
51For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

Data Transformation in SAP Standard
ALE Distributed Business Processes:
How to Ensure an Efficient, Effective
Implementation
Arthur Wirthensohn

Arthur Wirthensohn is a
senior consultant at EDS
Switzerland and a member
of EDS’s international
Technical Leadership
Network. Currently, he
works as project manager
and is the technical lead of
the EAI department, which
delivers SAP-related
services such as ALE/EDI,
SAP Business Workflow,
Web Application Server,
Data Migration, and ABAP
Programming Services.

SAP’s Application Link Enabling (ALE) is an integrated toolset for
enabling the distribution of data between SAP systems as well as
between SAP and non-SAP systems. It supplies all the features
necessary for exchanging and monitoring data, including tools for
transforming data1 to meet the requirements of each partner2 in a
distributed business process. If you are implementing a distributed
business process that does not require any transformation of the data to
be distributed, or that requires only a small amount, then setting up the
distribution via ALE is fairly simple.3 It’s also fairly easy to estimate
the feasibility of the implementation and the amount of time and effort
it will require. However, if the business process requires lots of data
transformation, it’s a different story.

ALE provides a variety of tools and features (filters, conversion
rules, program exits, and the like) for transforming the data that is
exchanged between systems, each with its own advantages and limita-
tions. Understanding these tools — what they can do and how to use
them — is a prerequisite for being able to do three very important things:

• Determine whether you will be able to carry out your data distribu-
tion using a standard ALE process by utilizing the provided data

(complete bio appears on page 80)

1 A data transformation might consist of changing the data within a given IDoc data structure
(e.g., changing the representation of a unit of measurement), or it might mean filtering out data
that is not relevant to the applications or processes that will receive the data.

2 In an ALE connection between SAP systems like R/3, CRM/SRM, BW, or APO, a partner is a
logical system addressing exactly one client of an SAP system.

3 The main challenge in inter-company distributed business scenarios is not a technical one; it is
having all parties communicate with each other completely and clearly about the distributed
business process and reaching a detailed agreement on what constitutes that process.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.52

transformation tools. If you can’t, you will need
to employ an application integration tool like the
SAP Business Connector or the state-of-the-art
SAP Exchange Infrastructure, which is part of
SAP’s NetWeaver product portfolio. You don’t
want to move to one of these tools unnecessarily,
however, because along with the increased
functionality they provide, they also can bring
increased implementation, maintenance, and
system management costs.

• Determine how much time and effort it will take
to implement the distribution using ALE.

• Efficiently and effectively implement your data
distribution. Data transformation in ALE can
be easy if you know the tools, but complex and
time-consuming if you do not.

The purpose of this article is to equip you with
the knowledge and skills you need to accomplish all
three of these objectives. You’ll learn everything you
need to know about ALE’s data transformation tools
and features — their capabilities, relative merits, and
how to use them. Most important, I’ll show you
how to evaluate each tool for your project require-
ments, so that you can select the tools that ensure an
easy-to-implement, cost-effective, and highly main-
tainable solution.

In my experience, just knowing what each tool
can do and how to use it isn’t enough. You also need
to know when to use one tool rather than another,
even when they are both capable of getting the job
done. For each data transformation, you want to use
the tool that has the fewest performance and process-
ing costs, saving more “expensive” tools for those
tasks that can’t be accomplished any other way.
That’s why I provide you with a structured approach
(a set of principles and procedures for evaluating and
implementing tools) that you can use for selecting the
right tool or combination of tools for your own imple-
mentation, no matter how complex the data transfor-
mation requirements are. Then, to help you learn by
doing, I take you through a step-by-step data transfor-
mation example that puts the approach I recommend
into action.

We’ll begin by looking at the information flow of
a business process that is distributed via ALE, paying
particular attention to how and when data transforma-
tions take place.

� Note!

Though the focus of this article is on
transforming SAP standard messages and not
IDoc Extensions or custom IDoc/ALE processing,
all of the information in this article can be
applied to extended and custom ALE distributed
business processes as well.

How Data Is Distributed with ALE

When data is distributed from one SAP system to
another via ALE, it passes through an information
flow like the one depicted in Figure 1. As the dia-
gram shows, ALE has three major processes for
moving data from a sender system to a receiver
system:

• Outbound process: The outbound process
begins with the creation of an Intermediate Docu-
ment (IDoc) containing the data to be transmitted.
It ends with the creation of a communication
IDoc, which contains the data ready to be trans-
ferred to the receiver system.

• Communication process: The communication
process encompasses the (physical) transportation
of the IDoc from the sender to the receiver sys-
tem. ALE supports several means of communica-
tion, each controlled by a different port type (the
port specifies the technical properties of the com-
munication process).

• Inbound process: The inbound process directs
the IDoc to the appropriate posting application,
while applying certain checks to the IDoc.

53For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

We’ll look at each of these processes in turn to
get a detailed picture of what happens to the data as it
travels from the sender system to the receiver system.

The Outbound Process

The outbound process takes place in six distinct
stages, as shown in Figure 1:

1. The outbound application creates a master IDoc
containing the data to be transferred.

2. The ALE layer determines the destination for the
data (one or more receiver systems).

3. The ALE layer applies filters to the data.

4. The ALE layer applies data conversion rules.

5. To guarantee version compatibility between the
sender and receiver systems, ALE performs ver-
sion management.

6. ALE completes the process by creating a commu-
nication IDoc.

Stage 1: The Outbound Application
Creates a Master IDoc

In the first stage of the outbound process, the out-
bound application — an ALE function module or a
BAPI — creates a master IDoc containing the data to
be transferred.4 The outbound application can be
used for distributing either master data or business
documents.

Usually, outbound applications are triggered to
distribute master data by one of the following:

• The processing of change pointers

Figure 1 Information Flow in an ALE-Enabled Distributed Business Process

4 For more details on ALE processing and IDocs, see the SAP
online help at http://help.sap.com (choose SAP Library → Basis
Components → Middleware (BC-MID) → Application Link Enabling
(BC-MID-ALE) → ALE Introduction and Administration → ALE
Integration Technology → Message Distribution).

Outbound Process Communication
Process

Outbound
Application

Master
IDoc

ALE Layer

Recipient
Deter-

mination
Filter Conver-

sions

Version
Manage-

ment

Communi-
cation
IDoc

Data
Filtering

in Distrib-
ution Model

Segment
Filter View Conver-

sion Rules

User Exit
for Version
Changes

User Exit
for Control

Records

Business
Add-Ins
(BAdIs)

User Exits
for IDoc

Data and/or
Extensions

Inbound Process

Posting
Application

Communi-
cation
IDoc

ALE/EDI
Port

Conversions Segment Filter

ALE Layer

ALE/EDI
Port

tR
F

C

�

� � � �

�

����

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.54

• Workflow events5 that are coupled with receiver
function modules for data replication

• Programs that create data (e.g., RBDSEMAT for
material master) for initial data transfer

There are various ways of triggering outbound
applications to distribute business documents. For
instance, in MM and SD modules business docu-
ments are triggered through the issuing of output —
in other words, through the processing of table
NAST with communication medium A (for ALE)
or 6 (for EDI).6

An outbound application might have program
exits for applying custom coding that manipulates
IDoc data. These exits can be in the form of user
exits or Business Add-Ins. The outbound application
will call program exits for all of the basic IDoc types,
but it will call program exits for a customer-defined
extension of an IDoc only if the extension is defined
in the partner profile7 for the distributed business
process. In that case, the program exit should be used
to fill the extended segments of the IDoc with data.

To control the creation of the master IDoc, ALE
uses a distribution model, which consists of distribu-
tion views. A distribution view is a technical definition
of a distributed business process; it labels the process
and specifies the sender system, receiver systems, and
message types or BAPIs. A distribution view can be
sent from the system regarded as the “maintenance”
system to one or more receiver systems to ensure a
consistent distribution scenario across the entire system
landscape. A master IDoc will be produced by the
outbound application only if a distribution view with
the appropriate partner and message type/BAPI exists.

You create a distribution model in the ALE cus-
tomizing of the maintenance system. The ALE layer8

“reads” the distribution model to get the appropriate
control information.9 From the distribution model,
all other relevant ALE customizing tables (e.g., port
definition and partner profile) can be generated.

After creating the master IDoc, the outbound
application passes it to the ALE layer, where the
following activities take place:

• The recipient of the data is determined (the
receiver system or application).

• Filters are applied to the data.

• Data conversion rules are applied.

• Version control (as it relates to the R/3 version
of the receiver system) is performed.

Stage 2: The ALE Layer Determines the
Destination for the Data

The ALE layer determines the recipients of the IDoc
according to the distribution model.

Stage 3: The ALE Layer Applies Filters
to the Data

After it determines the receiver systems, the ALE
layer applies any existing filters to the data segments
of the master IDoc. There are three types of filters:

• Data filters in the distribution model: A data
filter in a distribution model is actually a set of
filter conditions specified for a message type or
BAPI. Each condition consists of a filter object
and a value for the object. When the filter is
applied, only segments that carry fields with the5 For details on how to set up online interfaces, see Amy Stapleton’s

article “Real-Time, Outbound Interfaces to Non-R/3 Systems Made
Simple with Change Pointers, Message Control, and Workflow” in the
Premiere Issue of this publication.

6 Technically speaking, the ALE and EDI tools are the same. The only
difference lies in how the partner is defined — in ALE the communi-
cation partner is a logical system; in EDI the communication partner is
a business partner (a vendor or sold-to party, for example).

7 The partner profile defines common administration attributes and the
inbound and outbound parameters of a partner (i.e., logical system).

8 The “ALE layer” refers to that part of ALE that performs the partner
determination, applies filters and conversion rules, and performs
version management on the data to be distributed.

9 If you are not familiar with ALE, you can learn about it using
the “Hands-on exercise for ALE distribution of material master”
(see the “Documentation Resources” download available at
www.SAPpro.com).

55For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

defined filter values pass the filter. For example,
if the defined filter value is the string DO-IT, the
specified field must contain that value to pass the
filter. A distribution model filter is specific to a
distribution view message.

• Segment filters: A segment filter will filter
out any data segment of the IDoc with a given
combination of message type, sender partner, and
receiver partner in its control record. This type
of filter is said to be “static,” which means that a
segment will always be filtered out if it has the
specified message type and partners in its control
record, regardless of its content.

• Views: A view is a subset of the segments belong-
ing to a given message type. You can assign a
view to any outbound partner profile that contains
that message type. When a view is assigned, only
the defined subset of segments will be sent.

These filter types are explained in more detail
later, in the section on ALE’s customizing tools.

Stage 4: The ALE Layer Applies
Data Conversion Rules

After filtering the IDoc’s data segments, the ALE layer
searches for applicable conversion rules. A conver-
sion rule is an abstract definition that specifies how
to convert the data for all fields of one segment. For
example, a rule might specify that the material number
in field Material Number should be moved to field
Old Material Number in segment E1MARAM (which
contains the general data of the material master).

In order for a conversion rule to be applied, it has
to be assigned to a specified combination of message
type, sender partner, and receiver partner.

When a conversion rule is to be applied, user exit
KKCD0001 will be called during the conversion.
This user exit allows you to add ABAP-coded con-
versions to the segment’s fields. One component of
this exit allows the manipulation of the sender data
structure and another component allows manipulation

of the receiver data structure. When using this user
exit to add logic to a specific field (e.g., to select data
from the database and move an extract of it to a spe-
cific field), you should avoid adding a rule to that
field in the conversion rule itself. This would com-
plicate the maintainability of the interface.

Stage 5: ALE Performs Version Management

Because SAP guarantees the compatibility of message
types in different SAP R/3 releases, ALE has a ver-
sion management feature (a “version changer”) that
looks for the correct message version for the receiver
system before creating the communication IDoc. The
receiver system’s release information is specified in
the port definition (this is discussed in detail in the
upcoming section “The Communication Process”).

The ALE layer calls user exit ALE00001 (a
generic ALE user exit) before it calls the version
changer; ALE gives this user exit access to the data
fields of the IDoc, which means that all of the IDoc’s
data segments (but not the IDoc’s control record) can
be manipulated in this user exit. For more details, go
to transaction CMOD and navigate to the user exit
documentation; examine the documentation for user
exit ALE00001 and its function module
EXIT_SAPLBD11_001.

� Note!

ALE calls user exit ALE00001 only if the IDoc
type (which identifies the basic IDoc structure)
or the CIM type (which identifies the structure of
an extension) in the control record is different
from what the ALE layer expects (the user exit
documentation says that both the IDoc type and
the CIM type have to be different from what is
expected, but that is not true). The IDoc content
in the control record is controlled by the
outbound parameters of the partner profile
(which is customizable). See the sidebar on
page 67 for instructions on how to find out what
IDoc type and CIM type the ALE layer expects.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.56

Stage 6: ALE Creates a Communication IDoc

Before creating the communication IDoc, the ALE
layer calls user exit SIDOC001,10 which allows you
to modify the IDoc’s control record, so that you can,
for example, add control information required for
sending the IDoc to an EDI subsystem.

Finally, the communication IDoc is created. The
communication IDoc consists of one control record
and one or more data records. The data records are
derived from the data records of the master IDoc,
including all transformations (filters, conversions, and
so forth) that have taken place in the ALE layer of the
outbound process.

The Communication Process

ALE’s communication process controls the physical
transportation of the communication IDoc from the
sender system to the receiver system. ALE supports
several kinds of communication, each controlled by a
different port type:

• Transactional Remote Function Calls (tRFCs):
The most common type of communication,
tRFCs are used for communicating with SAP
systems or application integration systems that
provide RFC functionality (e.g., the SAP Busi-
ness Connector and many SAP-certified applica-
tion integration and EDI subsystems). Communi-
cation via tRFCs takes place over the tRFC port
type. As the name implies, a tRFC communica-
tion features transaction control, which means
that the RFC will be performed only once and
the transaction will be secure (i.e., its state will
be defined as “committed” or “rolled back”).
In addition, tRFC communication has features
like load distribution and the ability to perform
repeated tries in case of failure.

• File ports: Another common communication
technology, file ports are used for communicating
with subsystems (mainly EDI subsystems) or
partners that do not provide the SAP-proprietary
RFC functionality. This port type is for sending
or receiving a communication IDoc that is com-
ing to or from a file system in the form of a
sequential IDoc file or an XML data stream.

• XML/HTTP: With the SAP Web Application
Server (as of Release 6.20), ALE supports com-
munication using XML as the data format and
HTTP as the transport protocol.

• ABAP: The ABAP port type is for sending or
receiving the communication IDoc to or from a
function module.

• CPIC: The CPIC port is for communication
via Common user Programming Interface Com-
munication, a protocol based on SNA
(System Network Architecture), which is used
for communication with mainframe-based
architectures. The CPIC port type is mainly used
for communication with R/2 systems (as of
R/2 Release 5.0F).

A port defines the interface to a partner and is
assigned to the outbound parameters of the partner
profile. In a connection between SAP systems
(e.g., SAP R/3 ↔ SAP R/3), the port type is usually
tRFC and has two control attributes. One of these
attributes is the version, which will be checked by
the ALE layer’s version management feature in
the outbound process. The other control attribute is
the RFC destination. An RFC destination of type 3
(R/3 connection) specifies the partner system in
terms of connectivity and logon information. Non-
SAP R/3 systems that are tRFC-enabled, like the
SAP Business Connector, are usually addressed
by an RFC destination of type T (TCP/IP). The
tRFC port calls a remote-enabled function module
IDOC_INBOUND_ASYNCHRONOUS on the partner
side, which receives the communication IDoc via
table parameters for control and document (i.e.,
business) data.

10 For details on user exit SIDOC, use transaction CMOD to refer
to the documentation for this user exit and its function module
EXIT_SAPLEDI1_001.

57For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

In this article, we assume that communication
takes place via tRFC because it is the most conve-
nient communication technology for connecting
R/3 systems.

The Inbound Process

ALE’s inbound process begins by reading the
communication IDoc it has received from the com-
munication process. This process takes place in
four stages:

1. ALE reads the control information.

2. The ALE layer applies any segment filters.

3. The ALE layer applies conversion rules for data
transformation.

4. The posting application processes the IDoc and
posts its data to the receiver application or system
as a business document.

Stage 1: ALE Reads the Control Information

Before the control data passes field checks, ALE calls
user exit SIDOC001. As in the outbound process, the
control record can be modified using this exit. You
might want to modify control data in the inbound
process in order to get the right processing parameters
and options (e.g., CIM type).

After user exit SIDOC001, ALE’s inbound pro-
cess reads the partner information (sender and
receiver) and the message type from the control data
record. All further processing information will be
determined from the partner profile’s inbound param-
eters. The most important information in the partner
profile’s inbound parameters is the process code. The
process code defines the processing type (task, func-
tion module, or process) and whether or not ALE
services, such as filters and conversion rules, are
used. The most common processing type is “function
module,” which is used for ALE inbound function

modules (e.g., IDOC_INPUT_MATMAS01 for mate-
rial master) and BAPIs (BAPI_IDOC_INPUT1 for all
ALE inbound processing with BAPIs).

At the start of IDoc inbound processing, it’s
possible to have ALE again call user exit ALE00001
(a generic ALE user exit). The same conditions must
be met here as in the outbound process for this user
exit to be called — i.e., the IDoc’s control record
must contain a different IDoc type or CIM type than
what is expected by the ALE layer (refer back to the
note on page 55). For the inbound process, the sender
partner supplies the IDoc content in the control record.

Stage 2: The ALE Layer Applies
Any Segment Filters

If customized segment filters exist, the ALE layer
applies them. Just as in the outbound process, a
segment filter is static, filtering segments of IDocs
with a control record that has the given combination
of message type, sender partner, and receiver partner.
Later, you’ll see why sometimes it makes sense to
apply a segment filter in the inbound process, rather
than the outbound process.

� Note!

Other than segment filters, none of the filters
mentioned in the discussion of the outbound
process can be used in the inbound process.

Stage 3: The ALE Layer Applies
Conversion Rules

As in the outbound process, the ALE layer looks for
conversion rules that can be applied. Technically, the
same kinds of conversions can be performed in the
inbound process as in the outbound process. As a
practical matter, it might simply make more sense for
the receiver partner’s business users to specify and
perform their own data transformations.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.58

Stage 4: The Posting Application Processes the
IDoc and Posts Its Data

After the conversion rules have been applied, the
posting application processes the IDoc’s data. The
result is a newly created or changed business docu-
ment, such as a material master or a sales order.

At this point, the posting application might call
application-specific program exits (user exits or Busi-
ness Add-Ins). The posting application will call
program exits for an IDoc extension only if the exten-
sion is defined for the distributed business process
(in the CIM type field of the IDoc’s control record).
In that case, the program exit should be used for
adding the data of the extended segments to the busi-
ness document.

Selecting and Using ALE’s
Data Transformation Tools —
A Structured Approach

ALE provides a wealth of tools for transforming
message data as it moves from sender to receiver.
The challenge is to choose the right tool (or tools) for
each required transformation. By definition, the right
tools are the ones that make the most sense in terms
of feasibility, cost-effectiveness, and maintainability.
I recommend a structured approach to evaluating and
selecting data transformation tools that is based on
these principles:

� Filter out what you do not need.

� Utilize customizing tools before applying
custom coding.

� Where possible, utilize application-specific pro-
gram exits before utilizing generic program exits.

� Employ a Business Add-In, if one exists, in
preference to a user exit.

The diagram in Figure 2 shows the recommended
order for evaluating the tools. First, try to determine
whether or not you can solve your data transformation
requirements with customizing tools like filters or
conversion rules. Then, if these tools are not flexible
enough to meet your requirements, search for an
appropriate program exit (a user exit or Business
Add-In) you can use to meet whatever requirements
cannot be met using customizing tools. Add your
transformation rules to the program exit in the form
of ABAP coding and activate the program exit.
Adhering to this approach will guarantee an efficient
data transformation implementation within SAP
standard ALE.

You can also use the suggested order as a check-
list when you need to prove the feasibility of an
implementation. Just go through the tools one by one
and check to see if your needs can be met. If you still
have some open issues when you have reached the
last tool, you can be relatively sure that you have to
do one of the following:

Figure 2 Implementation Approach

Customizable ABAP Coding Required

Reduced
Message

Type
Filter Conversion

Rules

Message-
Type-Specific

Business
Add-Ins

Message-
Type-Specific

User Exits

Generic ALE
Business
Add-Ins

Generic ALE
User Exits

Suggested Order of Usage

59For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

• Extend an IDoc type.

• Build your own ALE interface.

• Implement a third-party tool for data transforma-
tion (i.e., an application integration tool like
the SAP Business Connector or SAP Exchange
Infrastructure).

Of course, if you have to build your own ALE
interface, the time and effort required to implement
your data transformations will rise considerably.

� Tip

If you need to implement an application
integration tool in order to connect various
processes and/or applications, then it is much
better — in terms of maintainability — to perform
your data transformations in the application
integration tool, rather than in ALE. In the
application integration tool, you will be able to
define a master message and map each process or
application’s data to that master. Then, if there is
a change in one system, you just have to change
the mapping rules for the affected system.

Tools for Customizing Your Data

ALE’s customizing tools for data transformations are
summarized in Figure 3. They include a reduced
message type, filters, and conversion rules. Let’s
take a closer look at each of these tools in turn.

Reduced Message Type

A reduced message type allows you to create a
customizable subset of an IDoc’s master data. Unlike
a filter, the reduced message type does not create its
data subset from the entire IDoc. Rather, it consists
of a subset of fields and segments right from the
beginning, when the IDoc is created. There are two
main reasons to use a reduced message type:

• Because only the subset of data to be sent to the
receiver system has to be created, a reduced
message optimizes performance in the creation
and communication of the message. Therefore,
it’s a good idea to reduce the amount of data to be
distributed (with master data) whenever possible;
you can apply all other data transformations to
the reduced data as dictated by your requirements.

Tool

Reduced Message Type

Defines a reference IDoc
of reducible message type
by specifying a subset of
segments and fields.

Data Filtering in the
Distribution Model

Specifies filter attributes
and corresponding values.
A segment and its sub-
segments will be sent only
if the IDoc contains the
specified values.

Define using…

• BD60 (Set Message
Type to Reducible)

• BD65 (Define Mandatory
Fields)

• BD53 (IDoc Reduction
Maintenance)

• BD95 (Define Filter
Object Type)

• BD59 (Assign Filter
Object Type to IDoc
Field)

Assign using…

• WE20 (Partner Profile)
— Assign as a mes-
sage type in inbound/
outbound parameters
of the partner profile.

• BD64 (Maintain
Distribution Model) —
Create filter by adding
a filter group to the
message type assign-
ment of a model view
and specifying valid
filter values.

Comments

• Transactions BD60,
BD65, and BD53 are
client-independent.

• Reduced message
type is for master data
only.

• Transactions BD95
and BD59 are client-
independent.

Figure 3 ALE’s Customizing Tools for Data Transformation

(continued on next page)

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.60

• A reduced message type can provide a well-
defined data set for change pointers, thus allow-
ing for more precise data replication in master
data interfaces.11

The limitation of the reduced message type is that
it can only be used for the distribution of master data.
There are no reducible message types for document
data, such as orders or invoices. To see all of the
standard SAP message types that can be used as a
reference for creating a reduced message type, use
transaction BD60.

To create a reduced message type, go to transac-
tion BD53 (IDoc Reduction Maintenance) and define
a subset of data with reference to the latest IDoc

version of the message type to be reduced (in 4.6C it
would be MATMAS04 for message type MATMAS).
You can choose from among all the segments and
fields of the reference IDoc, except those that have
been defined as mandatory in transaction BD65 (they
are always in the scope of the reduced message type).

In an ALE distributed business process, only the
defined segments and fields of a reduced message
type will be created in the outbound process. To be
able to process and post the message, the receiver
system must be able to recognize the reduced mes-
sage type. In other words, a reduced message type
with the same name and data definition must exist on
both the sender and receiver sides.

Data Filtering in the Distribution Model

Using a data filter in the distribution model, you can
filter segments based on filter values. For example,

Tool

View

A subset of segments of
an IDoc type and, option-
ally, of its extension.
Can be said to filter a
subset of the IDoc’s
segments statically.

Segment Filter

Filters all defined
segments statically.

Conversion Rules

Converts and maps a
field’s content.

Define using…

• WE32 (View Develop-
ment) — Specify view
for a given combination
of IDoc type, extension,
and message type.

Not applicable.

• BD62 (Create Rules) —
Define the name of a
rule and relate it to a
segment.

• BD79 (Maintain Rules)
— Define the data
conversion and/or
mapping.

Assign using…

• WE20 (Partner Pro-
file) — Assign view in
the outbound param-
eters of the partner
profile.

• BD56 (Define Seg-
ment Filter) — Define
all segments that
combine message
type, sender, and
receiver.

• BD55 (Assign Rule to
Message Type) —
Assign rule to a
combination of
message type,
sender, and receiver.

Comments

• Transaction WE32 is
client-independent.

• Only a few outbound
processing modules pro-
cess view definitions
(e.g., DESADV).

Not applicable.

• Only the specified
segment’s data is available
for conversion/mapping —
e.g., in a material master
IDoc, the material number
is not available in the plant
data segment E1MARCM;
it is in segment E1MARAM.

Figure 3 (continued)

11 For guidance on applying change pointers, see Amy Stapleton’s article
“Real-Time, Outbound Interfaces to Non-R/3 Systems Made Simple
with Change Pointers, Message Control, and Workflow” in the
Premiere Issue of this publication.

61For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

you can filter a material master’s plant data segments
so that only plant data with the specified values (for
example, 1000) can pass the filter. This kind of filter
is a content-based filter, which means that segments
are filtered based on whether their content matches
the filter value — as opposed to a static filter, which
filters a segment regardless of its content, as long as
the segment meets the filter definition (a specified
combination of message type, sender partner, and
receiver partner). Segment filters and views are
examples of static filter types. A distribution model
filter can only be applied in the outbound process.

A data filter in a distribution model is based
on a filter object, which is a field that belongs to
a data dictionary table. Each filter object should
have a control table to verify that the filter value
exists (if you define a filter value that cannot be
validated against the control table, you will get a
warning).

Many filter objects have been predefined by SAP.
You can also define your own filter objects in trans-
action BD95. Custom-defined filter objects have to
be in the customer namespace (i.e., custom filter
objects have to start with a Y or Z). To assign a filter
object to a field of an IDoc segment, you use transac-
tion BD59.

In a distribution view, you can add filter groups
to message types and BAPIs alike. A filter group
contains all possible filter objects of the message type
or BAPI. When you assign a value to a filter object,
only those segments that possess the value specified
in that field will pass through the filter. If more than
one filter object is valid for one segment, the condi-
tions are linked with a logical AND — and the seg-
ment will pass the filter only if all the specified filter
conditions are true. Let’s continue with our material
master example and assume that we want to use
the plant (field WERKS) and loading group (field
LADGR) as filter objects; both fields belong to the
plant segment (more properly called the C segment or
segment E1MARC). We want to define 1000 as the
filter value for WERKS and 0001 as the filter value
for LADGR. Now, the filter will pass only those

plant segments that contain both the value 1000 in
field WERKS and the value 0001 in field LADGR.

You can add more than one filter group to a
message type or BAPI that is in a view of the distri-
bution model. If you have more than one filter group,
the filter conditions of the filter groups are linked
with a logical OR — if a filter condition in one of the
filter groups is true, then the corresponding segment
will be sent. For example, let’s add another filter
group to the one in the previous example and define
2000 as the filter value for WERKS and 0002 as the
filter value for LADGR in the new filter group. Now
the following segments will pass the filter: all plant
segments that contain either the value 1000 in field
WERKS and the value 0001 in field LADGR, or the
value 2000 in field WERKS and value 0002 in field
LADGR.

� Note!

A distribution model filter will be applied to the
segment and its sub-segments of a filter object.
When using a filter object that is part of the root
segment of the IDoc, the entire IDoc will be
filtered.

Distribution model filters are best suited for
content-dependent segment filtering. For example,
if you want to distribute only the data of particular
organizations, using filter objects based on organiza-
tional units (company code, plant, and the like) is a
good way to do that.

There are no disadvantages to distribution model
filters; you should feel free to filter as much as you
want. The only way you would run into problems is
if you were to filter out too much content, so that
there was not enough data for the receiver partner.

In the data distribution example that I walk you
through later, there is an example of how to use data
filtering in the distribution model.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.62

� Tip

For a content-based selection of IDocs, if there
is no field with content to be filtered in the root
segment, you can use a filter in the distribution
model in which a random field of the root
segment serves as a filter object type (we will see
more of this in the upcoming example). You
simply choose a random field and fill it with the
value defined in the filter (do this in a program
exit of the outbound processing module).
However, you must keep the system load in mind
if you use this technique because an IDoc will
always be created, even if the IDoc will not be
sent. If too many IDocs are created (which
occurs mainly with master data IDocs) that will
only be filtered out, then you should consider:
(1) using the classification as selection criteria
when available in the IDoc sender program (e.g.,
RBDSEMAT for material master); (2) extending
a copy of the IDoc sender program with
appropriate selections; or (3) restricting the
permanent interface (change pointer processing
or the rules of workflow events) so that only the
needed IDocs will be created.

View

As mentioned earlier, a view is a kind of data filter.
It defines a subset of an IDoc’s segments. When
applied, only the segments defined in the view will be
sent. A view is different from a reduced message in
that it creates a data subset out of the entire message
(like a filter), whereas a reduced message is created
with its reduced scope right from the beginning, when
the IDoc is created.

Views can be processed in the outbound process
only. You can assign a view to any outbound param-
eter in the partner profile (transaction WE20) by
referencing a combination of IDoc, extension (if one
exists), and message type. For instance, you can
define a view for an invoice (message type INVOIC)
that contains all segments except summary segments;
you can then assign this view to all the INVOIC

outbound parameters that do not require summary
segments in their INVOIC messages.

The advantage of using a view is that it gives you
the option to use a standardized message subset for
distributed processes with various partners.

The disadvantage of views is that they are pro-
cessed by only a few of the outbound processing
modules, such as the modules for message types
DESADV and INVOIC. Even though you can define
views for all IDoc types in transaction WE32 (View
Definition) and assign them to any partner profile’s
outbound parameter in transaction WE20 (Partner
Profiles), there is no guarantee that the view will be
processed! To date, I know of no SAP reference that
lists the outbound processing modules that will pro-
cess views. To find out whether a view will be pro-
cessed by modules other than those for message types
DESADV or INVOIC, it is best to use trial and error.

Segment Filter

A segment filter allows you to explicitly filter a seg-
ment for a given message type and partners (sender
and receiver). As mentioned earlier, segment filters
are static — that is, the segment is always filtered out
as long as it belongs to the specified type and part-
ners; its content is irrelevant to whether or not the
segment is filtered out.

A segment filter can be used in both outbound
and inbound processing. All the tools discussed up
to this point can only be used in the outbound pro-
cess. In most cases, you should filter on the out-
bound side to reduce the amount of data to be com-
municated. But there are circumstances in which
segment filtering in the inbound process makes sense.
For instance, let’s say you have a standard message
coming from a sender who does not want to change
his message. Certain segments of this message sup-
ply information that is not needed or that might lead
to processing errors. In a case like this, you can solve
the problem by filtering the unwanted segments with
a segment filter on the inbound process.

63For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

A segment filter is a good choice if you are
sure that (1) you do not need certain segments of
a message under any circumstances; and (2) you
cannot apply a view. A view is the more flexible
type of static filter, because you define it once and
then you can apply it on an as-needed basis as
often as you want. A segment filter, on the other
hand, requires you to define each segment for each
message type and partner combination every time
you need it.

Conversion Rules

After filtering out the content that you do not require,
the next logical step is to convert or transform the
remaining data as needed.

In ALE, data conversion and mapping is
implemented with conversion rules, with each rule
related to a specified segment. In a conversion rule,
all of a segment’s fields exist as receiver fields
(which have to be provided with data) and as sender
fields (which contain the original segment data
of the message). Imagine the sender and receiver
fields as the input and output of the data conversion.
Defining a conversion rule means to map or
transform the sender fields of the segment to the
receiver fields, or to assign constants to the receiver
fields.12

Figure 4 describes the types of conversion rules

Figure 4 Mapping and Conversion Features of Conversion Rules

Feature

Transfer Sender Field

Moves the specified sender field to the
receiver field. The sender field can be
any sender field of the segment with
the same type as (or a type convertible
to the type of) the receiver field.

Convert Sender Field

Converts one or more sender fields of
the segment according to translation
tables. Multiple sender fields can be
defined with an associated translation
table for each sender field. ALE
applies the first sender field that meets
the reference value in the translation to
the receiver field.

Convert and Copy Sender Field

A combination of the Convert Sender
Field and Transfer Sender Field
conversion rules.

Additional Can be used as Can be used to define
features (see a template for a processing rules for
Figure 5) general rule* undefined conditions**

Conversion routine, �

string processing,
conditions, restrict
value range

Conversion routine, � �

string processing,
conditions

Conversion routine, � �

string processing,
conditions, restrict
value range

12 See Figure 14 on page 76 for an example of a 1:1 mapping.

(continued on next page)

* See the “Use General Rule” feature defined in this table.

** For example, classify as error, set to “0,” etc.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.64

available in ALE, and Figure 5 explains ALE’s
additional features for conversion rules. For more
details on conversion rules, refer to SAP’s Implemen-
tation Guide (IMG).

� Tip

If the features supplied by ALE’s conversion
rules are not sufficient for your needs, you might
consider using user exit KKCD0001. This user
exit allows you to program data mapping and
conversion within a single segment. Like the
conversion rules, however, it does not provide
you with access to any data in the IDoc other
than the segment data with which you are
working. Read SAP Note 84374, as using this
exit can be a bit tricky.

Conversion rules are the best choice for data
mapping and conversions because they do not require
programming. They have one serious shortcoming,
however: the only input values available for conversion
are in the specified segment, whereas in a user exit or
Business Add-In you might have all the message data
available for data transformations. The upcoming
data distribution example includes a demonstration of
how to create and apply a conversion rule.

Program Exits for
Applying Custom Coding

If the features of the previously discussed tools are
not sufficient for transforming the data in a message,
you will need to utilize program exits. SAP provides
program exits for specific message types as well as

Feature

Set Constant

Moves the specified constant to the
receiver field. Note that character #
can be used to initialize the receiver
field.

Set Variable

Applies a predefined variable. A
variable can be a centrally defined
constant.

Use General Rule

Applies a previously defined general
rule to the receiver field. To define
a general rule, use one of the other
rules (except Convert and Copy Sender
Field) as a template.

Additional Can be used as Can be used to define
features (see a template for a processing rules for
Figure 5) general rule* undefined conditions**

Conversion routine

�

Conversion routine �

Conversion routine � �

* See the “Use General Rule” feature defined in this table.

** For example, classify as error, set to “0,” etc.

Figure 4 (continued)

65For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

Figure 5 ALE’s Additional Features for Conversion Rules

Additional
Feature

Conversion
Routine

String
Processing

Value Range

Conditions

Description

May be used with all types of conversion rules.

All function modules that meet the following naming convention can be used as conversion routines:

CONVERSION_EXIT_cccc_INPUT

where “cccc” is the name of the conversion routine. This is the same conversion routine that will be
used by a data dictionary domain to convert inbound strings (e.g., MATN1 on the domain MATNR).

See the note for programmers below.

May be used with Transfer Sender Field, Convert Sender Field, and Convert and Copy Sender
Field.

Allows you to specify an offset and length for the string (e.g., sender field) to be transferred.
The data of the sender field can be accessed as a string.

May be used with Transfer Sender Field and also with Convert and Copy Sender Field.

Allows you to restrict the value range for which a sender field will be copied.

May be used with Transfer Sender Field, Convert Sender Field, and Convert and Copy Sender
Field.

Conditions in Transfer Sender Field are based on another sender field, which have to be met so that
the sender field to be transferred will be copied.

Conditions in Convert Sender Field are translation tables for “1:1” (e.g., “10” → “AA,” “11” → “AB”)
and “1:Interval” (e.g., “00” will result from input value range “1000” to “2000”) data conversions.

Programming Note!

You can create your own conversion routines by adhering to the naming convention

CONVERSION_EXIT_cccc_INPUT

and strictly following these function module parameters:

IMPORTING parameter → INPUT (pass by value)

EXPORTING parameter → OUTPUT (pass by value)

EXCEPTIONS → LENGTH_ERROR

Be sure to check the specific length of the string to be converted; the length of the importing and exporting
parameters is not restricted to the length specified in the sender/receiver field.

Assign a newly created conversion rule to a function group of the customer namespace, and use “Z” or “Y” for the
first character in the “cccc” segment of the naming convention shown above. The name of the function module itself
will be in the SAP namespace.

for generic message types. In the structured approach
I recommend, you use message-type-specific exits
in preference to generic exits. Generic exits should
be used only if there is no other way to meet the
requirements. The reason for this strategy is quite
simple: if you were to use a generic exit for process-
ing a specific message, you would have to keep in
mind that this exit might be used for various other

messages and structure its logic accordingly. Pro-
gram logic that must work properly for different
kinds of messages not only reduces maintainability,
but it can also be an unnecessary source of errors. In
addition, if you were to use a generic exit for apply-
ing more than one message-type-specific coding,
your options for programming it in a transparent
way would be limited.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.66

ALE provides two technologies you can use to
add custom functionality to standard code:

• Business Add-Ins (BAdIs)

• User exits

Both of these technologies can be used for
message-type-specific program exits as well as
generic exits.

Business Add-Ins (BAdIs)

Business Add-Ins (BAdIs) are a comparatively new
(as of Release 4.6) object-oriented technology for
applying custom coding in program exits.

In a BAdI definition, you specify an interface
(essentially a frame to which logic can be added),
including its method definition. From the BAdI
definition, adapter class methods are then generated
that provide the basis for the implementation of cus-
tom functions. The addition of custom logic is an
implementation of the method and is therefore called
a “BAdI implementation.” Two of a BAdI’s features
make this technology preferable to a user exit:

• An adapter class method can be enabled for mul-
tiple active implementations. This means that
multiple active BAdI implementations will be
processed in order (one by one, in the order of
their implementation). This feature allows add-
ing numerous custom functions to one program
exit by programming each customer function in
exactly one BAdI implementation.

• Filter-dependency can be utilized in a BAdI
implementation so that its methods will be
processed only if the application that calls the
BAdI delivers the filter value specified in
the implementation.

I think that the BAdI technology is quite elegant,
and because SAP has announced that it plans to
replace user exits with BAdIs as the preferred inter-
face technology, it is well worth taking some time to
learn about it.

In R/3 Release 4.6C, there are a bit more than
300 BAdIs available. In R/3 Enterprise, there are
almost 1,500 BAdIs already defined in the standard
system. In ALE, however, only a few BAdIs are
available. Definition IDOC_CREATION_CHECK
(as of Release 4.6C) is an example of a generic ALE
BAdI (it checks the creation of an IDoc). I will
show you an example of a message-type-specific
BAdI later on.13

User Exits

While user-exit technology is well understood by
SAP consultants and ABAP programmers, there are
some ALE-specific features of user exits that require
a closer look.

In ALE, message-type-specific user exits can
be categorized as exits for basic IDoc types and exits
for IDoc extensions. Exits for basic types will always
be called by the application. Exits for IDoc exten-
sions are called only if the message contains an IDoc
extension.

To get an idea of which message-type-specific
user exits are available in ALE, search the SAP Ser-
vice Marketplace (http://service.sap.com) for the
document “List IDocs with User Exits.” This docu-
ment is not new (it became available with Release
4.5), but as far as I know it is the best starting point
for learning about message-type-specific user exits.

You will notice that the IDocs of many message
types can’t be reached by message-type-specific user
exits without an extension. If you have to transform
the data of a basic IDoc type that does not have a
message-type-specific program exit, then you’ve
almost reached a dead-end. As a last resort, you can
use the generic user exit ALE00001. This exit is
intended to add functionality to ALE’s version con-
trol, but you can adapt it to change the message con-
tent of almost any IDoc. For details, see the sidebar

13 For more information on BAdIs, you can refer to the online documen-
tation or to Karl Kessler’s article “Extending and Modifying the SAP
Standard with Business Add-Ins and the New Modification Assistant”
in the Premiere Issue of this publication.

67For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

When No Message-Type-Specific Program Exit Can Be Found

User exit ALE00001 is intended to add functionality to ALE’s version control, but it can be adapted to change
the message content of almost any IDoc.*

According to the program exit documentation in transaction CMOD, user exit ALE00001 is called only when
the IDoc type and the CIM type are different from the type expected by the ALE layer; actually, the exit gets
called when the IDoc type or CIM type is different from the type expected by the ALE layer.

To find out what IDoc type the ALE layer expects, you can single-test the function module
EDI_GET_LAST_IDOCTYP (or EDI_GET_LAST_CIMTYP for the expected extension type). Call transaction
SE37, enter the name of the function module, and press the single-test button (F8). Enter the actual IDoc
type in input parameter IDOCTYP_START and press execute () or F8. The output parameter
IDOCTYP_LAST will show the IDoc type expected by the ALE layer. If the IDoc types of IDOCTYP_START
and IDOCTYP_LAST are different from each other, then you know that user exit ALE00001 will be called.
For example, when you enter MATMAS03 as an input parameter in a 4.6C system, you will get MATMAS04
as an output parameter value. This means that if the IDoc comes with MATMAS03, the user exit will be
called. If you need the user exit to be called, but the IDoc or CIM types match what the ALE layer expects,
change the IDoc type in the outbound parameters of the partner profile to a lower version than the one shown
in IDOCTYP_LAST. Then, exit ALE00001 will be called in both the outbound and inbound processes.

If you cannot change the IDoc type to a lower version because you need the latest IDoc version available
in the message, you might try the following trick. Take the row of the IDoc type you want to use in table
EDBAS as a starting point for a copy. Copy it and then change the name of the IDoc type to a higher version
(e.g., IDoc type MATMAS04 to MATMAS99) and enter the original IDoc type in field Predecessor IDoc.
Now when you single-test the function module
EDI_GET_LAST_IDOCTYP with MATMAS04 as the
import parameter value for IDOCTYP_START, you
will get MATMAS99 as the export parameter value in
IDOCTYP_LAST. This customizing causes the user
exit to be called, because MATMAS04 is different
from (doesn’t match) MATMAS99.

This trick only works in the ALE layer of the inbound
process. In the outbound process, wherever the
EDBAS IDoc type does not exist, control tables
other than EDBAS will be checked for the new IDoc
type. In these cases, you cannot use the user exit in
the outbound process.

* As of SAP Web Application Server 6.20 (e.g., R/3 Enterprise), use BAdI IDOC_DATA_MAPPER instead of user exit ALE00001
as a generic program exit for data manipulations. In addition to the technological advantages of BAdIs compared to user exits,
you can log the manipulations in a status record.

� Caveat!

Use ALE00001 for data manipulation only if
there is no other standard way to transform
message data. The conditions that have to be
met in order for the user exit to be called might
change after release upgrades, which means
that it might not be called. Another reason to
avoid using this method is that it can negatively
affect the maintainability of the ALE interface,
especially if it is used for numerous message
types or functions.

above (“When No Message-Type-Specific Program
Exit Can Be Found”).

Let’s see now how to use ALE’s data transforma-
tion features by walking through an example.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.68

Example — Controlling
and Transforming a Message

To show you how to set up data transformation in an
ALE distributed process, I’ll take you step-by-step
through the procedure for controlling and transform-
ing one particular IDoc message in a distributed
business process.

The Task

Imagine that we want to maintain a material master
centrally on an SAP R/3 system.

We need to replicate the material master data
from this application to another R/3 system, which
is customized differently than the original R/3 sys-
tem. We want to send only material masters with the
string DO-IT (use uppercase) in the English material
description to the receiver system. The base unit of
measure will be copied if it is ST (item); otherwise it
will be converted to KG (kilogram).

System Requirements

Our system requirements are two SAP clients on
SAP R/3 Releases 4.6C or later. For testing pur-
poses, it’s best if these clients have identical
customizing (otherwise you would probably have
to mess around with getting the material master
data posted on the inbound side). In the examples
used here, the logical systems are called
LOGSYS0100 for the sender system and
LOGSYS0200 for the receiver system.

If you have only one client available for testing,
you will find a short description of how to set up an
ALE scenario on one client at www.SAPpro.com.
Keep in mind, however, that when the sender and
receiver system are on the same client, the trans-
formed data will be written to the original data source
(which is the material master).

Preparation

Our example is based on the SAP Library’s ALE
Quick Start, which is a hands-on exercise for ALE
distribution of material master data (see the “Docu-
mentation Resources” download available at
www.SAPpro.com).

To prepare, do the following:

1. Set up a distributed business process between
two clients with a material master message type.
If you are not familiar with ALE, I recommend
going through the online help’s example of
setting up a distributed business process
between two clients with a material master
message type.

2. Check the MATMAS inbound parameters in
the partner profiles in transaction WE20 for
the processing code. The parameter has to
be MATM.

3. If you have an SAP R/3 4.6x system, adapt
partner profiles in transaction WE20 for the
MATMAS outbound parameters. Change
IDoc Basic type to MATMAS03.

� Tip

To get more detailed help when going through
the customizing transactions of ALE, install the
SAP Library (or get it installed by your system
administrator) for your test system, and navigate
to Application Help (F1 → F4).

4. Test the material master distribution by using
transaction BD10 to send the material master.
Specify the material number and the receiver
system and press execute () or F8.

69For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

� Tip

If you get posting errors when testing material
master distribution, you can analyze them in
transaction SLG1. You can also navigate to the
status record in the IDoc list (transaction WE02)
by double-clicking on the erroneous IDoc and
opening the node of the red, highlighted status
record. In the toolbar of the record’s detail
screen, there is a button named Application
Log. Click it (or press Shift+F8) to get the
posting log.

If you have problems setting up the ALE environ-
ment as described in the Quick Start reference, ask
your team’s ALE consultant to do it for you.

Before going any further, get acquainted with the
IDoc structure of MATMAS03 by browsing through
the tested IDoc with transaction WE02.

Implementation of the Example

Adhering to the structured approach laid out previ-
ously, the first tool we will use is a distribution model
filter: we want to filter out any material masters that
do not contain the string DO-IT in the English mate-
rial description. This information resides in segment
E1MAKTM (the material master short text segment),
in the field MAKTX (the material master description).
If the value of field MAKTX is DO-IT, then the mes-
sage should be passed to the receiver partner; other-
wise, the entire message should be filtered out.

Filtering out the entire message means we will
have to utilize a filter object of the material master
root segment (E1MARAM) because we want all child
segments of the root segment to be filtered out as
well. Because segment E1MAKTM is not a root
segment, we will have to move the content to be
filtered into a random field of segment E1MARAM.

None of the filtering or data conversion tools can
move this content for us, so we will need to utilize a
program exit to move the content to the root segment
before the ALE layer applies the distribution model
filter. According to the structured approach that I
have recommended, the first type of program exit we
should look for is a message-type-specific BAdI.
Fortunately, there is a BAdI for outbound material
masters that we can use.

For translating the unit of measure in the IDocs
that pass this filter, we will use a conversion rule,
which is well suited to translation tasks. The ALE
layer calls conversion rules after the distribution
model filter is applied.

The order in which we will implement our data
transformation is as follows:

1. We will implement a BAdI that copies the string
DO-IT (if it exists) into field BISMT (old material
number) of segment E1MARAM.

2. We will then define a filter value (DO-IT) for
field BISMT in the distribution model.

3. Finally, we will define a conversion rule to per-
form the unit conversions.

Step 1: Implement the BAdI

Follow these steps:

1. Call transaction SE19 (Business Add-Ins
Implementation).

2. Insert a name for the implementation (e.g.,
Z_MATMAS_FILTER_PREP) and press
Create (or F5).

3. Choose BAdI definition
BADI_MATMAS_ALE_CR (Change Data in
MATMAS IDoc When Generating an IDoc)
in the pop-up that appears when creating the
implementation.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.70

Figure 6 BAdI Implementation Attributes

Figure 7 BAdI Implementation Interface

71For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

Listing 1: BAdI Implementation Sample Coding

method if_ex_badi_matmas_ale_cr~change_matmas.

* Data declaration
 data: i_receiver type edi_rcvprn value 'LOGSYS0200',
 i_idoctype type edi_idoctp value 'MATMAS03',
 i_language type spras_iso value 'EN',
 i_doit(10) type c value 'DO-IT',
 i_dont(10) type c value 'DO NOT',
 i_true type c value 'X',
 i_processing type c,
 i_passidoc type c.

 data: is_idoc_data type edidd,
 is_e1maram type e1maram,
 is_e1maktm type e1maktm.

* Determine processing restriction
 if (f_idoc_header-rcvprn = i_receiver) and
 (f_idoc_header-idoctp = i_idoctype).

 i_processing = i_true.

 endif.

* Processing logic
 if i_processing = i_true.

* Find out if the required string is there

 loop at t_idoc_data into is_idoc_data where segnam = 'E1MAKTM'.

 is_e1maktm = is_idoc_data-sdata.
 if (is_e1maktm-spras_iso = i_language) and

4. Add a short description (e.g., Create filter values
for distribution model) and save it. You will get
a result like the one shown in Figure 6.

Note the BAdI’s attribute type; the definition is
of type Multiple use, which means that you can
have more than one implementation of that BAdI.

5. Choose the Interface tab and you get a screen
similar to the one shown in Figure 7. Look at

the name of the implementing class, which is
derived from the BAdI implementation name. In
our example, the name of the implementing class
would be ZCL_IM__MATMAS_FILTER_PREP.

6. Double-click on the CHANGE_MATMAS
method, add the program logic shown in
Listing 1 to the method, and adapt the coding
if necessary (e.g., adapt the constant for field
i_receiver to your logical receiver system).

(continued on next page)

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.72

7. Click the Signature button (Ctrl+Shift+F6) to get
the method’s signature displayed, as shown in
Figure 8.

8. Save and activate your coding.

� Note!

Take care that only the messages you want to
have processed will be processed by the BAdI
implementation. It’s best to restrict the
processing logic to a specified receiver partner
and IDoc type by defining conditions for
corresponding control record fields.

9. Activate the BAdI implementation
(Ctrl+Shift+F4) and test the data distribution.

The best way to test your BAdI is with two
sample material masters — one that contains
the string DO-IT (uppercase!) in the English
short text, and one that does not contain the
string. Check the results by viewing the created
IDocs (transaction WE02) and by looking at the
material masters (transaction MM03) in the
target system.

Step 2: Define the Filter in the
Distribution Model

Follow these steps:

 (is_e1maktm-maktx cs i_doit).

 i_passidoc = i_true.

 endif.

 endloop.

* Change field BISMT according to previous findings

 loop at t_idoc_data into is_idoc_data where segnam = 'E1MARAM'.

 is_e1maram = is_idoc_data-sdata.

 if i_passidoc = i_true.
 is_e1maram-bismt = i_doit.
 else.
 is_e1maram-bismt = i_dont.
 endif.

 is_idoc_data-sdata = is_e1maram.
 modify t_idoc_data from is_idoc_data.

 endloop.

 endif.

endmethod.

(continued from previous page)

73For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

Figure 8 BAdI Implementation Method Signature

1. Call transaction BD95 (View maintenance for
table TBD11: ALE Object Type).

2. Create a new entry for object type ZBISMT;
assign table name MARA and field name BISMT

to it. BISMT in table MARA does not have a
check table, so you can ignore the warning. The
result will look like Figure 9.

3. Save your entries.

Figure 9 Object Type Definition

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.74

Figure 10 Object Type Assignment

Figure 11 Distribution Model

4. Call transaction BD59 (View maintenance for
view V_TBD10: Assignment of Object Type to
message).

5. In the pop-up that appears, specify MATMAS as

the message type; create a new entry for object
type ZBISMT, segment type E1MARAM, and
sequence number 1; and choose segment field
BISMT. When confirming your entries, the
offset and internal length of field BISMT in

75For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

segment E1MARAM will be displayed as shown
in Figure 10.

6. Save your settings.

7. Call transaction BD64 (Maintain Distribution
Model). Switch to change mode (F9) and expand
the node of your material master model view.
The last element of the node — the one after
message type MATMAS — says No filter set (see
Figure 11). Double-click on this element and the
pop-up for filter definition will appear.

8. Press the Create Filter Group button (F5) and
open the node Data filtering, including its sub-
element Filter group. Near the end of the filter
group’s object types you will find Old material
number. Double-click on Old material number,
and you will get a pop-up showing a list of values
for that object type.

9. Press the button Insert line and specify the filter
value DO-IT. Press continue () to return to the
filter group editor. Old material number now
appears as a node with sub-elements. When you
expand it, you will see the newly defined filter
value, as shown in Figure 12.

10. Return to the distribution model maintenance
screen (Figure 11) and save your changes.

11. Test the data distribution. When you send the
two sample material masters, note the pop-ups
that appear when sending the material master:
you will see that two master IDocs have been
created, but only one communication IDoc. The
two master IDocs have been created from the two
selected material masters, but one of these mate-
rial masters has been filtered out, so that only the
other material master will be transmitted (as a
communication IDoc) to the receiver partner.
Only the communication IDoc will be stored in
the IDoc database tables. This means that you
can only investigate the communication IDoc in
the monitoring tools (e.g., WE02). The master
IDoc that has been filtered out hasn’t been stored

Figure 12 Distribution Model with Filter

in the database. But this, of course, is just
what we wanted — the ability to filter out an
entire IDoc.

Step 3: Define and Apply the Conversion Rule

Follow these steps:

1. Call transaction BD62 (Create Conversion Rules)
and switch to change mode (Ctrl+F1).

2. Enter a new rule, MATMAS_ROOT_UOM, add a
short description (e.g., Units of measure in root
segment), and assign segment E1MARAM to it.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.76

Figure 13 Conversion Rule Creation

Figure 14 Conversion Rule Overview After “Create Proposal for Rule”

3. Save the rule. The result should look like what
you see in Figure 13.

4. Call transaction BD79 (Maintain Conversion

Rules), enter the newly created conversion rule,
and press the Maintain button (F6).

5. Now we’ve reached the actual ALE conversion

77For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

Figure 15 Conversion Rule Detail for Copy Sender Field

field group Sender Field to be Transferred. Here
you can specify the value range for the sender
fields to be copied to the receiver field.

7. Enter PCE (the ISO code for ST) at the column’s
lower and upper limits, press Enter, and return
(F3) to the detail menu of receiver field MEINS.

8. Further down on that screen, there is a field group
called What happens with the nonassigned/non-
converted field values? Select radio button Set
constant and enter KG as the constant value. The
screen should now look similar to what you see in
Figure 15.

and mapping tool. On the left side, you’ll see
all the segment fields as receiver fields, which
have to be provided with content. Press the
Create proposal for rule button (F5) and
you will get a 1:1 data mapping like the one
shown in Figure 14, in which each receiver
field gets its input from the corresponding
sender field.

6. We want to copy the base unit (field MEINS)
from the sender field if it is ST, and otherwise
convert it to KG. So, select the row of receiver
field MEINS and press the choose button () or
F2. Press the button Restrict value range in the

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.78

� Note!

Internally, ALE interfaces use ISO units. There are two implications for your implementation:

• The units to be transferred must always have an assigned ISO unit. Check units in transaction CUNI (Check
Units of Measure) by navigating to Units of Measurement and selecting the details of the unit you are
interested in. There you will find field “ISO code” in the field group ALE/EDI. This field must be filled
with a value that is a unit defined by ISO.

• When applying data transformation in the conversion rules, refer to the ISO code for unit comparisons.

Figure 16 Conversion Rule Overview After Specifying Details

9. Save the rule, navigate back to the conversion
rule maintenance screen, save again, and the
overview screen will look like Figure 16. No

automatic transport will be created. You can
create a transport manually with the transport
button () or F8.

79For site licenses and volume subscriptions, call 1-781-751-8799.

Data Transformation in SAP Standard ALE Distributed Business Processes: How to Ensure an Efficient, Effective Implementation

Figure 17 Conversion Rule Assignment

10. The conversion is now defined, but the system
still does not know when to apply it. We tell it
with transaction BD55 (Assign Rule to Message
Type). Call this transaction, enter MATMAS as
the message type, and confirm.

11. Press New Entries (F5). Specify the sender
and receiver partners, the segment name
E1MARAM, and the conversion rule
MATMAS_ROOT_UOM. The type of our
partners is LS (logical system). You do not
have to specify fields Func. and Role.

12. Save what you’ve done. The results of your
actions should be similar to what you see in
Figure 17.

13. Test the data conversion:

- In the sample material master that has DO-IT
in the short text, maintain the base unit as ST.
Save the material master and send it to the
receiver system. The base unit of the sent
material master should remain the same.

- Next, change the base unit to something other
than ST (e.g., PAC). Save the material mas-
ter and send it again.

- Finally, check the result in the IDoc or in
the material master of the receiver system.
You should see that the base unit has been
changed to KG.

� Note!

In an implementation project, you have to define all possible partner combinations for which the conversion
rule will be valid in the development system; you then have to transport these rule assignments for the different
partner combinations (of the quality assurance and production systems) throughout your system landscape. For
security reasons, it is important to have unique logical system names for each system in a system landscape (e.g.,
development, quality assurance, and production), so you will have different partners on the QA system than on
the PRD system.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.80

� Tip

To gain a good understanding of what you can
and cannot do with conversion rules, read the
section on conversion rules in the IMG
(Implementation Guide) very carefully, and test
all the features supplied.

Conclusion

As you have seen, SAP standard ALE offers a wide
range of tools to perform data conversions. Knowing
the features of the tools and adhering to the imple-
mentation approach set forth in this article will help
you to plan and build more cost-effective, more easily
maintainable ALE interfaces. Remember:

� Filter out what you do not need. Always pay
attention to the amount of data to be distributed.
To avoid sending extraneous data, filter out all
unnecessary data in the outbound process.

� Utilize customizing tools before applying
custom coding.

� Where possible, utilize application-specific pro-
gram exits before utilizing generic program exits.

� Employ a Business Add-In, if one exists, in
preference to a user exit.

When you’re ready to get started in your own
environment, I recommend using the tables and charts
in this article as guidelines for planning and imple-
menting your own ALE interfaces.

Arthur Wirthensohn is a senior consultant at EDS
Switzerland and a member of EDS’s international
Technical Leadership Network. He has worked
both as a project manager and product manager
in the ERP and IT integration business for many
years, mainly in the retail, consumer products,
manufacturing, and trade industries. For the
past two years, Arthur was the product manager
responsible for Application Services based on SAP
systems. Currently, he works as project manager
and is the technical lead of the Enterprise
Application Integration (EAI) department, which
delivers SAP-related services, such as ALE/EDI,
SAP Business Workflow, Web Application Server,
Data Migration, and ABAP Programming
Services. Arthur can be reached at
arthur.wirthensohn@eds.com.

