-to-know” basis.

� Make sure all SELECT, INSERT, UPDATE, and
MODIFY statements are immediately followed
by an IF SY-SUBRC <> 0 statement.

� For SELECT statements with FOR ALL
ENTRIES specified, make sure that the internal

table used is guaranteed to have at least one entry
(see “Tips” below).

� Tips

• If XI_VBAK were blank, the following code
fragment could potentially return all records
contained in table VBAP:

SELECT * FROM VBAK INTO XI_VBAK
 WHERE. …
 SELECT * FROM VBAP
 FOR ALL ENTRIES IN
 XI_VBAK
 INTO XI_VBAK
 WHERE …
ENDIF.

It should instead be coded as follows:

SELECT * FROM VBAK INTO XI_VBAK
 WHERE. …
IF NOT XI_VBAK[] IS INITIAL.
 SELECT * FROM VBAP
 FOR ALL ENTRIES IN
 XI_VBAK
 INTO XI_VBAK
 WHERE …
ENDIF.

• If a user needs to see only his or her plant’s
data, use security settings to implement this
restriction.

Lesson #6: Help Users Help Themselves

Frequently violated best practices include:

� Tell the user exactly what he or she should do to
correct an error.

� Prevent users from making errors whenever
possible.

� Provide training documentation in PDF format on
a centrally located, easily accessible, shared drive
or on a web site familiar to all users.

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.74

� Tip

Examples of bad error messages:

• “You entered a bad date.”

• “Please save it and retry.”

• “The order needs to be released.”

• “You forgot to clear the item.”

• “Why don’t you consider saving first?”

Examples of good error messages:

• “Invalid date 2202. Please check your
entry.”

• “Please save the document and retry.”

• “Please release the order and retry.”

• “Please clear the item and retry.”

The Usability Checklist

As long as you’re in the printing mood, print the
Usability Checklist and pin it up next to the
Usability Best Practices Reference. Review the
items in each section and see if there are any “check-
points” you can add. Taking ownership of the docu-
ment in this way will help you quickly become
familiar with it. The checklist, like the reference,
is also a good template for creating a team-wide
peer-review program.

To make a true impact on your applications, it’s
important to use the checklist early in the design
process and at key points during and after develop-
ment. Here’s who should be using it and when:

• Designers (during the application design/
prototype stage): Whoever is designing the
application should skim through the checklist
after assembling a prototype to spot any issues.

If you currently don’t create prototype applica-
tions before building them, start. You’ll be
amazed at how many more major issues you (and
your users) will identify and resolve up front
instead of after going live! Plus, painting or
drawing a screen-by-screen prototype will let you
validate usability early on instead of during test-
ing when changes are costly.

• Developers (just after development but before
testing): After you’ve finished developing the
application, quickly run through the checklist to
spot any major issues. Be as critical as possible.
Making changes at this point is easy and cheap.

• Testers (during usability testing): Testers are
accustomed to testing functionality, but rarely
have a step-by-step plan with which to validate an
application’s usability. Distribute the checklist to
testers and have them execute it just as they
would a functional test plan. Emphasize that the
ease with which users can learn and use the appli-
cation is as much a predictor of its success (and
total cost!) as the functionality.

When used thoughtfully, the checklist will
become a natural part of your team’s application
design process. I am confident it will help you
improve end-user satisfaction, and relieve much of
the unnecessary pre- and post-go-live burden that
trainers, the help desk, and developers face when
deploying applications with avoidable design issues.

The Usability Questionnaire

While the Usability Questionnaire was initially devel-
oped to help you identify problems with applications
currently in production, it can also be an effective
tool for spotting issues in new applications that might
otherwise go undetected (i.e., the checklist does not
address the issues of suitability to the task or user
satisfaction, while the questionnaire does). There
are three main phases in which you should use the
questionnaire:

75For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

What If I Don’t Have Time to Use the Full Usability Checklist?

I have to admit that, at 22 pages, the Usability Checklist can be a bit time-consuming (although you
will be able to spin through it quickly after a few uses). During development you’ll inevitably want to
perform a “quick check” in lieu of the full test. In anticipation of such a need, here’s an abbreviated list
of essentials to check:

� Is the user kept advised of which data is saved and which isn’t?

� Is the user kept informed of where he or she is and where he or she can go?

� Are all button, menu, and field labels likely to be clear to users?

� Is screen information organized in a natural and logical manner?

� Can the user exit (abandon) the application without having to correct field validation errors?

� Does the application employ locking to ensure only one user at a time can modify a record?

� Is the application’s use of data, functionality, and labels consistent with other R/3 applications?

� Does the application accommodate both novice and expert users?

� Is the information on each screen necessary and sufficient? Is both primary and supporting
information included?

� Is the application designed to minimize mouse-clicks and navigation?

� Is the application visually pleasing and does it convey a sense of quality?

� Does the application’s visual design promote understanding and avoid overload?

� Do the application’s functionality, data, and design embody the identified needs of its users?

� Do all messages use language and phrases familiar to users?

� Do all messages indicate what happened and provide details on what to do next?

� Will the application’s performance match user expectations when exposed to production data?

� Does the application do everything it can to avoid the loss of data from errors or unanticipated
results, and does it recover quickly?

� Will users be able to access the application easily? Consider availability, input devices, and
monitor size, for example.

� Does the application accommodate people in different locations and those with disabilities
(e.g., color-blindness)?

� Is the application safeguarded from unauthorized users?

� Is the application designed so that only authorized individuals can see sensitive data?

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.76

• During usability testing: Print the questionnaire
and distribute it to testers along with the checklist
during usability testing, but ask them to complete
the questionnaire after a few “clean” test cycles.
After all, we don’t want to gauge user reaction to
a buggy version of the code, right?

� Tip

Also, for best results, try to recruit testers that
represent a cross-section of your user population
(e.g., across divisions and with varying levels of
R/3 experience). This way, if the feedback is
consistently positive, you can be confident your
application will be well received by the masses,
or you can identify subgroup-specific issues and
thus focus your training and support resources
where they are needed most.

• After go-live when things have stabilized:
About a month or two after go-live, distribute the
questionnaire to a small cross-section of actual
users (about five or so).

� Tip

Resist the temptation to distribute the survey via
mass email because it will dilute its effect. A
personal invitation to a small group, delivered
and picked up in person, is the most effective way
to ensure meaningful results without creating
survey burnout.

• Periodically after go-live for suspect applica-
tions only: If through the proverbial grapevine
you learn that users are complaining that an appli-
cation is no longer useful or is hard to use, iden-
tify a small survey group that might be able to
confirm and elaborate. If you’ve had success
with the questionnaire in the past, consider using
it as a starting point for your investigation.

Like all surveys, the success or failure of the
questionnaire can depend on technical, social,
and political factors. To maximize your chances
for success:

• Consider whether a one-on-one conversation
would work better for gathering information.
Bear in mind your company’s culture and how
your relationship (or your manager’s reputation!)
with users might influence their responses.

• Be sure to secure the permission of your own
manager and of those responsible for the users
you wish to survey before distributing the
questionnaire.

• Assure users that the survey is confidential and
anonymous (if it is).

� Warning!

As with any survey, do not overuse the
questionnaire! Users will quickly become so
disenchanted with the idea of completing yet
another survey that you are unlikely to obtain
meaningful responses.

The Usability Questionnaire is designed to help
you hone in on the nature of user complaints, which
you can then use as a basis for further investigation.
The basic premise is that users are good at expressing
how they feel, but not at identifying specific applica-
tion design aspects that contribute to why they feel
this way (refer back to the sidebar “Demystifying
Common User Complaints About R/3” on pages
68-69). This is your job. Based on research,6 I have
divided the questionnaire into five sections that
reflect the primary drivers of the user experience.
Figure 3 provides a summary for your reference.

6 The Usability Questionnaire is based in part on Measuring Usability
with the USE Questionnaire, by Arnold M. Lund (STC Usability SIG
Newsletter, Vol. 8, No. 2).

77For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

Figure 3 The Five Primary Sections of the Usability Questionnaire

Section

Ease of Learning

Ease of Recollection

Effectiveness

Ease of Use

Satisfaction

Description

• These questions gauge how quickly users learn your application’s features
through training and subsequent exploration, which has a direct impact on
their impressions of its usability.

• You can aid learnability by using terminology familiar to users and
leveraging users’ mental models (i.e., models of how data is related) when
organizing data and functionality on the screen.

• This section targets how easily users remember what your application
can help them do (or not do), and how to do it.

• You can aid recollection by labeling data, menus, and buttons thoughtfully
and consistently, and by using visual metaphors (e.g., tabs, toolbar buttons,
or menus) to remind users of the features and data that can be accessed
from where they are in the system.

• These questions focus on the degree to which your application helps
users accomplish the task at hand completely and effectively.

• You can make your applications more effective by researching user needs
before coding, identifying and validating business assumptions you’ll be
making, and soliciting input from a cross-section of potential users during
the design phase.

• This section gauges the ease and speed with which users can accomplish
specific tasks with your application.

• Use the Usability Best Practices Reference and Usability Checklist to avoid
common user interface flaws and improve application consistency.

• This section provides a high-level snapshot by assessing the degree to
which users enjoy interacting with your application.

• If you’ve done a good job on each of the previous sections, you should
expect good scores on this section. Good marks on the first four combined
with bad marks here might suggest that external factors are negatively
influencing your application’s success (e.g., overall system performance
problems, user bias, political issues, etc.).

As with the Usability Best Practices Reference
and Usability Checklist, the Usability Questionnaire
can become a powerful part of your team’s toolbox if
used consistently and thoughtfully.

Now that you’ve got a handle on the principles
of usability, along with an understanding of how to
develop more user-friendly applications, what about
the ones you already have? How can you apply what

you’ve learned so far to your existing applications?
That’s what we will examine next.

How to Simplify Previously
Deployed Applications

While a commitment to building more effective and
usable applications going forward is an important

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.78

step, to truly help users we need to identify and sim-
plify transactions, reports, or business processes
currently in use that are inefficient or hard to use. I
call these efforts usability improvement projects.

But should developers be the ones to do this?
Isn’t it somebody else’s job? In my experience, we
developers are actually perfect for the job, for the
following three reasons:

• We usually remember the details of the
applications we’ve designed.

• We know which usability improvements are
technically possible (e.g., ALV, dropdowns, etc.).

• After reading this article, we hopefully know
what contributes or detracts from an application’s
usability in the first place.

Hunting for and solving usability problems may
be easier than you think. Over the next sections,
I will walk you through my suggestions for this
process, which involves the following six steps:

1. Secure your manager’s approval to investigate.

2. Identify potential targets for simplification.

3. Determine likely sources of usability issues.

4. Evaluate potential solutions for simplification.

5. Propose improvement projects.

6. Prioritize, plan, and execute the improvement
projects.

Let’s take a closer look at each of these steps
in turn.

Step 1: Secure Your Manager’s
Approval to Investigate

The first step is to ask your manager for some time to
talk with users, trainers, and configurators to see if
there are any applications or reports that are not serv-
ing their intended purpose, that are inefficient, or that

are hard to learn or use. Mention that, following the
process described here, you will investigate any
issues you discover and distill your findings into one
or more improvement proposals should you find
anything worth pursuing.

� Tip

When proposing improvement projects to your
managers, you may meet with some resistance
along the lines of, “We can’t even meet our
current workload, let alone review old stuff.”
While in some cases this is true, I propose that
such workload overload is in many cases a result
of deploying poorly designed software. Before
publicizing your proposals, prepare a response
in which you describe the ways in which your
suggested improvements will actually reduce
current support workloads and, in addition,
simplify future rollouts (e.g., through reduced
training and support, streamlined processes,
better code reuse, etc.).

Step 2: Identify Potential Targets
for Simplification

Once you’ve got the support of the appropriate man-
agers behind you, you’re ready to hunt for issues.
Here are three great places to begin looking:

• Trainers and support personnel

• Configurators

• Users

Trainers and Support Personnel

Trainers are a hidden gold mine of experience when it
comes to the usability of your company’s applications.
Through daily interaction with users in multiple loca-
tions and with varying backgrounds, trainers can tell
you, for example, exactly which buttons users don’t
remember to push or which messages make no sense.

79For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

� Tip

Users typically speak more candidly to trainers
about what’s troubling them than they do to
managers (or even developers) since they aren’t
superiors, and because they have an established
rapport. Ask trainers to help you investigate
issues with users.

The first step in approaching trainers is to identify
those responsible for each module or business unit7

and introduce yourself. Let them know you are look-
ing to make their jobs easier by reducing usability
issues, and ask the following questions:

1. Which five business processes, tasks, transac-
tions, or reports are the most difficult for users to
learn, and why?

2. Which five business processes, tasks, transac-
tions, or reports are the most difficult for users to
use, and why?

3. Which five business processes, tasks, transac-
tions, or reports require the most time to execute,
and why?

4. Are there any transactions or reports the trainer
feels are poorly designed?

Once you’ve collected the answers to these ques-
tions, look for patterns. Some applications are used
across business processes and may show up more
than once. Some applications will appear on all three
of the “hardest to learn,” “hardest to use,” and “most
time to execute” lists. Reduce the lists to (at most)
10 applications or issues to investigate further.

While support personnel often don’t remember
details about problem applications, they can be very

helpful in identifying particularly troublesome
applications by helping you review records of past
support tickets.8

� Tip

The key to success is to select those issues that,
when solved, will result in high-dollar savings
due to positive effects on a large user base or
high transaction volume.

Configurators

Configurators typically know which business pro-
cesses are particularly long and complex, and are
often willing to demonstrate them for you in a test
system. Visit with the configurators responsible for
each module and business area and have them walk
you through the top five business processes in their
area that they feel are the most challenging for users
to learn or use. Write down the steps that they follow
to demonstrate the process, along with the data used,
so that you can reproduce the demonstration on your
own. For each process, ask a few key users (both
expert and novice) to verify the list.

� Warning!

Since they rarely interact directly with users,
configurators are generally less able than
trainers to identify usability issues. It’s usually
best to have them list potential problems for you
to investigate on your own through interviews
with trainers and users. However, some
configurators do work with users one-on-one
during go-lives, in which case they are likely to
have the experience and insights you need.

8 When reviewing support tickets, pay attention only to those relating to
usability issues (e.g., “User misunderstood functionality”). Applica-
tions with a large number of functional malfunctions may not indicate
a true design flaw from a usability perspective.

7 It is a good idea to solicit the blessing of at least one manager in
each business area in which you want to talk to trainers, users, or
configurators. You can also ask your manager to do this for you if
he or she has a relationship with anyone you wish to speak to.

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.80

Users

Users are often very good sources for identifying
problem applications but, as mentioned previously,
aren’t very good at identifying why the problems exist
or how to solve them. It’s usually best to interview a
few key users only after identifying suspect applica-
tions. Nevertheless, users can be valuable as your
first point of investigation if you think this will work
best in your company.

In this case, to ensure your efforts will have
maximum impact, focus your attention on those
groups that use R/3 the most.9 Interview each user
to determine which transactions, reports, or multi-
transaction/report business processes they feel are
the most difficult to use, learn, or execute. If you’ve
previously consulted with trainers or configurators,
verify their suspicions and ask users to elaborate.

Step 3: Determine Likely Sources
of Usability Issues

With 10 or so targets in mind, you now need to deter-
mine the source of each target’s usability issues. The
following four sources are the most common:

1. Design flaws

2. Generalization problems

3. Unavoidable complexity

4. External issues

Source #1: Design Flaws

Design flaws — such as buttons with unclear names,
too much data on a single screen, or the inability to
abort an application without correcting a field valida-
tion error — can usually be uncovered using the
Usability Best Practices Reference, the Usability
Checklist, or the results of the Usability Question-

naire. Have configurators demonstrate the suspect
application or process, and use the R/3 Usability
Toolkit, along with some old-fashioned common
sense, to spot items that might be confusing to users,
overly time-consuming, or difficult to remember.

Source #2: Generalization Problems

Is the application cluttered with data or functionality
not needed for a particular user’s given task? This is
a common scenario with standard R/3 transactions
since they are designed for such a wide audience and
set of functions.

For example, suppose a shipping clerk simply
wants to enter a truck ID into a sales order. In this
case, transaction VA01 (or VA01N) — Create Sales/
Returns Order — is not well suited to the task. To
enter the single piece of data, the clerk would have to
navigate through multiple screens and large amounts
of data and superfluous functionality. While the
transaction may be well designed in general, its
usability could be improved greatly for the shipping
clerk, who might benefit from a transaction variant
that brings up the truck ID entry screen as quickly as
possible and hides irrelevant data. Alternatively, you
could develop a simple, one-screen application that
accepts a truck ID and inserts it into the sales order
behind the scenes via a hidden BDC (batch data
communication). If you feel it would benefit your
users, you can even deploy this transaction via the
web or as part of a Portal offering.

Source #3: Unavoidable Complexity

Sometimes applications unavoidably reflect the
complexity of the business processes they model.
When you attribute a usability issue to this cause,
you are saying that all users need all the data (or func-
tionality) for nearly all the tasks for which the appli-
cation is used, and that this data or functionality is
presented in the most effective, consistent, and palat-
able way possible. As you might imagine, this finding
is rarely justified.

9 Configurators usually know the number of users they support, so ask
if you’re not sure.

81For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

Source #4: External Issues

Sometimes the source of a usability issue is not even
related to software. You can often detect the presence
of these “external” issues by observing users while
they interact with the application in a real-world
setting. Here are a few examples to illustrate:

• Suppose that pickers in the warehouse tell you
that transaction ZPIC is difficult to use. You
observe them in the warehouse, and notice that
the screen on the wireless device they are using
lacks contrast. In the warehouse’s low-light
conditions, they can hardly see their entries, and
therefore consider the application hard to use.

• Let’s say a group of shop-floor users report a
production confirmation transaction as hard to
use. Upon visiting them, you notice that it’s
difficult for them to use the keyboard to enter
serial numbers and quantities. You determine
a barcode scanner would allow them to work
entirely without a keyboard.

• Imagine that a quality-inspection lab crew reports
a result entry transaction as hard to use. Your
investigation reveals that they only recently began
using R/3 and had no R/3 training.

Most usability issues stem from Source #1
(design flaws) or Source #2 (generalization prob-
lems). Since Source #3 (unavoidable complexity)
and Source #4 (external issues) occur only occasion-
ally, if at all, and are highly dependent on specific
scenarios and intangibles, I will not cover their reso-
lution here. As the first two can be addressed simply
by software changes, I’ll discuss what you can do for
these two cases next.

Step 4: Evaluate the Potential
Solutions for Simplification

The range of solutions available depends on whether
the usability issue stems from a design flaw or a

generalization problem. Here, I will outline the
potential solutions available along with when to use
which (for a detailed summary of these potential
solutions, see the appendix on page 86).

Solutions for Usability Problems Stemming
from Design Flaws

If one or more design flaws are at fault, consider
these potential solutions, and in this order.

� Solution #1: Review the configuration and/or
security model. Developers frequently roll up their
sleeves and set off to solve problems that can actually
be addressed through configuration or security
changes. This is true both with standard R/3 and
custom transactions (especially those coded by other
developers). Some transactions allow fields or tabs
to be enabled or disabled, fields or buttons to be
relocated between screens, and labels to be changed
via configuration or by tweaking security profiles.
Be sure to talk with configurators, review the
application’s configuration documentation yourself,
and even review the application’s code in search of
hidden features before assuming development is
required to correct any issues.

� Solution #2: Review OSS Notes for updates
and/or report the issue to SAP for repair. Chances
are, if your users are experiencing trouble with a
standard R/3 application, others are too. Be sure to
check for any OSS Notes that might address the issue.

� Tip

Also research whether the issue has been or will
be addressed in a subsequent R/3 release.

� Solution #3: Make improvements to the appli-
cation yourself. For custom applications, this is
usually much easier, although you still have to con-
sider how the improved version will be deployed

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.82

without interrupting production or causing confusion
among existing users. For standard R/3 applications,
consider the availability of user, menu, and screen
exits (recently renamed “Business Add-Ins”), or
consider modifying the standard R/3 object10 by
applying for a modification key via SSCR.11

� Solution #4: Use one of the “specialization”
techniques. In some cases it’s better to address
major design flaws by creating a separate, “special-
ized” transaction for use by a group or subgroup of
users, rather than modifying the original (e.g., if a
small subgroup of users has needs distinct from the
main group, or if you wish to make large design
changes to a standard transaction). Fortunately, this
approach does not always involve developing code. I
will discuss the specialization techniques in detail in
the next section.

Solutions for Usability Problems Stemming
from Generalization

For generalization problems, you can simplify com-
plex applications/processes through “specialization.”
Consider the following options in the order in which
they are presented here.

� Solution #1: Use transaction variants to spe-
cialize complex transactions. First introduced in
R/3 3.x, transaction variants provide a way to custom-
ize standard R/3 transactions by hiding fields and
functions, skipping screens, and defaulting field
values. You define a variant using a simple recording

tool (transaction SHD0) that walks you though each
screen in the target transaction, prompts you for
settings, and assigns a transaction code to the variant,
which you provide to users instead of the standard
code. Variants are an easy, low-commitment way
to tailor R/3 transactions to the specific needs of a
group, or to provide a user with multiple, specialized
views of a single R/3 transaction.

� Solution #2: Develop custom ABAP
transactions to streamline, enhance, or combine
transactions and reports. If major flow changes are
needed to simplify an application’s design, or if you
wish to combine several transactions or reports into
a single, streamlined application, consider developing
a custom ABAP transaction. The transaction can
interact with users in a specialized, optimized, and
personalized way, and then load the data into R/3
via a synchronous batch data communication (BDC)
against one or more standard R/3 transactions. The
downside to this approach, of course, is the necessary
development time and the introduction of yet another
custom application that will require training and
support. Nevertheless, in many cases the cost can be
justified (e.g., if a minute or two can be eliminated
from a business process executed 2,000 times daily).
See the sidebar “Why Develop Custom Transac-
tions?” on the next page for more on why developing
custom transactions is a good idea.

� Solution #3: Develop web-based applications to
leverage the usability strengths of the web para-
digm. Learning R/3 in the first place can be difficult
for users and expensive for companies. While train-
ing is a wise investment for those likely to use R/3
frequently, the costs can outweigh the benefits for
those who will use it only occasionally. This has led
many companies over the last few years to build and
deploy web-based R/3 applications.12 Consider a

10 Modifying standard R/3 objects has become much easier and less
intimidating with the introduction of the Modification Assistant in
4.5B. Prior to the Modification Assistant, it was difficult to distin-
guish modifications from standard code, and reapplying them during
an upgrade or support package import was a manual process. For
this reason, teams rarely allowed modifications. If you have 4.5B+,
modifying R/3 objects is now an easy and viable option for imple-
menting large-impact changes. For more detail on modifications, see
the article “The Basics and Beyond: Manage Modifications Effec-
tively with the SAP Modification Assistant, Modification Browser,
and Object Adjustment Tools” on page 89 of this issue.

11 To modify standard R/3 objects you need an SSCR (SAP Software
Change Registration) key, which you can request from the SAP
Service Marketplace at http://service.sap.com/sscr.

12 The primary motivations here are: (1) most users are familiar with
browsers and Internet applications; (2) Internet applications tend to be
graphical and intuitive; and (3) information from disparate systems
can be combined on a single web page. In addition, the introduction
of the SAP Internet Transaction Server (ITS) and, more recently, the
SAP Web Application Server (Web AS) has further encouraged the
development of web applications. With R/3 Enterprise, the Web AS is
actually integrated directly into R/3.

83For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

Why Develop Custom Transactions?

When organizing R/3’s functionality, SAP needed to keep things generic to accommodate a variety of
industries and, perhaps more important, to accommodate end users with widely varying roles within
individual companies. The downside to this is that the user experience is muddied by functionality
irrelevant to his or her needs. For example, a shipping clerk whose role requires modifying one or
two fields in a delivery will use the same generic Change Delivery transaction (VL02N) that is used
by a customer service representative. The shipping clerk will see tons of tabs, fields, menus, and
buttons totally unrelated to the task at hand.

This user interface complexity and the fact that many business processes require a user to visit
several different screens across multiple transactions are the two largest issues of R/3 usability.
Ideally, users would have a small number of transactions to accomplish their job functions. The
transactions would provide them with the information (or ability to input information) they need, when
they need it, on one or two screens.

This need can be addressed in a number of ways. One is through strategic, well-designed custom
transactions that consolidate information retrieval and data entry in a role-specific way. If deployed
to the web through technologies such as the SAP Internet Transaction Server (ITS) and SAP Web
Application Server (Web AS), this role-based (or even user-level) personalization of the user
interface is often easier to achieve.

web-based solution if your users are new to R/3, only
use it occasionally, or use a very limited scope of its
functionality.

� Solution #4: Develop wireless applications to
leverage the usability strengths of different plat-
forms. Using the same technologies that enable
web-based applications,13 applications that run on
wireless devices (modified for industrial use) provide
many users with easy access to R/3 data or function-
ality from desktop-unfriendly locations like ware-
houses. Many modern devices contain a web browser
designed to access a slimmed down version of a web-
based application. If your users find it difficult and
inefficient to use desktops, a web-based wireless
application can be a powerful solution.

� Solution #5: Develop custom fat-client applica-
tions. When particularly frustrated with R/3 (usually
when it comes to reporting), companies often intro-
duce fat-client applications — such as PC-based C,
C++, C#, Excel, Access, or Visual Basic applications
— to store and forward information, or to download
R/3 data for local reporting. While this technique
gets the job done in the short term, it is an antiquated
approach (at least for enterprise computing), it is
very expensive to support and enhance,14 and, person-
ally, I discourage it. When a custom application is
needed, develop it as a client/server application
instead — for example, as an ABAP program or web-
based application. One exception to this is if you are
using desktop applications for offline data entry or
access, in which case fat-client applications are an
acceptable solution.

13 In addition to the ITS and Web AS, several third-party products
(including those that utilize the terminal-based SAPConsole interface)
exist for building wireless solutions. Despite a limited amount of
marketing in this area, the ITS and Web AS are equally, if not more,
powerful platforms for building wireless solutions, and in my opinion
are far more strategic for R/3 shops in the long run.

14 One of the main reasons is that it is very difficult to roll out PC-based
software and manage software versions across thousands of comput-
ers. Also, working with data locally sometimes introduces complex
synchronization issues.

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.84

Step 5: Propose Improvement
Projects

Once you’ve determined strategic usability targets,
identified likely causes, and assembled a rough plan of
attack for each, present your findings to the managers
who approved your interviews. It’s best if you can
also present your ideas to the people you interviewed.
This way, if the majority see value in your proposals,
there will be social pressure to make these “optional”
changes “required” changes. If you present to only one
manager, you run the risk that he or she will shoot
down your ideas because of the “no time” argument
and all will be for naught. This scenario may sound
cynical, but it’s best to be prepared. We want to be
sure to prevail for the common good, right?

Step 6: Prioritize, Plan, and
Execute the Improvement
Projects

The last step is to work with your managers to priori-
tize, plan, and execute the improvements. Be sure to
follow up (e.g., using the Usability Questionnaire)
after you’ve implemented an improvement to verify
that your actions have made a difference. This is the
most rewarding part!

Tips for Planning
Simplification Projects

Simplification projects can do a lot of good, but you
must take care that you are actually helping things
instead of creating a lot of extra work without yield-
ing significant improvement. The following are some
key tips to keep in mind as you set out to improve
your own applications.

� Trainers are a great sounding board for usability
improvement ideas. A good rule of thumb is to con-

vince trainers that your improvements will make
things substantially easier — for users, for the sup-
port staff, and for future training. If you can convince
them, then you have good reason to feel confident
that your improvements will succeed.

� When proposing improvements to a live applica-
tion, consider how changes will affect current users
and your teammates. Sometimes trainers become
justifiably anxious when developers mention making
interface changes to live applications.

� It sounds obvious, but be sure to check OSS
Notes for solutions to usability issues with standard
R/3 applications. While SAP usually doesn’t recog-
nize or release patches for usability issues, it’s worth
a try.

� Transaction variants are a great low-commitment,
low-maintenance way to create several simple trans-
actions from a monster-like transaction, such as
VA01, without custom code. You can even provide
a single user, for example, with five or so variants
for the same monster transaction, each used for a
specific task.

� When contemplating a simplified web-based or
wireless application, consider where your users will
primarily work — in the SAP GUI, in a web browser,
on a device mounted on a forklift, etc. Also, consider
which environments they are most familiar with. Due
to their simplicity and pervasiveness, web-based and
wireless R/3 applications are especially effective for
delivering R/3 functionality to groups of users that
are new to R/3 or are in remote locations.

� Modifying standard R/3 code is, of course, the
least preferable option, but should be considered
when reasonably small changes would yield large
usability improvements. However, many R/3 shops
have a blanket “no modifications allowed” policy,
fearing large upgrade and maintenance costs. In
my opinion, such policies are overcautious, and
merely shift the costs of maintenance to production,
training, and support teams as users struggle unneces-
sarily with unwieldy applications. Applying for a

85For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Making Applications More Effective, Easier to Learn, and Simpler to Use

modification key at http://service.sap.com/sscr is
simple and quick, and your modifications can almost
always be backed out.

Now, go forth and make things better!

Conclusion

As developers, we instinctively know that usability is
important. The ease with which an application can be
learned and used, as well as how it is perceived, is a
critical but often underrated determinant of its success
(or failure). My aim in this article was to provide you
with a foundational knowledge and the tools you need
to build better, more usable applications, and to make
a positive difference in the daily lives of your users.
You can download the R/3 Usability Toolkit from the
“Download Files” section at www.SAPpro.com to
help you on your way.

Resources

� Jakob Nielsen and Robert Mack, Usability Inspection Methods (John Wiley & Sons, 1994,
ISBN 0-47101-877-5)

� Jakob Nielsen’s Usability Heuristics web site (www.useit.com/papers/heuristic)

� Elaine Weiss, Making Computers People-Literate (Jossey-Bass, 1994, ISBN 1-55542-622-0)

� Arnold M. Lund, Measuring Usability with the USE Questionnaire (STC Usability SIG Newsletter,
Vol. 8, No. 2)

� Deniese Pierotti, Xerox Corporation, Heuristic Evaluation - A System Checklist (www.stcsig.org/
usability/topics/articles/he-checklist.html)

� Usability Special Interest Group, Usability Toolkit (www.stcsig.org/usability/resources/toolkit/
toolkit.html)

� SAP Design Guild, Simplifying for Usability (http://sapdesignguild.org/resources/simplification)

� The ISO web site (www.iso.com)

The importance of becoming a “user advocate”
cannot be overstated. If you agree, share this philoso-
phy with your colleagues. In my experience, modern
corporate IT environments sometimes settle for levels
of mediocrity unless someone injects ideas and enthu-
siasm. If you’ve read this far, you might just be the
one for the job in your own organization.

Jonathan Pokress, CPIM is an independent
consultant and president of Bluenote Consulting
Group, Inc. (www.bluenoteonline.com), based in
Charlotte, North Carolina. He has spoken on
numerous occasions on both technical and
managerial topics, including web-enablement with
the SAP Internet Transaction Server, development
methodology, and user interface design. Bluenote
assists clients in the areas of R/3 simplification,
development of web and wireless solutions, quality
assurance, and mentoring. You can reach
Jonathan at jpokress@bluenoteonline.com.

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.86

Appendix : Potential Solutions
for Mitigating Usability Problems

Solution #1:
Review the
configuration
and/or security
model for
options.

Solution #2:
Review OSS
Notes for
updates, and/or
report the issue
to SAP for
repair.

Solution #3:
Make
improvements
to the
application
yourself.

Solution Pros and Cons When to Use It

* For details on the Modification Assistant, see the article “The Basics and Beyond: Manage Modifications Effectively with the
SAP Modification Assistant, Modification Browser, and Object Adjustment Tools” on page 89 of this issue.

Solutions for usability problems stemming from design flaws

Pros:
• Easy to implement.
• Low commitment.
• Look-and-feel can be customized by location or

user subgroup.
Cons:
• Usually can be used only for trivial interface

improvements (e.g., show/hide fields or tabs based
on user authorizations), if even that much control is
possible.

Pros:
• OSS Notes are easy and inexpensive to implement.
• SAP develops and supports additional code and

code changes required for improvement.
Cons:
• SAP rarely releases code fixes related to usability

issues.

Pros:
• Major improvements are possible with relatively little

effort or expense.
• Easiest solution for custom applications that have

not yet been rolled out, and is usually easiest for
previously deployed custom applications as well.

• Many minor improvements can be made to a
standard R/3 application’s interface or functionality
via user, menu, and screen exits (now Business
Add-Ins) or direct modification (with an SSCR key).

Cons:
• For applications currently in production, you need to

cut-over to the new version, which involves some
risk. You also may need to retrain users.

• Modifications to standard R/3 applications are costly
to support and make upgrades and maintenance
more difficult (this is less so with the introduction of
the Modification Assistant in 4.5B).*

• For both standard and custom
applications: Always consider this option
first. Even custom applications are
sometimes driven by one or more
configuration tables or customize
themselves based on a user’s security
authorizations.

• Research the configuration/security
options available: Ask configurators,
review documentation, visit http://
help.sap.com, or search the code for
authority-check statements or references
to key configuration tables.

• For standard R/3 applications only:
Checking OSS Notes takes very little time
and can save you tons of coding.

• For custom applications: This is the best
way to address functional and interface
issues. Cost is lowest for issues caught
and addressed before the application
goes live.

• For standard R/3 applications: Use this
method only when the needed changes
are minor (e.g., one field to add or one
menu or button title to change). Major
modifications, even if implemented as
user exits, can become expensive to
maintain and can hinder upgrades or
support package imports.

87For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix: Potential Solutions for Mitigating Usability Problems

Solution

Solution #4:
Use one of the
“specialization”
techniques
(see the
generalization
solutions below).

Solution #1:
Use
transaction
variants to
specialize
complex
transactions.

Solution #2:
Develop
custom ABAP
transactions
to streamline,
enhance, or
combine
transactions
and reports
(can execute
originals via
synchronous,
hidden BDC).

Pros:
• Low-commitment, low-maintenance — you can

create, delete, and maintain variants using standard
visual tools.

• No custom development required.
• Screens can be skipped, fields made display-only,

and values defaulted.
• You can even provide a single user, for example,

with five or so variants for the same monster
transaction, each used for a specific task.

Cons:
• Aside from skipping screens by pre-populating data,

difficult to change an application’s flow.

Pros:
• Complete ability to merge data and functionality

from one or more transactions or reports into a
specialized, easy-to-learn-and-use application built
around the specific needs and experience levels of
one or more groups of users.

• You can supplement standard R/3 data and
functionality with your own.

• User interface is stable across R/3 upgrades. Only
interfaces to standard transactions are changed.

Cons:
• Involves developing additional software, so

development and support costs can be significant.
• Custom applications will not automatically support

functional enhancements available during upgrades,
thus requiring additional coding.

• Great for providing a limited scope of data
or functionality to new users or users only
needing a piece of a complex transaction
(e.g., VA01).

• Consider this approach only when it cannot
be accomplished through less-costly means.

• Consider this approach if major modifications
to standard R/3 applications would be
required. Compared to modifying a standard
R/3 application, a custom application might
be less costly to support, cause fewer
upgrade difficulties, and provide more
flexibility in terms of the functionality and data
you can offer.

• Consider this approach when the needs of a
small subgroup of users are vastly different
than the majority who use the more complex
transaction.

Solutions for usability problems stemming from generalization

Pros and Cons

Pros:
• For both custom and standard applications, users

may benefit from highly specialized applications.
• When specialized, custom transactions are

developed to “wrap” standard, complex
transactions, you have complete control over when
and how the user interface changes. During
upgrades, only the touchpoints between the
specialized application and standard R/3 will need
to be updated.

Cons:
• If you develop one or more custom, specialized

applications (if transaction variants won’t do the
job), be aware that they can be expensive to
develop, maintain, and upgrade. Training, support,
and delays resulting from usability problems are
also costly, however. When considering this
approach, be sure to enumerate the costs of doing
nothing versus the costs of developing and
maintaining specialized applications.

When to Use It

• For custom applications: Use a
specialization technique when a complex
custom application needs to be simplified
for a group of users, or when a small
subgroup needs only a smaller or slightly
different set of data or functionality than the
majority.

• For standard R/3 applications: Use a
specialization technique if the needed
changes are major (flow or logic changes)
or numerous. Major changes are costly to
maintain and can hinder upgrades. Many
usability issues with R/3 applications can
only be addressed via specialization.

• For both standard and custom applications:
Consider deploying highly specialized
transactions to users instead of, or in
addition to, the standard, either to simplify
things for novice users or to provide a quick,
limited-purpose application for experts
(although experts may also benefit from
the more complex application in certain
circumstances).

SAP Professional Journal May/June 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.88

Solution

Solution #3:
Develop
web-based
applications
to leverage
the usability
strengths of the
web paradigm
(using the Web
AS, ITS, JSP,
ASP, etc.).

Solution #4:
Develop
wireless
applications
to leverage
the usability
strengths of
different
platforms.

Solution #5:
Develop custom
fat-client
applications
(e.g., using C,
C#, C++, or
Visual Basic).

Pros and Cons

Same pros as generalization solution #2, plus:
• For users new to R/3 but familiar with web

applications, R/3 functionality can often be
deployed without the significant training, support,
and licensing costs (in some cases) associated
with a traditional R/3 rollout.

• Web-based applications can be made available via
an extranet, providing highly restricted access to
R/3 data and functionality to business partners or
employees via the Internet.

• Web applications can easily integrate R/3 and
non-R/3 data in a single, seamless presentation.

Same cons as generalization solution #2, plus:
• May involve setting up additional servers (e.g.,

the Web AS or ITS) unless you upgrade to R/3
Enterprise, which has the Web AS built-in.

• Developers need to learn web-development skills
(i.e., web design, HTML, JavaScript, etc.).

• Establishing an extranet can be costly and must
be done with caution (e.g., security concerns).

Same pros as generalization solution #3, plus:
• Wireless devices can be easily transported,

providing mobile users (e.g., warehouse or
production floor personnel) with the data and
functionality they need, exactly when they need it.

Same cons as generalization solution #3, plus:
• Wireless devices tend to be expensive and battery

life becomes a concern.

Same pros as generalization solution #3, plus:
• Desktop applications tend to be very fast (except

when they must constantly access backend data).
Cons:
• Desktop applications (especially C, C#, and C++

applications) can be more expensive and time-
consuming to develop than ABAP applications.

• Upgrades and maintenance of desktop
applications is typically much more costly and
difficult than it is for ABAP applications, mainly
due to the number of systems that need to be
upgraded.

When to Use It

• Consider developing web-based
applications if a population of users
has no experience with R/3 and will
only need access to a small amount
of R/3 functionality and/or data.

• Consider this approach when you
need to provide external parties with
access to R/3 data or functionality,
and the Internet would be a
convenient, user-friendly, and cost-
effective way to do so.

• Consider this approach when you
wish to seamlessly integrate data
from multiple systems into a single
application with a consistent look-
and-feel.

• Consider this approach when users
are mobile and would be able to do
their jobs more quickly or more
accurately by having R/3 data or
functionality at their fingertips.

• Avoid developing custom desktop
applications to meet enterprise
processing needs whenever possible.
Instead, choose one of the other
client/server options above.

• An exception is when users must do
a lot of offline processing or data
entry, a mode in which both web and
traditional SAP applications don’t
work as well. This need is rare,
though, since most modern enterprise
processing relies extensively on
online access to enterprise data
sources.

