
3For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

Build More Powerful Web
Applications in Less Time with
BSP Extensions and the MVC Model

Karl Kessler

With Release 6.10 of the SAP Web Application Server (Web AS), SAP
introduced a new approach to web development called Business Server
Pages (BSP). For the first time, developers could create web applica-
tions by combining HTML directly with ABAP on a single page — a
BSP page. A typical 6.10-based BSP application consists of a couple of
BSP pages whose data retrieval is coded in ABAP and whose layout is
defined via standard HTML, so that any ABAP programmer with even
a modest understanding of HTML can easily write web user interfaces
and applications using the ABAP Workbench.

SAP realized that this approach was not without room for improve-
ment. BSP pages can quickly grow into large sizes that are difficult to
maintain or reuse, and applications can become hard to modularize
effectively. Plus, developing user interfaces in HTML can be cumber-
some given the large number of tags and options to learn. SAP Web
Application Server 6.201 provides relief through two key enhancements:

1. BSP extensions: Essentially a library of custom tags, BSP exten-
sions allow developers to add complex user interface elements like
table views to their pages with only a few lines of code. SAP pro-
vides predefined BSP extensions with Web AS 6.20, or you can
create your own custom extensions.

2. Support for the Model-View-Controller (MVC) model: The
well-known MVC model allows you to “compartmentalize” the user
interface, business logic, and flow logic of a web application so they
can be readily reused and more easily maintained.

Karl Kessler joined SAP
AG in 1992 as a member
of the Basis modeling
group, where he gained
experience with SAP’s
Basis technology. In 1994,
he joined the product
management group of
the ABAP Development
Workbench. Since 1997,
Karl has been Product
Manager for SAP’s
business programming
languages and frameworks.

(complete bio appears on page 26)

1 Release 6.20 is the technological basis of R/3 Enterprise and other SAP solutions, in contrast to
6.10, which is offered on a standalone basis.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.4

This article describes and demonstrates how to
use these key enhancements,2 and provides examples
and tips to help you avoid common difficulties. By
the time you finish reading this, you will understand
how, when, and why to use both BSP extensions and
the MVC model to build more powerful, more main-
tainable, and more reusable web applications with
less code and in less time.3 Let’s get started!

What Exactly Do BSP
Extensions Do?
Suppose you want to write a simple BSP application
to output a list of flights from the flight table of the
SAP IDES training system. If written in a 6.10 sys-
tem (i.e., prior to the advent of BSP extensions),
the code for your page might look something like
Listing 1.

So what’s wrong with Listing 1? While it techni-
cally will work, it is not ideal. As you can see, stan-
dard HTML is mixed with ABAP code, which makes
the application difficult to read. The construction of
the BSP page is also highly procedural, and does not
leverage the declarative nature of HTML. Plus, since

Listing 1: Classic BSP Code for Displaying an Internal Table

 1 <%@page language="abap"%>
 2 <html>
 3
 4 <head>
 5 <link rel="stylesheet"
 6 href="../../sap/public/bc/bsp/styles/sapbsp.css">
 7 <title> Flight display </title>
 8 </head>
 9
10 <body class="bspBody1">
11 <table class="bspTbvStd">
12 <th class="bspTbvHdrStd">Carrid</th>
13 <th class="bspTbvHdrStd">Connid</th>
14 <th class="bspTbvHdrStd">Fldate</th>
15 <% loop at flights into flight.%>
16 <% data: str type char10.
17 write flight-fldate to str.%>
18 <tr>
19 <td class="bspTbvCellStd"><%=flight-carrid%></td>
20 <td class="bspTbvCellStd"><%=flight-connid%></td>
21 <td class="bspTbvCellStd"><%=str%></td>
22 </tr>
23 <% endloop.%>
24 </table>
25 </body>
26
27 </html>

2 BSP extensions and the MVC model are new, optional technologies
for building better BSP applications. The “standard” BSP approach
is still supported, so 6.10 applications will still work on the 6.20
platform.

3 Basic knowledge of the BSP programming model is assumed. For
an introduction to BSP programming, see my previous article, “A
Developer’s Guide to Creating Powerful and Flexible Web Applica-
tions with the New Web Application Builder,” in the January/
February 2002 issue of this publication.

5For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

HTML treats all data as characters, you must program
data type conversions manually, on your own.

For example, in line 17 of Listing 1, note that
you must first write (with the ABAP write statement)
the date field to a temporary string variable before
outputting it in line 21. This ensures that the date is
output in a format preferred by the user (e.g., 01/20/
2003), instead of the default raw database format —
YYYYMMDD without any punctuation characters
(e.g., 20030120). As the page becomes more com-
plex, this can add up to a lot of extra work.

You will notice another deficiency when you first
pull up the page in a browser: the complete table of
data is displayed, without any scrolling functionality
available. That is, all of the flights are displayed at
the same time in the browser, instead of in more
manageable “pages” with scroll buttons. If you’ve
done web development before, you will realize how
much HTML (and possibly JavaScript) code would
be required to implement this paging approach.
(More on scrolling functionality in a later section.)

BSP extensions offer a cleaner, more compact
way to write BSP applications. Take a look at
Listing 2, where you can see how I’ve used the pre-
defined HTMLB extension to display the example
flight list. Notice how much less code is used com-

pared to Listing 1, and how the page looks much more
like HTML, with no loops or other programming
constructs to detract from its readability.

� Tip

Another good reason to work with the HTMLB
extension tags instead of plain HTML tags is that
HTMLB is fully analyzed by the BSP compiler.
For example, the compiler checks whether you
have specified all mandatory attributes and
whether inner tags are handled correctly. In
contrast, the “plain” BSP approach offers only a
rough syntax check that looks primarily at the
ABAP code inside the BSP page, leaving errors
that will appear only at runtime. Yet another
aspect is portability — using HTMLB ensures
that your HTML code is rendered according to
the underlying platform, while plain BSP pages
are almost always browser-dependent.

Let’s take a closer look at what is happening
in Listing 2. On line 2, you’ll notice a new BSP
directive, @extension, which tells the BSP compiler
that I wish to use the HTMLB extension in this
page. When getting started, you must first specify
which BSP extension(s) you would like to use. The

Listing 2: Rewrite of Listing 1 Using the HTMLB Extension

 1 <%@page language="abap" %>
 2 <%@extension name="htmlb" prefix="htmlb" %>
 3 <htmlb:content>
 4 <htmlb:page>
 5 <htmlb:form>
 6 <htmlb:tableView id = "t1"
 7 table = "<%= flights %>" >
 8 </htmlb:tableView>
 9 </htmlb:form>
10 </htmlb:page>
11 </htmlb:content>

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.6

predefined HTMLB extension contains tags that
encapsulate common user interface elements, such
as input fields, pushbuttons, and table views.

Using the HTMLB extension tags is easy.
Many of them mirror their HTML counterparts (e.g.,
instead of using the HTML <form> tag in your page,
you now use the <htmlb:form> tag, as in line 5 of
Listing 2).

When declaring the extension(s) to be used, you
must specify an individual prefix to refer to a BSP
extension, as I have done on line 2. In this example,
I am using the prefix htmlb. This naming convention
comes in handy if you are working with several
extensions simultaneously. Appearing next is an
<htmlb:content> tag (line 3). This tag is responsible
for inserting an <HTML> opening tag in the page
(plus others), and is required. All other HTMLB tags
are placed inside this tag.

Next, you would typically specify two
HTMLB tags: <htmlb:head> for the head and
<htmlb:body> for the body of your document.
However, if you are writing a simple page, like
the one in the example here — e.g., a page that
doesn’t include JavaScript or Cascading Style Sheet
(CSS) styles in the HTML <head> section — you
can simply use the <htmlb:page> tag (line 4),
which automatically generates both the header and
body tags.

Next comes an <htmlb:form> tag (line 5),
which corresponds to an HTML <FORM> tag.4 Since
the example table view will require interactive capa-
bilities (i.e., scrolling functionality), I embed the
<htmlb:tableView> tag inside the form (lines 6-8).
The <htmlb:tableView> tag shows attributes id
and table. The id attribute uniquely identifies the
HTML table control within the HTML page (e.g.,
in case you need to reference it later via event han-
dling). The table attribute refers to the internal table
to be displayed.

� Tip

In Listing 2, note that I am passing the
name of an internal table, “flights,” to the
<htmlb:tableView> element (lines 6-8). This
internal table was loaded by ABAP code placed
in the page’s Initialization event handler rather
than in the BSP code itself. Then, to make the
internal table (“flights”) available within the
BSP page, I declare it as a page attribute on the
“Page Attributes” tab of the BSP page editor.
Separating the data retrieval code from the
layout code in this way is considered good
programming practice, and makes applications
easier to maintain and reuse.

If you look at Listing 2 as a whole, I hope it starts
to become clear as to why BSP extensions hasten web
application development. The code is fully declara-
tive and contains just a reference to a data source (the
internal table to be displayed). The code is much
more compact than in Listing 1 and can be extended
in a variety of ways that I will discuss in this article.

Creating a Web Application Using
BSP Extensions

Let’s now create the well-known flight demo applica-
tion from scratch using BSP extensions (if you have
access to a Web AS 6.20 system, I encourage you to
follow along and try these steps for yourself):

1. Log on to Web AS 6.20. Go to the ABAP
Workbench’s Object Navigator (transaction
SE80) and select BSP Application from the
dropdown list box at the upper left of the screen.
Enter a name for the new BSP application in the
input field below (zflightdemo in the example).

2. Click the display button (). The system
will ask you whether to create this application.
Choose Yes. The system will create a new

4 If you are new to HTML, <FORM> tags are used when building
interactive pages with elements like input fields and buttons that
gather information from the user.

7For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

BSP application and display its outline in the
lower left pane of the screen.

3. Position the cursor on the new BSP application
name, right-click on it to open the context menu,
and choose Create → Page. A dialog box pops
up asking for the name of the page (and the
page’s flow logic). Enter a name for the page
(display.htm in the example), along with a short
description of the page (e.g., Display), and press
the Enter key (or click). The system creates

the page with some default HTML code on the
Layout tab of the BSP page editor.

4. You can now replace the default code by
typing in the code from Listing 2, but there is an
easier way to do this. Choose the Tag Browser
button to open the Tag Browser5 (see Figure 1).

Figure 1 The Tag Browser and Page Editor Display

5 The Tag Browser displays all supported tags for the Web AS together
with their attributes in a hierarchical display that you can use for drag
and drop. You can also open the Tag Browser via Environment →
Web Tools → Tag Browser.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.8

The system will then list all the available
libraries in a hierarchical display on the left
side of the screen.

5. Expand the node BSP Extensions. The system
displays transportable and local extensions if
any exist.

6. Expand the node htmlb. You will see the com-
plete list of available HTMLB extension tags.
Scroll down and double-click on <htmlb:page>.
The system displays the online documentation for
the selected tag (see Figure 2).

7. Drag the <htmlb:content> tag and drop it in

Figure 2 HTMLB Documentation Display

9For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

the page editor for the display.htm page. The
system will automatically insert the correspond-
ing opening and closing tags. Similarly, you
can also drag and drop the <htmlb:page>,
<htmlb:form>, and <htmlb:tableView> tags to
the page editor session.

8. Expand the tag <htmlb:tableView>. All the
attributes of the <htmlb:tableView> tag are
displayed. As with the tags in the previous step,
you can drag and drop the attributes to the page
editor session.

9. Go to the Page Attributes tab and create a page

attribute named flights of type FLIGHTTAB,
and provide the following code for the event
OnInitialization:

Select * from sflight into
 corresponding fields of table
 flights up to 100 rows.

10. Save (), activate (), and run the BSP applica-
tion by pressing F8. The system automatically
starts the web browser and displays the flight list,
as shown in Figure 3.

Figure 3 The Flight List Display

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.10

If you look at the flight list table in Figure 3, you
see that each column is formatted appropriately for its
data type, as declared in the ABAP Data Dictionary.
Suitable header text for each field is also automati-
cally retrieved from the Data Dictionary definition.
Compare this to the plain BSP page in Listing 1,
where you have to hard-code the column titles in the
layout (see lines 12-14 in Listing 1).

Now that you’ve got some background on using
BSP extensions, let’s take a look at some of the more

advanced ways you can use them to enhance your
web applications.

Enhancing a Web Application
with BSP Extensions

To further explore the potential of BSP extensions,
let’s add a few bells and whistles to the example
flight demo application.

Figure 4 Flight List Display with Scroll Buttons Added

11For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

Restricting the Display and Adding
Scrolling

First, let’s make large data sets more manageable
by restricting the number of rows that can be dis-
played at once in the browser. The attribute
visibleRowCount of the <htmlb:tableView> tag limits
the rows that are displayed. When including this
attribute in an <htmlb:tableView> tag, the system
automatically adds scroll buttons () to the
bottom of the table (see Figure 4). Contrast this to
the plain BSP approach, where you have to code the
scrolling logic yourself!

Next, let’s limit the display shown in the
browser to only three columns (fields) of the internal
table. (By default, the <htmlb:tableView> tag dis-
plays all columns.) Listing 3 shows how this change

is easily accomplished by placing
<htmlb:tableViewColumn> tags within the
<htmlb:tableView> tags. See how easy it is to
use BSP extensions? All you need to quickly build
feature-packed applications is knowledge of the avail-
able BSP tags and attributes!

Finally, to insert a variable column that is
not present in the internal table, we can embed a
user-defined column, as I have done in line 14 of
Listing 3. Here, I’ve added a column that contains
a pushbutton for requesting details on individual
flights. Each of the buttons gets its own ID based on
the value of the connid column. Note that in this
context, to have the system evaluate connid as a
variable instead of as a constant, you must surround it
with dollar signs ($).

Listing 3: Limit the Columns Displayed with the <htmlb:tableViewColumn> Tags

 1 <%@page language="abap" %>
 2 <%@extension name="htmlb" prefix="htmlb" %>
 3 <htmlb:content>
 4 <htmlb:page>
 5 <htmlb:form>
 6 <htmlb:tableView id = "t1"
 7 visibleRowCount = "10">
 8 table = "<%= flights %>" >
 9 <htmlb:tableViewColumns>
10 <htmlb:tableViewColumn columnName = "carrid" />
11 <htmlb:tableViewColumn columnName = "connid" />
12 <htmlb:tableViewColumn columnName = "fldate" />
13 <htmlb:tableViewColumn columnName = "details"
 type = "user" >
14 <htmlb:button id="$connid$" text="Details" />
15 </htmlb:tableViewColumn>
16 </htmlb:tableViewColumns>
17 </htmlb:tableView>
18 </htmlb:form>
19 </htmlb:page>
20 </htmlb:content>

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.12

� Tip

The BSP extensions framework provides
variables that can be useful in your pages,
including a standard unique ID named “TVCID”
(table view counter ID) that you can use for
identification purposes using the “$...$” syntax.
For example, if you do not have a unique field on
hand, like “connid” in the example, you can use
“$TVCID$,” which generates consecutive unique
IDs that can be used in event handling.

Adding a Search Page

To make the flight demo even more useful, let’s add
an interactive search page to enable users to narrow
their searches by carrier ID. First, let’s define the
page’s layout and provide a suitable event handler.

To begin, create a new page called search.htm
and insert the code shown in Listing 4. Again, you
can either use the Tag Browser or type in the code
directly. Figure 5 shows what the finished page
looks like when accessed from a web browser.

In Listing 4, you’ll notice three new HTMLB
tags: <htmlb:inputfield>, which defines an input
field called carrier; <htmlb:label>, which produces
a label with the caption Carrier to its left; and
<htmlb:button>, which renders the form’s submit
button (labeled with the caption Go). The value of
the onClick attribute (search in this case) is passed as
a parameter to the registered HTMLB event handler,
described in the next section.

Handling Events

All HTMLB event handling takes place in the stan-
dard BSP event OnInputProcessing. Select the Event
Handler tab of your search.htm page and open the
page editor. Enter the event handling code shown in
Listing 5.

The code shown in Listing 5 is straightforward,
so I will only point out a few key things to note:

• Line 2 obtains a reference to the HTMLB event
object (cl_htmlb_event), which contains impor-
tant event information, such as which button the
user pressed.

Listing 4: Layout of the Search Page

 1 <%@page language="abap" %>
 2 <%@extension name="htmlb" prefix="htmlb" %>
 3 <htmlb:content>
 4 <htmlb:page>
 5 <htmlb:form>
 6 <htmlb:label for = "carrier"
 7 id = "lab1"
 8 text = "Carrier" />
 9 <htmlb:inputfield id = "carrier" />
10 <htmlb:button id = "button"
11 onClick = "search"
12 text = "Go"
13
14 </htmlb:form>
15 </htmlb:page>
16 </htmlb:content>

13For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

Figure 5 The Search Page Displayed in a Web Browser

Listing 5: Event Handling Code for the Search Page

 1 OnInputProcessing
 2 data : event type ref to cl_htmlb_event,
 3 car type string.
 4
 5 class cl_htmlb_manager definition load.
 6
 7 IF event_id = CL_HTMLB_MANAGER=>EVENT_ID.
 8 event = CL_HTMLB_MANAGER=>get_event(request).
 9 If event->name = 'button'.
10 car = request->get_form_field('carrier').
11 navigation->set_parameter(name = 'carrier'
12 Value = car).
13 navigation->goto_page('display.htm').
14 Endif.
15 Endif.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.14

� Tip

Instead of handling all HTMLB events in the OnInputProcessing event, it is also possible to register an event
handler. You must implement your own class (e.g., CL_HTMLB_EVENT_EXAMPLE in the code example below)
that implements the IF_HTMLB_EVENT interface. The HTMLB manager (line 3 below) will then call your
event handler. This offers a better structural approach if you have to handle various events that otherwise
would all be present in one code section.

1 DATA: event_handler TYPE REF TO CL_HTMLB_EVENT_EXAMPLE.
2 CREATE OBJECT event_handler.
3 CL_HTMLB_MANAGER=>dispatch_event(
4 request = runtime->server->request
5 event_handler = event_handler
6 page_context = page_context).

• Line 7 checks whether the standard parameter
event_id indicates that this event is an HTMLB
event. This is purely precautionary since in the
example we have not mixed HTML submit but-
tons and HTMLB objects.

• Line 9 determines if the user clicked the one
(and only) submit button on the example search
page (the Go button) using the event->name
property.

• Line 10 retrieves the value the user entered in
the carrier input field using the standard BSP
request object.

• Finally, via method calls on the navigation object
(set_parameter and goto_page), lines 11-13 pass
the entered carrier ID, along with control, to the
display.htm page developed earlier.

To complete the enhancements, add an automatic
page attribute named carrier to display.htm6 and
modify the WHERE clause of the OnInitialization
event (coded earlier in step 9 on page 9) to narrow
its selection to only that for the carrier ID specified
by the user.

Building Your Own BSP
Extensions

You have seen how the predefined HTMLB extension
provides a powerful set of tags and features to sim-
plify tedious tasks like table formatting (the sidebar
on the next page examines some of the details of this
particular extension). Nevertheless, you will inevita-
bly encounter opportunities to develop your own
objects (e.g., specialized graphics or custom elements
like an address element), and you may wish to encap-
sulate this work in your own “library” of elements
(i.e., your own extension).

� Note!

While it is not difficult to create a new, custom
BSP extension with its own tags, developing a
rich toolkit like the HTMLB extension is a major
undertaking.

A BSP extension is simply a library of BSP
elements identified by tag names. For each element

6 Page attributes can be maintained on the Page Attributes tab of the
BSP page editor (SE80).

15For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

Delving into the Details of the HTMLB Extension

Inside the ABAP Workbench’s Object Navigator (transaction SE80), you will find a demo BSP application
(shown in the screenshot below) called HTMLB_SAMPLES. This sample application demonstrates all
the various HTMLB tags.

Once you open the demo application, on the left-hand side of the screen you see a navigation frame that
allows you to choose from samples of the different HTMLB tags, including the tags for elements such as
an input button, a radio button, and a table view. The right-hand side is divided into three parts: the top
frame allows you to modify the attributes of each tag, the bottom frame shows the immediate effects of
any modifications of the tags, and the middle frame displays the corresponding source code.

Especially for those new to BSP extensions, this demo application is valuable for exploring and
mastering the library of available BSP extensions.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.16

Figure 7 Create an Extension Element

Figure 6 Create a New BSP Extension

you must provide a handler class to render it. The
handler class accommodates any attributes the ele-
ment will support (e.g., the onClick attribute of the

<htmlb:button> tag) through public class attributes
that can be subsequently accessed from within the
element’s rendering method(s).

To create your own BSP extension:

1. Start the ABAP Workbench’s Object Navigator
(transaction SE80) and select BSP Extension from
the dropdown list. Enter a new extension name
in the upper left of the screen (zflightext here).

2. Click the button. On the resulting pop-up (see
Figure 6), type in a prefix (e.g., flext) and some
short text (e.g., Flight Extension), and then press

17For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

the Enter key (or click) to return to the Object
Navigator screen (SE80).

3. Position the cursor on the newly created BSP
extension (zflightext in the example), right-click
on it to open the context menu, and choose
Create → BSP element.

4. On the resulting pop-up (see Figure 7), type
in the element name (flightelement), the name
of the handler class (zcl_flight_handler), some

short text (Flight element), and press the
Enter key (or click). The system displays
the basic properties of your BSP extension
on the right-hand side of the Properties tab
(see Figure 8).

5. Double-click on the element handler class
(ZCL_FLIGHT_HANDLER). The system
navigates to the Class Builder, where you can
see the derived methods of the BSP extension
framework.

Figure 8 Basic BSP Extension Properties

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.18

6. Click the redefine button () to override the
method DO_AT_BEGINNING. The system
opens the ABAP Editor, where you type in the
following code:

...
data : out type ref to
if_bsp_writer,
 out = get_previous_out().
 out = print_string('my
 custom tag').

The code first obtains a reference to the HTML
output stream and adds to it the string constant
my custom tag (note that you could add any
HTML code you wish here).

Once you save and activate your changes in the
Class Builder, you can open the Tag Browser and
expand your newly defined BSP extension. As with
elements in the HTMLB extension, you can now drag
and drop BSP elements from your extension onto a
BSP page. If you run your page, the custom string
defined in the code above (my custom tag) will be
rendered in your page.7

Helpful Hints for
Using BSP Extensions

Here are some helpful hints for when you begin
working with BSP extensions on your own:

� For the purpose of readability, use the same
design both for input fields and related pushbuttons.

� You can significantly reduce the rendering time
of the date navigator if you specify a small number
of months (e.g., one or two) for each page display.

� When working with table views, the system
automatically fetches header texts from the Data

Dictionary. If you want to use your own text,
just overwrite the provided header texts using the
<htmlb:tableViewColumn> tag (and set the title
attribute).

� Always supply the onClick or onClientClick
events when you define an input button. Otherwise
the button will be rendered inactively.

� Use the <htmlb:documentHead> tag to define
embedded JavaScript and CSS styles. Be careful
with JavaScript — it is highly browser-dependent
and may cannibalize all your HTMLB efforts. The
<htmlb:documentBody> tag is the container for all
your visible HTMLB tags and any standard HTML.
Again, the BSP compiler does not check the standard
HTML portion for syntactical correctness or browser
compatibility.

� Use dropdown list boxes to display small sets
of selections. Large data sets should always be dis-
played using the <htmlb:tableView> tag.

� Take care of accessibility constraints. For
example, when displaying images, always provide
the alt attribute as an additional help text that is
accessed by screen reader software.

� BSP extensions provide helpful rendering capa-
bilities, but using plain BSP pages is still a good idea
in certain scenarios (e.g., if your page layout is done
externally). You can combine pages that contain
plain HTML with those containing only HTMLB.

� Use the Tag Browser to add tags. Tags are
case-sensitive; they all start with a lowercase letter
(e.g., <htmlb:checkbox>). For structuring large
names, uppercase letters are used (e.g.,
<htmlb:checkboxGroup>). Using the Tag Browser
ensures that capitalization is always correct.

The MVC Model

While BSP extensions go a long way toward helping
you streamline individual BSP pages, they don’t
address the larger issue of how to structure an entire

7 A complete discussion of the BSP extension framework is beyond
the scope of this article. You can find more information in the SAP
Web AS 6.20 online documentation at http://help.sap.com (select
SAP Web Application Server → Web Applications → Web Application
Server → Web Applications and Business Server Pages→ Program-
ming Model → BSP Extensions).

19For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

application in a way that maximizes code reusability
and maintainability. The Model-View-Controller
(MVC) model, which Java developers have success-
fully used for years, is now available with Web AS
6.20 and addresses this key issue.

With the amount of attention the MVC model has
received in some circles over the last few years, you
would think it was some hot new technology. It’s
not. The MVC model is simply an approach to struc-
turing applications that separates the user interface
into three distinct parts (see Figure 9):

• The model encapsulates the actual business data
and business functionality. It serves as the data

Figure 9 An Overview of the MVC Model

� Note!

Web AS 6.10 helped developers encapsulate reusable portions of code or HTML through the use of server-side
“includes” — separate BSP page fragments that could be included in other pages at design time. For example,
many developers create header and footer pages to house banner images and text that is shared across all pages
within a web application. These header and footer pages are then inserted into each page within the BSP
application through a single “include” directive. As you’ll see, the MVC model provides a much more
comprehensive approach to encapsulation than simple “include” files.

source for any kind of visualization. The model
provides a single point for updating or retrieving
data. In the flight example discussed in this
article, business objects such as flights or book-
ings constitute the data for the model.

• The view visualizes the application data using a
graphical representation. The same application
data can be displayed in different ways (e.g., a
table can be represented using a grid view or a
chart view). When the application data (i.e., the
model) changes, all dependent views typically
need to be updated. In the flight example here,
the three-column list of flights we coded in
Listing 3 was a single view of the flight data.

�������

��	�
����

� �	��������	��
� �������
����������	�����

� ����	�����	�
��
����

�����
� ����	��
����������	�����

� ����������
��		��������
����	���
��	����	�����

�����	��

����
� �	����
������������	
�����������������	
��������	 ��

�������

��
���	�����	

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.20

• The controller manages interactions between the
end user on one side, and the model and view on
the other. The controller is responsible for han-
dling user events, for updating the application
data, and for handling navigation requests. In
the flight example here, the code that queries the
flight database, books a flight, or navigates from
an overview to a detailed view would be the
controller.

The MVC model helps to simplify the construc-
tion of complex user interfaces, limits the potential
impact any changes might have, and raises the
degree of reusability and maintainability of most
BSP applications.

� Example

Imagine that one of your users asks to see a
current table of data sorted in a new way. Using
the MVC model, you only need to add a new
view, and perhaps a line or two of code, to the
controller. The model, a notably sensitive
component of the application, would (in most
cases) need no modification at all.

Building BSP Pages Using the
MVC Model

So how does support for the MVC model change
the way you build BSP pages? The most significant
change, as you can see in the diagram in Figure 10,
is that traditional BSP pages, originally containing
HTML layout and event handlers, are divided con-
ceptually into two parts: a BSP controller and a
BSP view.

The controller (a BSP page) is responsible for
handling all incoming navigation requests or data
submissions. It communicates with the underlying
model, which is implemented as an ABAP class.
After interacting with the model to retrieve or post
data as needed, the controller invokes the appropriate
view, passing any data needed by the view to render
the final HTML page.

To demonstrate, let’s modify the flight demo
application using the MVC model. Follow these
steps:

1. Display the outline of the flight demo application
in transaction SE80, as you normally would.

Figure 10 Using the MVC Model When Building BSP Pages

!"#�����

����������
�	
��
����
�������

!"#���	�
����

������
����������
�����
�����������

�������

�����	��

�����

$���������	������

����������

	��
���

21For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

Figure 11 Create the View

Figure 12 The Layout of the View

open the context menu, and choose Create →
Page. On the resulting pop-up, enter a name for
the page (vflights.htm), add a short description
(View flights), and select the page type (View),
as shown in Figure 11. Press the Enter key (or
click).

3. The system opens the page editor for the view
(Figure 12), where you can choose to specify
the layout in plain HTML, use a BSP extension
(like HTMLB, for example), or use your own
custom extension.

2. Position the cursor on the BSP application
(zflightdemo in the example), right-click on it to

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.22

Figure 13 Create the Controller

Figure 14 The Properties of the Created Controller

Here, we will use HTMLB, so copy the code
from Listing 2 into the page editor. (Note that
the visibleRowCount attribute discussed in
Listing 3 is also included to restrict the display.)

4. Go to the Page Attributes tab and create a new
attribute flights of type FLIGHTTAB, in essen-
tially the same way we did in the section “Creat-
ing a Web Application Using BSP Extensions.”

23For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

5. Position the cursor on the BSP application
(zflightdemo in the example), right-click on it to
open the context menu, and choose Create →
Controller. On the resulting pop-up, enter a
name for the controller (flight.do) and a short
description (Flight controller), as shown in
Figure 13. (By default, the controller’s file
name extension is .do.) Press Enter (or click).

6. The system displays the properties page of the
newly created controller (Figure 14). This page

defines the attributes of the controller, and also
the controller class, which implements the
controller’s behavior. To create the controller
class, enter ZCL_FLIGHT_CONTROLLER in the
Controller Class field and save ().

7. Double-click on the class name. The system
asks whether you want to create this new class.
Choose Yes. The system navigates to the
Class Builder and displays the inherited methods
(Figure 15). All controller classes are subclasses

Figure 15 The Inherited Controller Class Methods

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.24

of the system class CL_BSP_CONTROLLER2,
and thus they inherit the system class’ methods.

8. Switch to change mode () and, as shown in
Figure 15, position the cursor on the method
DO_REQUEST, which is the central point of the
controller, where all the event handling takes
place. Since a controller has its own URL, it can
be requested directly from a web browser. The
do_request method’s implementation is then
called immediately.

9. Choose the redefine button (). The system
opens the source editor, where you can specify
the actions to be executed when the controller is
requested. Type in the code shown in Listing 6.

10. Save () and activate () your work, and then
position the cursor on the controller and press
F8. The system automatically starts the web
browser and displays the list of flights as before
(refer back to Figure 3), only now you have
much more flexibility to quickly and easily add
new views.

The controller’s code needs some explanation.
In line 2 of Listing 6, the variable view1 is declared
to store a reference to the view object instantiated in
line 6. The internal table flights (line 3) is filled with
records from table sflight in line 4. The controller
then sets the internal table as a view attribute (line 7)
and finally calls the view in line 8.

I hope it has become clear from the example
shown here how the MVC model offers more flexibil-
ity than the plain BSP programming model: the view
is cleanly separated from the request-handling code.
In contrast to plain BSP pages, which both retrieve
data and generate the final HTML page, BSPs based
on the MVC model delegate this responsibility to a
central controller class that can dynamically choose
from one of many views as needed. In this way, new
views can be added quickly without having to entirely
rewrite the data retrieval logic.

Another benefit is efficiency. In the 6.10 BSP
runtime environment, navigation between pages is
handled by redirect requests. If a new page must be
displayed, a redirect request is sent to the browser,
which causes additional network traffic. Even if
the application is stateless, all context information
is lost between the two pages. With the MVC
model, the controller constructs the view and then
sends the view’s HTML output back to the browser,
allowing the context to remain valid between page
requests.

Helpful Hints for
Using the MVC Model

The MVC model has many advantages over the tradi-
tional BSP programming model. In particular:

Listing 6: Specify the Controller Actions

1 method DO_REQUEST.
2 data : view1 type ref to if_bsp_page,
3 flights type flighttab.
4 select * from sflight
5 into corresponding fields of table flights up to 100 rows.
6 view1 = create_view(view_name = 'vflights.htm').
7 view1->set_attribute(name = 'flights' value = flights).
8 call_view(view1).
9 endmethod.

25For site licenses and volume subscriptions, call 1-781-751-8699.

Build More Powerful Web Applications in Less Time with BSP Extensions and the MVC Model

� BSP controllers provide a central entry point for
all kinds of user requests and navigation handling. In
addition, BSP controllers are callable units that can
be reused in other applications more easily than in
traditional BSP event handling.

� BSP views are passive objects — they serve to
simply display data and variables by means of HTML
or HTMLB. Since scripting code is not allowed in
views, you obtain a much better separation of display
and application logic (i.e., separation of concerns).

� BSP controllers and views can be cascaded to

build “compartmentalized” web user interfaces
instead of large unstructured HTML pages. BSP
controllers can delegate tasks to subcontrollers
that directly interact with a particular view; such a
view might then in turn call another controller (see
Figure 16).

� Rather than connecting each controller with the
underlying application model, you can define indi-
vidual models for each controller/view pair that
holds the context for the fields in the view. A large
application model can thereby be split into more
manageable pieces.

Figure 16 More Complex MVC Scenarios

!"#�����

����������
�	
��
����
�������

!"#�����

����������
�	
��
����
�������

!"#���	�
����

������
����������
�����������
��������� ��

!"#���	�
����

������
����������
�����
�����������

!"#���	�
����

������
����������
�����
�����������

!"#���	�
����

������
����������
�����
�����������

!"#�����

����������
�	
��
����
�������

!"#�����

����������
�	
��
����
�������

!"#�����

����������
�	
��
����
�������

�������

�����	��

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.26

Conclusion

BSP extensions and support for the MVC model,
both now available with SAP Web Application Server
6.20, offer tremendous relief and opportunity for
developers of Web AS applications. BSP extensions
leverage pure HTML code and offer a lot of built-in
functionality for handling tedious tasks like table
formatting and scrolling. The MVC model enables
developers to easily separate the user interface, data
storage, and application flow portions of their web
applications into separate components. BSP exten-
sions and the MVC model are both well integrated
into the ABAP Workbench environment, and can
be used together or independently to increase the
flexibility, maintainability, and reusability of your
BSP applications.

Karl Kessler studied Computer Science at the
Technical University of Munich, Germany. He
joined SAP AG in 1992 as a member of the Basis
modeling group, where he gained experience with
SAP’s Basis technology. In 1994, he joined the
product management group of the ABAP
Development Workbench. Since 1997, Karl
has been Product Manager for SAP’s business
programming languages and frameworks. He
can be reached at karl.kessler@sap.com.

