
25For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

Performance Problems
in ABAP Programs:
How to Fix Them
Werner Schwarz

Editor’s Note:

SAP Professional Journal has published ABAP performance articles on a number
of occasions. It is with particular pride that we have presented this special two-
part series.

The first installment, “Performance Problems in ABAP Programs: How to Find
Them” (May/June 2003), demonstrated how to use SAP’s tools for performance
analysis to identify the areas that dominate the runtime of a poorly performing
program. This second installment profiles the most frequently encountered
causes of runtime maladies and offers suggestions for addressing those problems,
with a focus on both database accesses and ABAP statements.

Together, these two articles deliver a comprehensive approach to performance
optimization.

Whatever the cause of your program’s performance troubles, optimizing
the runtime of the application requires that you first find out where the
majority of the runtime is spent.

The first installment of this two-part article series1 showed you how
to use SAP’s performance monitoring and tracing tools — Performance
Trace (transaction ST05) and ABAP Runtime Analysis (transaction
SE30) — to identify the critical actions or code sequences that are
causing poor runtime in your program.

But then what? Once you’ve identified the code area in question,
how do you go about improving your program’s performance? Here in

Werner Schwarz joined SAP
Retail Solutions in October
1998. Today, he is the
development team contact
for all performance-related
issues concerning SAP’s
Retail Industry Business
Unit. Werner’s major
tasks include information
rollout and support of his
colleagues regarding
performance during both
development and
maintenance.

(complete bio appears on page 48)

1 “Performance Problems in ABAP Programs: How to Find Them” (May/June 2003).

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.26

this second installment, I present the most commonly
found performance bugs, and the recommended solu-
tions. In my experience, the most typical sources of
performance problems are inefficient database
accesses and faulty ABAP coding (regarding internal
table handling in particular). These typical problem
sources will be the focus of this article.

Inefficient Database Accesses

In my experience, there are certain problems with
database accesses that appear over and over again:

1. Lack of index support

2. More data read than necessary

3. Same data read multiple times

4. Improper use of buffering

5. Use of single accesses instead of an array access

These issues cause problems of varying severity.
A missing index can really “kill” your program, and
reading more data than you need to can have a notice-
able impact on performance, so you’ll need to address
these issues right away. Overlooking buffering possi-
bilities or performing single instead of array accesses,
on the other hand, is less critical — while a correction
will help, it will hardly reduce the total runtime by
factors. Be sure to keep these prioritization consider-
ations in mind when you’ve identified the problem
in your own environment and are planning your
next steps.

In the following sections I will discuss these five
typical problems, in order of severity, and outline
their possible solutions.

Database Access Problem #1:
Lack of Index Support

As discussed in the first installment of this two-part

series, to handle access requests the database uses an
“execution plan,” which determines whether the
database performs a full table scan (where all records
are read) or uses an index (where only specific
records are read). An unfavorable execution plan —
for example, using a full table scan for a large table
or using an index that doesn’t match the specified
restrictions — can cause an extended runtime and
result in severe performance problems for your pro-
gram. So, how do you locate the problem and what
can you do about it?

As described in the previous article, once you
have identified the database accesses that are causing
the highest load using Performance Trace (ST05),
check the execution plans for these accesses (place
the cursor on the line containing the query statement
in question and select , Trace → Explain
SQL, or F9).

As part of the execution plan analysis, compare
the fields in the WHERE clause of the query state-
ment with the fields of the used index (if any). If the
used index does not match (or no index is used at all),
check all indexes on the table (to access the required
information, click or DDIC info). This
comparison will help you determine if there is an
index on the table that matches the selection. The
following problems can occur here:

• Long runtime despite the use of a suitable index

• Wrong index is used

• No suitable index exists

Let’s take a closer look at these three sources and
how to handle them.

Long Runtime Despite the Use of
a Suitable Index

If your analysis shows that the runtime of the query
statement is too long even though a suitable index
is being used, the reason is likely to be one of the
following:

27For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

• There are missing index fields.

• “Wildcards” are used.

• The index has a bad storage quality.

The more index fields specified with an “equal”
operation in the statement’s WHERE clause, the more
efficient the index. Note that the order of the index
fields is also important: if an index field is not speci-
fied in the WHERE clause, index fields subsequent to
that field cannot be used properly, even if they are
specified in the WHERE clause.

Recall the example of a standard phone book
from the previous article. If you know the city name,
street address, and first name of someone you want to
call, but you do not know the person’s last name, the
only information that will significantly reduce the
number of entries you have to check is the city name.
The other information is useless if you don’t know
the person’s last name. Along these lines, let’s say
that your WHERE clause specifies three fields (city
name, street address, first name) with an “equal”

condition, and that all three fields are included in
an index that is designed like a typical phone book.
While at first glance this index appears to be a suit-
able match, it cannot be used properly if its second
index field (the person’s last name) is not part of the
query statement’s WHERE clause.

So what do you do if you find there is an index
field missing from the query’s WHERE clause? Some-
times you can find the information for a missing field
in the business context, or you can easily retrieve it
by adding a quick selection to a database table, for
example. In such cases you should add this informa-
tion to the WHERE clause, even if it doesn’t reduce
the size of the result set. The improved access time
for the selection might outweigh the additional effort
spent on retrieving the information. If you cannot find
the information, your only alternative is to create a
new index, which will improve access performance,
but will also increase runtime for modifications and
memory requirements, so be sure to keep this in mind.

Take a look at Figure 1, which demonstrates how

Example 1: Use a single SELECT statement with a WHERE clause without specifying a value for field
BUKRS.*

select * from z_tabl into table itab where belnr = '0000000001'. Runtime: 74 ms

Example 2: Select a (small) table to determine all possible values for field BUKRS, then call the SELECT
statement using FOR ALL ENTRIES, passing the value of BUKRS to the statement’s WHERE clause.*

* fill company code table (3 entries !) Runtime: 1 ms
select bukrs into table bukrs_tab from z_bukr.
* selection
 select * from z_tabl into table itab_res
 for all entries in bukrs_tab
 where bukrs = bukrs_tab-bukrs and belnr = '0000000001'.

Analysis of runtime results

The second statement is considerably faster, despite the additional selection on table Z_BUKR and the use of
FOR ALL ENTRIES to execute an array selection on Z_TABL. This is because the index fields BUKRS and
BELNR can now be used for the selection on Z_TABL, which allows the database to make far better use of
the index.

* Both selection examples use the same key index — including fields MANDT, BUKRS, BELNR, and GJAHR — with an index range
scan execution plan.

Figure 1 Selecting Rows from a Database Table: A Runtime Comparison

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.28

retrieving missing information can significantly
improve access time. This example first considers a
selection on table Z_TABL (which has about 60,000
entries, including key fields MANDT, BUKRS,
BELNR, and GJAHR) that specifies a value for the
field BELNR (0000000001) and returns one record
from the database. An ideal index for such a database
selection would start with fields MANDT and
BELNR. Suppose there is no such index, however.
In this case, the table’s key index must be used,2

which contains the additional field BUKRS between
fields MANDT and BELNR. The problem here is
that we do not want to restrict the selection to field
BUKRS, so we do not specify its value, but without a
value specified for BUKRS, the database cannot make
effective use of the index and thus has to read and
check numerous entries that are not part of the result
set, namely records with another value for BELNR.
The result, as you can see, is that the selection takes
74 ms during the test run.

So how can this runtime be improved? Let’s say
that we know there are only a few different values for
BUKRS. In this case, we can identify all of them and
perform a number of selections on Z_TABL, each
time with a different identified value for BUKRS. At
first glance this might seem excessive — in contrast
to the first option, where we performed only one
selection, here we have to perform one selection to
read all possible values for BUKRS, and then perform
several additional selections on Z_TABL. However,
because we added field BUKRS and its values, the
database only reads and checks records that belong to
the result set. Consequently, the complete runtime
for determining all values for BUKRS (three in the
example) and executing the array selection on
Z_TABL is considerably faster (1 ms instead of 74).

Another situation that can degrade access perfor-
mance despite the presence of a suitable index is the
use of “wildcards,” which means that instead of a
value, a pattern is specified for a table field in the
WHERE clause. For example, take a look at the
following SELECT statement:

SELECT … WHERE MATNR LIKE 'A%'

Here, all records where field MATNR starts with the
character A are selected.

Using a wildcard makes it very difficult for the
database to use the field specified with the wildcard
and the subsequent fields of the index. To remedy
this problem, look for superfluous use of LIKE in the
WHERE clause. When you come across a clause
with a restriction such as LIKE '%', simply omit the
restriction completely. This will not adversely affect
your program because it does not restrict the result
set in the first place.

To be on the safe side, it’s best to also modify
WHERE clauses containing LIKE that do not use
wildcards — for example, by replacing WHERE
MATNR LIKE 'ABCD' with WHERE MATNR =
'ABCD' instead. Here, the “equal” operation serves
the same purpose in the WHERE clause as the LIKE,
only without the risks associated with using the
LIKE operator.

� Tip

Use wildcards only if it is really necessary and
appropriate. However, keep in mind that if a
field is specified with LIKE, the database cannot
make good use of subsequent index fields.

The storage quality of an index has a considerable
influence on program performance as well. Efficient
use of an index depends on how compactly the index
information is stored in the database blocks and how
quickly the information can be accessed. Frequent
updates, inserts, or deletes in a database table can
fragment the information so that it is spread out over
many data blocks, so that even if a suitable index is
used, many index blocks must be read to retrieve the
index information, thus causing an extended runtime.2 Note that there is always an index on a table’s key fields.

29For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

If you suspect this situation, ask your database
administrator to check the storage quality of the index
and to reorganize it if necessary. A compact index
stored in fewer index blocks can be accessed substan-
tially faster.

Wrong Index Is Used

If a suitable index exists, but is not used, it may be
that the suitable index has a low “selectivity.” An
index’s selectivity is determined by the number of
records it can exclude from all possible records in a
table. The more different values exist for the fields
of an index, the more you can reduce the number of
records to be read when you specify these fields in
the query statement’s WHERE clause.

The database decides on an execution plan based
on the selectivity of all available indexes, which is
documented in the database statistics. For some
databases, like Oracle, you can access this statistics
information directly from the execution plan display
in the SAP transaction. Simply click on the table
name in the execution plan display (from transaction
ST04 or ST05), which launches a dialog that displays
information on that table and all of its indexes.
Figure 2 shows this information for table KNVP.
There, in the first line of the top frame, you see the
creation date of the statistics (27.12.2000). In the
second frame, the column #Distinct tells you for each
field (MANDT, KUNNR, VKORG, etc.) how many
different values were found in the records of the table.
The higher the number of values found for a field
(like KUNNR in Figure 2), the more selective the
field, and the more selective the field, the better it can
be used to reduce the amount of data that must be
evaluated. Consequently, an index containing such a
selective field becomes “more attractive” if that field
is specified in the query statement’s WHERE clause.

If the selectivity of an index’s fields is very low,
the number of records that will have to be read using
that index might be very high, in which case the
database might consider using a full table scan or a
different index instead. It’s a good idea to first make

Figure 2 Table and Index Information

sure that the database table statistics are up-to-date.
If the statistics are old (perhaps from a time when the
table contained only a few records), this information
might differ considerably from reality, and current
statistics might trigger a different — and better —
execution plan.

� Tip

Keeping statistics up-to-date by a regular job is
required in order for the database to determine
suitable execution plans.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.30

No Suitable Index Exists

If there is no suitable index for the statement in ques-
tion, you have two remaining options:

• Modify the query statement so that an existing
index can be used.

• Create a new index that is suitable.

Sometimes it is possible to add further restric-
tions to the query statement’s WHERE clause that
enable the database to use an index that already
exists. If the WHERE clause contains index fields
that are located at the end of an index, but not fields
from the beginning of an index, that index cannot be
used optimally. If you manage to change the selec-
tion by adding more restrictions with respect to the
missing index fields, the existing index may be used
(refer back to the example in Figure 1). Of course,
this only makes sense if the selection still fits to your
business requirements and if the additional overhead
is minimal.

As a last resort you can create a new index for
the database table that suits your query statement.
Remember, however, that while an additional index
will improve the performance of read accesses, it will
also increase the required database memory and, since
the index must be maintained, it will increase the
runtime of any database operations that modify the
table (such as INSERT, UPDATE, and DELETE).

� Tip

To avoid excessive performance drain, you
should create an additional index for only those
accesses that are performed frequently, such
as program queries or transactions that are
performed every day (and not those that come
from a report that is executed only once a month,
for example).

If the table does, in fact, have the latest statistics,
and the index’s fields still show a low selectivity,
you can also try to improve the quality of the statis-
tics. In general, not all records in a table are consid-
ered when statistics are being created, as this would
take too long for large tables. Instead, a “spot check”
is performed — when you specify the statistics to
be recorded, you determine a percentage of records
to be read.3

If a high percentage of a table’s records have the
same value for a certain field, and only a few records
contain different values for that field, it is likely that
the spot check will find only the value that appears in
the majority of the records. In this case it might be
better to change the settings so that the statistics
analysis is run on the entire table, even if it might
take a little longer, so that you can be sure to get an
accurate picture of the data distribution.

If none of the approaches described so far —
updating the statistics and improving their quality
— cause the database to use the desired index, you
can try to force the database optimizer to use it.
Note, however, that this cannot be accomplished by
changing the order of the restrictions in the query
statement’s WHERE clause. Instead, you have to
change the database optimizer’s settings or add “data-
base hints” to the SQL statement. However, be aware
that these options are extremely database-dependent
and they are only useful for solving a specific prob-
lem in a specific situation. For this reason, a database
hint should not be included in a standard program,
which is designed to be database-independent. You
should also be aware that not all databases support the
use of database hints.

I do not provide a detailed description of these
options, as they are beyond the scope of this article.
For more details on database hints, see CSN note
129385 and look through the detailed information
for the database in question.

3 This information is displayed under Analyze Method in the top frame
of Figure 2 (Estimate 01%).

31For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

Database Access Problem #2:
More Data Read Than Necessary

When looking at an SQL trace, you can sometimes
identify heavy loads caused by the database reading a
large number of records from a table. In such cases,
you should determine whether this large amount of
data is really required. The reading of unnecessary
data can happen for several reasons, such as careless-
ness, faulty design, or a problem with the FOR ALL
ENTRIES statement. Sometimes you might find
additional “checks” in an ABAP program that elimi-
nate irrelevant records from the result set immediately
after performing the selection, like the ones shown in
Listing 1.

It is best to locate and remove such checks and
instead include all known restrictions in the WHERE
clause, because this avoids unnecessary reading of
data on the database, the transfer of this unnecessary
data to the application server, and the unnecessary
execution of coding in the ABAP program to delete
this data. Unfortunately, the checks are not always as
obvious as the ones shown in Listing 1, so you might
not find them without a further analysis of the pro-
gram and business logic.

In some cases, however, belated checks are useful
because the additional restrictions are difficult for the
database to evaluate with the selection. Sometimes,
surprisingly enough, it is even faster to read more
records than required and eliminate the needless data
later, if this makes the database selection simpler and
faster. For example, it may pay to skip a restriction
for a field completely instead of adding hundreds of
possible values to a range table whose restriction
would eliminate only very few records. Generally,
though, you should include all known restrictions in
the WHERE clause.

Another frequent problem derives from the FOR
ALL ENTRIES feature of the SELECT statement.
FOR ALL ENTRIES enables you to perform a selec-
tion on a database table in one ABAP statement that
contains varying values for one or several fields in the
WHERE clause. The different values are stored in an
internal table that is specified in the query statement.

But what happens if this internal table is empty?
You might assume that the selection will simply skip
all restrictions in the WHERE clause that refer to that
internal table and keep all others that are independent
of this table. But this is not the case! Instead, the
database selection skips all restrictions in the WHERE
clause, keeping only the client specification.

Listing 1: Checks That Eliminate Extraneous Records After the Data Selection

SELECT * FROM MARA.
 …
 CHECK MARA-MATART = 'HAWA'.
 CHECK MARA-MATKL = 'ZKL'.
 CHECK MARA-BSTME = 'KART'.
 …
ENDSELECT.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.32

Have a look at the highlighted code in Figure 3.
Here, the internal table ITAB_DRIVE is empty. Con-
sequently, the statement handed over to the database
(see Figure 4) contains only the restriction referring
to the client ("MANDT" = :A0) — the restriction
for ERNAM (ERNAM = P_ERF) was completely
skipped. As a result, far more data is read than
expected, which might cause functional problems in
addition to performance problems, as the result set
also contains entries that do not fulfill the restriction
concerning the value for ERNAM. To avoid this
behavior, for any internal table that is to be used in
a FOR ALL ENTRIES query, be sure to check if it
contains any entries by inserting a check like:

IF NOT ITAB[] IS INITIAL

before the query is executed. Alternatively, you can
have the context guarantee that the internal table has
at least one entry.

Database Access Problem #3:
Same Data Read Multiple Times

Usually, it makes little sense to perform the same
database selection repeatedly within a program. An

Figure 3 The Query Statement Source Code

33For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

exception may be reading data from the database after
locking it with an SAP ENQUEUE lock. But in
general, these identical selections put an unnecessary
additional load on the database and increase the
program’s runtime. If you identify identical selec-
tions in the SQL trace, as detailed in the previous
article, it’s best to determine where the selections
come from and try to correct them.

To avoid identical selections, save the results
of the database selection in an internal table and
make the information accessible to all function
modules, forms, and methods that need it. In other
words, create function modules (“read” modules)
specifically for performing all relevant database
selections on a table, and then buffer the results in
internal tables that can be accessed by all these mod-
ules. Of course, you also have to maintain all queries
in your buffered information that have an empty
result set — i.e., all queries that did not yield a
record. Then, instead of having all modules in your

application perform the selection directly, replace the
SELECT statements by a function call to the suitable
read module. If the information on the requested
selection is already in the buffer, the result can be
passed to the caller without performing a database
access. Otherwise, the data is read from the database
and the buffer is updated.

� Tip

Buffering read modules are already implemented
for numerous database tables. Before creating
your own module (or performing database
selections in your code) check to see if an
appropriate module is already available. A
function group usually has several modules with
different interfaces using the same buffer (e.g.,
ME_EKKO_ARRAY_READ and
ME_EKKO_SINGLE_READ).

Figure 4 The Statement Received by the Database

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.34

Database Access Problem #4:
Improper Use of Buffering

Instead of explicitly buffering data in the user context
of your program, as described in the previous section,
you can use table buffering on the R/3 instance pro-
vided by the system. In the data dictionary (DDIC),
you can define buffer settings for a table in the
technical settings. The effect is that all records
(or a generic area) from the table are buffered in
the shared memory of the instance. Accordingly,
this data is available for all word processes of the
instance, so it needn’t be read from the database
again. This is an advantage compared to the read
modules discussed before, as the buffered data in a
read module is only visible in the same user context
of the transaction or program. However, buffering
via technical settings is not useful for tables that are
too large or frequently changed.

� Note!

In general, it makes no sense to create the
buffering read modules described previously
for tables that are already buffered via their
technical settings. The usage and maintenance
of the buffer is completely hidden from the
application. The code in the ABAP program is
still a normal SQL statement, but internally it is
satisfied from the buffer — if possible — and not
from the database.

Some specific selections always bypass the
buffer, which results in “real” database accesses, even
for buffered tables. These statements are:

• SELECT ... FOR UPDATE

• SELECT using DISTINCT or one of the aggregate
functions (COUNT, MIN, MAX, SUM, etc.)

• SELECT with a GROUP BY/HAVING clause

• SELECT with an ORDER BY clause (other than
PRIMARY KEY)

• SELECT with a WHERE clause that contains
IS [NOT] NULL or any subquery

• JOIN commands in Open SQL (SELECT
 … JOIN ON)

• Any Native SQL statement

• SELECT … BYPASSING BUFFER

If you find accesses to buffered tables in the SQL
trace, check why the buffer is bypassed. It might
be because the SELECT statement in the program is
one of the statements listed above. But you should
also know that if you use “single record” buffering,
the SELECT statement must specify the table key
completely, and you must use the SELECT SINGLE
option. Similarly, to use “generic” buffering, the
complete generic key must be given. In some cases,
the buffer is bypassed accidentally because the devel-
opers were not aware of these conditions.

If it is useful, and not incompatible with business
requirements, you should consider modifying such
statements so that the buffer is used or adapting the
settings for the table buffer (but I strongly suggest
you don’t do this for SAP standard tables!).

� Tip

Think about buffering via technical settings when
defining your own tables:

• In general, small tables that are rarely
modified and accessed mostly by primary
key are ideal candidates for buffering.

• If a table is buffered but you need to
bypass the buffer and read directly from
the database, you can use the BYPASSING
BUFFER option. It can add to a better
understanding of your program code if you
indicate that the bypass happens on purpose,
even if the statement bypasses the buffer
anyway.

35For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

Database Access Problem #5:
Use of Single Accesses Instead
of an Array Access

In general, the database can process array accesses
(i.e., reading several records with one request) faster
than a sequence of single requests.

Look at the example in Figure 5, which shows
two ways of reading a number of records from the
database. In the first example, there is only one
statement to the database that specifies all restrictions
concerning field EBELN by using an internal table
I_HEAD and FOR ALL ENTRIES.4 In the second
example, a sequence of single database selections is
performed in a loop, each specifying only one value
for EBELN. I compared the runtime of both for

reading different numbers of entries. As the results
show, using the array access is about four times faster
than using a sequence of single reads on the database.

When analyzing the SQL trace, you sometimes
find sequences of single selections on a database
table. Quite often, these selections come from a
loop over an internal table. What can you do to
improve this?

Consider implementing a single array access that
reads all relevant records from the database table into
an internal table in one step before entering the loop.
During the processing of the entries in the loop, the
required record is read from this internal table instead
of the database. You can combine this with buffering
read modules for the database table (as described
earlier). Here, the array access before the loop fills
the buffer, and in the loop a call to the module rereads
a single record from the buffer.

Figure 5 Single Selections vs. an Array Selection: A Runtime Comparison

Example 1: An array selection*

select * from ZDS400_HEAD into table i_result for all entries in I_HEAD
where EBELN = I_HEAD-EBELN.

Example 2: A sequence of single selections*

loop at I_HEAD.
select * from ZDS400_HEAD appending table i_result
 where EBELN = I_HEAD-EBELN.
endloop.

Analysis of runtime results

Number of entries in I_HEAD 10 1,000 10,000

Array selection 1 ms 75 ms 744 ms

Single selections 4 ms 334 ms 3,299 ms

Ratio of single to array 4 4.45 4.43

Conclusion The array access is considerably faster (about four times
faster) than the sequence of single selections.

* Both examples read entries from a database table corresponding to the entries in internal table I_HEAD.

4 Actually this single Open SQL statement is split into several database
accesses by the Open SQL layer, but for clarity and simplicity I
disregard this detail here.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.36

The Keys to Avoiding Database Access Problems

As the database is a single resource in the system, optimizing database accesses and reducing the
load on the database are essential when optimizing the performance of both a specific ABAP program
and the whole system. The following key optimization techniques can generally be performed in the
database or through local changes in the program, without making any changes to a program’s overall
design or functionality:

� Perform selections with a suitable index.

� Avoid reading data unnecessarily.

� Use the proper system buffering mechanisms.

� Use array accesses instead of performing a sequence of single selections.

For example:

LOOP AT ITAB.
 SELECT SINGLE FROM DBTAB
 WHERE FIELD = ITAB-FIELD.
Processing…
ENDLOOP.

would become:

CALL FUNCTION 'DBTAB_ARRAY_READ'
 TABLES ITAB …

LOOP AT ITAB.
CALL FUNCTION 'DBTAB_SINGLE_READ'
 EXPORTING ITAB-FIELD
 …
Processing…
ENDLOOP.

As you can see in the runtime comparison in
Figure 5, there is hardly a benefit when executing, for
example, an array access with 10,000 entries com-
pared to a sequence of 10 array accesses with 1,000
entries each. Consequently, it is okay to split the

processing of a large workload into several smaller
packages, as this will hardly increase the total runtime
for the database selections.

� Note!

Be aware that reading and processing the entire
data volume in a single step is not always the
best solution. If a large amount of records must
be read (e.g., tens of thousands or even more),
the amount of memory required to store all the
data and the time that is needed to maintain it
might outweigh any positive effects. In such
cases, think about processing the data in smaller
packages using array selections with a suitable
number of records.

Faulty ABAP Coding

If it turns out that the major part of your program’s
runtime is spent in the ABAP program itself, rather

37For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

than with database access requests, ABAP Runtime
Analysis (transaction SE30) is the proper tool for
investigation. My previous article covered the use of
this tool in detail, especially how to use it to identify
the module that is the most promising candidate for
your tuning efforts. Here, I discuss the typical rea-
sons behind an extended runtime in an ABAP module
and what you can do to resolve such issues.

� Note!

The examples used in the following discussion
assume that there is only one module (or only
very few modules) with a far higher net time than
all others.

Zeroing in on the Problem

Let’s say that you have identified a module that con-
sumes a large part of the total runtime of your pro-
gram. There are two possible reasons for this exces-
sive runtime:

• The long runtime is simply caused by a large
number of calls.

• There are only a few calls to the module, but
each call is consuming an excessive amount
of runtime.

In the first case, verify that there is a justifiable
reason for the large number of calls. There may be
some calls that are unnecessary and can be elimi-
nated. This decision depends on the business process,
however, so the only advice I can offer is to avoid
needless operations and make sure that you are
knowledgeable of the particular business process
involved. You can also try to improve performance
by applying some minor changes (e.g., use work
areas instead of header lines or use field symbols) that
might reduce the runtime per call only slightly, but
the total effect can still be considerable as it multi-
plies with the number of calls.

In the second case, perform a detailed analysis
of the module with ABAP Runtime Analysis (see
the sidebar “Performing a Detailed Analysis” on the
next page).

You will often find operations on internal
tables (mostly standard tables) at the top of the
runtime list. In my experience, faulty internal table
handling is the most common cause of severe runtime
problems in ABAP, and is the problem source I will
focus on here.

� Note!

Runtime problems with internal tables usually
occur only when processing large tables, which
is why it is hard to find these problems with
small test cases. Thus problems tend to appear
only after the program is used in a production
environment. See the appendix to this article on
page 49 for some tips on how to detect these bugs
using smaller test cases.

� Tip

Avoid using internal tables that are too large.
Whenever possible, it’s generally better to
process smaller, independent packages, which
can save both time and memory.

The Internal Table
Handling Problem

As I just mentioned, in most cases, performance
problems in ABAP code are a result of sub-optimal
handling of internal standard tables. Since standard

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.38

You might find the hit list display a little confusing — instead of displaying the same name for the internal
table used in the coding, it lists a technical name, like IT_27. To find out which table is being referenced,
navigate to the program code using the button in the application toolbar, where you can view the
corresponding statement containing the internal table name.

Performing a Detailed Analysis

To perform a detailed analysis, define a new restriction variant in ABAP
Runtime Analysis (transaction SE30) that traces only the information
of the suspect module, including all accesses on internal tables (refer
to my previous article in the May/June 2003 issue for details). When
you configure this new variant, specify the module in question on the
“Program (parts)” tab, and on the “Statements” tab be sure to activate the
checkboxes for read and change operations on internal tables.

Rerun the program using the new variant and look at the hit list, sorted by
net time (see the screenshot below). In the example below, you can see that the total runtime of the
program was about 12 seconds (gross time). The read and sort operations on the internal table IT_27
required a total of about 10 seconds. Consequently, any tuning measures for this program must focus on
optimizing these operations as they consume about 80% of the total runtime.

� Tip

In general, aggregated
information is sufficient
for this analysis.

tables are not the only type of internal table, in addi-
tion to using a table better, performance problems can
often be solved simply by using another table type.
There are three types of internal tables:

• Standard

• Sorted

• Hashed

39For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

While standard tables can be used for any kind
of access, sorted and hashed tables are designed for
specific uses, and the appropriate access methods are
optimized for performance. It’s a good idea to con-
sider using a sorted or hashed table if you expect
the table will contain more than only a few entries.
These tables have certain restrictions, however, and
if the design of your application conflicts with these
restrictions, you might be forced to use a standard
table. Not to worry though — with a little effort, you
can use standard tables in such a way that there are
almost no performance disadvantages.

In an ideal world, all developers would be famil-
iar with the performance aspects of different internal
table types and would take them into consideration
when designing programs. However, in the real
world, experience shows that this is not always the
case. Because improper use of internal tables can
have a significant impact on runtime, my goal over
the next few sections is to familiarize you with these
important elements so that you can use them prop-
erly. I provide a short overview of the advantages
and limitations of sorted and hashed tables, and the
corresponding runtime implications. I will also show
you how to optimize access times when you must use
standard tables.

Hashed Tables

A hashed table must be defined with a unique key.
Using this key is the only way you can access a single
record in the table. The table is maintained in such a
way that a hash function computes the index position
from the key, and the index points directly to the data
record.5 This is why you always have to specify the
complete key of the record you want to read. Thus if
all read operations in your program are accesses to
single records using a fully specified key, a hashed
table is an appropriate table type.

Due to the hash algorithm, the response time for

a key access to a hashed table record is constant,
regardless of the number of table entries, making a
hashed table ideal for processing large amounts of
data — provided that you access single records only,
and all with a fully specified key.

You should not use a hashed table if the access
key is not always fully specified, as it is not possible
to access ranges in a hashed table. Such an access
would end up as a full scan of all table entries. Index
operations like LOOP … FROM or INSERT …
INDEX also cannot be executed. Furthermore, adding
a new entry to a hashed table takes a little longer than
appending a new entry to a standard table, and the
maintenance of the hash key requires a certain
amount of memory.

Sorted Tables

The best way to guarantee a sorted sequence of the
entries, regardless of whether the key is unique or
non-unique, is to use a sorted table. Sorted tables are
designed and optimized for fast access to ranges if
they can make use of the order of the entries. A
sorted table is best for range accesses involving table
key or index accesses. It is particularly useful for
partial sequential processing in a loop if you specify
(at least the leading part of) the table key in the
WHERE condition. In contrast to a hashed table, you
need not specify the complete key for read accesses to
a sorted table. If you perform a read access with an
incomplete key, the runtime system selects the first
entry that fulfills the condition.

The runtime system uses a binary search for key
access to a sorted table if the table key can be used.
Therefore, the average runtime is logarithmically
proportional to the number of table entries for these
accesses. For large tables, this is considerably faster
than a key access to a standard table. However, the
system cannot use a binary search for accesses with
a key that doesn’t correspond to the table key. The
average runtime for these accesses is exactly the same
as for a standard table; it is proportional to the num-
ber of table entries.

5 I disregard collision handling here, since this is transparent to the user
and does not add to the understanding of this discussion.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.40

A sorted table is always sorted according to the
key specified in the table definition. It is not possible
to change the sorted sequence according to another
key at runtime. If your program design requires
many key accesses that do not correspond to the table
key, you have two alternatives:

• Use a standard table, which can be rearranged
according to other keys at runtime via the SORT
statement. In order to achieve a logarithmically
proportional access, the table must be sorted
according to the key by which you want to access
the table, and you must use the BINARY SEARCH
statement for the read accesses. However, this is
only feasible if the rearrangement is rarely per-
formed, as sorting the table takes a considerable
amount of time.

• Retain the sorted table, but also maintain other
internal tables as “secondary indices” to optimize
frequent read accesses for all keys other than the
table key. Keep in mind that this will have an
additional overhead in terms of space consump-
tion. (I will describe this in detail a little later.)

A sorted table is usually filled using the INSERT
statement. Entries are inserted according to the sort
order defined by the table key. If you specify a table
index with the INSERT statement, the runtime system
checks the accuracy of the position to identify any
entries that would breach the order when added to the
table. If you do not specify an index, the runtime
system will determine the suitable table index for the
new entry. Consequently, inserting a new entry into
a sorted table is a little slower than inserting a new
entry into a standard table. Furthermore, keep in
mind that there will always be an index maintained
for the sorted table, which requires additional
memory, so when you use numerous, very small
internal tables, the possible runtime benefits might
not balance the memory consumption costs.

Standard Tables

Many developers use standard tables exclusively.
Standard tables are the most flexible table type and

can be used for all purposes (reading all entries,
performing index, range, and key accesses). How-
ever, standard tables are not tuned for specific access
types. They are very fast when accessing a record via
the table index, but there are only rare cases where
this type of access is used.

When performing a LOOP AT … WHERE or a
READ ... WITH KEY on a standard table, the runtime
system must scan all table entries from the beginning,
which makes the average runtime for such an access
proportional to the number of table entries. In con-
trast, the runtime for a read access that specifies an
index is independent of the table size.

As I mentioned earlier, it is possible to optimize
accesses to a standard table (I will show you how in
a moment), but it requires some effort when writing
your program and is not as easy as using a hashed or
sorted table. Therefore, using a hashed or sorted table
should always be considered, too.

Choosing the Right Table Type:
The “Nested Loops” Factor

You might think that using a sorted or hashed table
instead of a standard table will not make a big differ-
ence in terms of runtime, but you should consider
using them anyway, especially if you cannot be abso-
lutely sure that the table will always be very small.
There is almost no additional work for you when
writing your program, and it can help you avoid
tremendous runtime problems if your assumption
about the size of the table is incorrect. Far too often
I have heard developers say, “I never expected my
program to be used in such an environment and with
such data volumes!” Furthermore, maintaining your
program can be easier with a sorted table, as the
sorted sequence is always guaranteed. Assume you
use a standard table and you are forced to adapt your
code in order to use the BINARY SEARCH for a read
access. You will then have to check all areas where
the table is modified, so that you can be sure that the
table is sorted appropriately. And this assumption
can fail if you add (or someone else adds) new code
to the program later on.

41For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

The average runtime for a single record access in
an internal table depends on the table type:

• For a hashed table, it is independent of the num-
ber of entries and thus constant.

• For a sorted table, where the table key is used, it
is logarithmically proportional to the number of
entries. If the table key isn’t used, it is propor-
tional to the number of entries.

• For a standard table, it is usually proportional to
the number of entries. There is one exception:
if the table is sorted and the BINARY SEARCH
addition is used, it is logarithmically proportional
to the number of entries.

For small tables, this does not make a big differ-
ence in runtime. You will rarely observe perfor-
mance problems that are caused by accesses to inter-
nal tables with only very few entries. Even for larger
tables, the absolute runtime difference for a single
access doesn’t seem to be critical — and as the access
time is proportional to table size, you might think that
there is no real problem in sight.

This is only true if you focus on a single table
access, however. If you take a more general look at
your program, you will notice that table accesses are
frequently performed within loops. It is important to
take this into account because the number of accesses
to the inner table multiplies by the number of repeti-
tions in the outer loops — e.g., the number of loops
over other tables — which leads to non-linear runtime
for your program, and thus severe performance prob-
lems with a growing workload (i.e., table size).

Let’s take a look at a simple example. Assume
there are two internal tables, I_HEAD and I_ITEM,
containing data on header and line item information
for customer orders. For each order (let’s say there
are 200) there is exactly one entry in I_HEAD, identi-
fied by the order number EBELN, and there are sev-
eral entries (depending on the number of line items
in the order — let’s say 20 for each on average) in
I_ITEM, identified by order number EBELN and item
number EBELP. Usually you would process each of
the orders separately with its items in a nested loop
as follows:

LOOP AT I_HEAD.
 …
 LOOP AT I_ITEM WHERE EBELN =
 I_HEAD-EBELN.
 …
 ENDLOOP.
 …
ENDLOOP.

Let’s focus on I_ITEM accesses where only the
entries in the table corresponding to the current order
from I_HEAD need to be processed.

Assume I_ITEM is a standard table. In this
case, the runtime system has to scan the entire table
to find all records that fulfill the restriction in the
LOOP AT … WHERE statement. There is no way to
know whether there will be more lines to read after
reading a certain line. This is essentially comparable
to (and only barely faster than) looping over the entire
table and checking each entry with an IF or CHECK
statement. (In the example here, with every outer
loop, only a few entries, 20 on average, are selected
from a large table of 4,000 entries, so many entries
are checked unnecessarily.) The runtime is therefore
linear depending on the size of the table — in other
words, if N describes the number of entries in the
table, the time required to find the entries using the
LOOP AT … WHERE statement is proportional to N.

To sum it up, the average runtime for the execu-
tion of the inner loop is proportional to the table size.
At first glance, this doesn’t seem bad for a single loop
at I_ITEM, but keep in mind that this multiplies with
the number of entries in I_HEAD. For each entry in
I_HEAD you process a loop that is linear depending
on the size of I_ITEM, which makes the total runtime
for the nested loop proportional to M*N, where M is
the number of entries in I_HEAD. If you double the
number of orders, the size of I_ITEM and I_HEAD
also doubles, which will extend the runtime for the
entire nested loop by a factor of four. And increasing
the number of orders by a factor of 10 worsens the
runtime by 100. This quadratic runtime behavior has
a considerably negative influence on the runtime of
the whole program as tables increase in size.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.42

Figure 6 Standard Table vs. Sorted Table: A Nested Loop Runtime Comparison

Example 1: A nested loop on a standard internal table

FORM standard.
Data: I_HEAD like standard table of EKKO with header line.
Data: I_ITEM like standard table of EKPO with header line.

 loop at I_HEAD.
 loop at I_ITEM where EBELN = I_HEAD-EBELN.
* DO SOMETHING…
 endloop.
 endloop.

ENDFORM. " standard

Example 2: A nested loop on a sorted internal table

FORM sorted.
Data: I_HEAD like standard table of EKKO with header line.
Data: I_ITEM like sorted table of EKPO with unique key EBELN EBELP with header
 line.

 loop at I_HEAD.
 loop at I_ITEM where EBELN = I_HEAD-EBELN.
* DO SOMETHING…
 endloop.
 endloop.

ENDFORM. " sorted

Analysis of runtime results

Number of entries in I_HEAD 50 100 200 400 800

Number of entries in I_ITEM 1,000 2,000 4,000 8,000 16,000

Runtime in standard table (ms) 40 157 632 2,531 11.239

Runtime in sorted table (ms) 3 6 11 23 46

Conclusion The runtime increase is considerably smaller for sorted tables with
a growing data volume than for standard tables.

So what will happen if we change I_ITEM to a
sorted table instead, sorted by EBELN? Well, the
runtime system can then make use of sorting and find
the first item for a specific customer order using a
binary search, which is logarithmically proportional
in time to the number of entries. Thus the runtime for
the complete nested loop is proportional to M*log(N).

If you increase the number of orders by a factor
of 10, the runtime becomes (10*M)*log((10*N)),
which is an increase by a factor of 10*log(10*N)/
log(N). This converges to 10 for large values of N.
This is a big improvement over the standard table
approach with its quadratic behavior, and it will make
a big difference for a large number of entries.

43For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

Figure 7 Adding to the Nested Loop: A Runtime Comparison

table. As you can see, when using standard tables,
the runtime increases by a factor of about four when
doubling the workload. However, the increase in
runtime is much more moderate (roughly doubling)
when using a sorted table. And the absolute runtime
is already considerably smaller even with smaller
volumes.

The runtime problems become even more evident
if there is a third table (I_SCHED) included in the
nested loop, as you see in Figure 7. This enlarges
the number of accessed records considerably. Note
that in practice many nested loops consist of more
than three levels, and they may not always be as
obvious as they are in the example shown here.
The time to process the nested loop is unacceptable
even for quite small volumes, and it causes severe

� Note!

With a sorted table, the system only has to identify the first entry with the binary search — due to the ordering,
the remaining entries can be accessed by simply reading the subsequent lines, which is considerably faster.
Consequently, we take into account only the time to determine the first relevant entry from I_ITEM.

The situation in this example is a typical range
access on a sorted table, which is precisely what
these tables are designed for. The runtime system
can make use of the ordering to quickly identify
the first relevant record, and when looping over
I_ITEM, it can stop looking at records when the last
matching record is reached. As soon as the value for
EBELN changes, there cannot be any more matching
records in I_ITEM after that position, so the loop
can be left. As a result, table entries are not read
unnecessarily.

Let’s take a look at some example runtime
comparisons to confirm what we have just deduced
theoretically. Continuing with the example,
Figure 6 compares the runtimes of a nested loop
on a standard table with a nested loop on a sorted

Example 1: A nested loop on a standard internal table with table I_SCHED added

FORM standard.
Data: I_HEAD like standard table of EKKO with header line.
Data: I_ITEM like standard table of EKPO with header line.
Data: I_SCHED like standard table of EKET with header line.

 loop at I_HEAD.
 loop at I_ITEM where EBELN = I_HEAD-EBELN.
 loop at I_SCHED where EBELN = I_ITEM-EBELN AND EBELP = I_ITEM-EBELP.
* DO SOMETHING…
 endloop.
 endloop.
 endloop.

ENDFORM. " standard

(continued on next page)

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.44

Example 2: A nested loop on a sorted internal table with table I_SCHED added

FORM sorted.
Data: I_HEAD like standard table of EKKO with header line.
Data: I_ITEM like sorted table of EKPO with unique key EBELN EBELP with header
 line.
Data: I_SCHED like sorted table of EKET with unique key EBELN EBELP ETENR with
 header line.

 loop at I_HEAD.
 loop at I_ITEM where EBELN = I_HEAD-EBELN.
 loop at I_SCHED where EBELN = I_ITEM-EBELN AND EBELP = I_ITEM-EBELP.
* DO SOMETHING…
 endloop.
 endloop.
 endloop.

ENDFORM. " sorted

Analysis of runtime results

Number of entries in I_HEAD 50 100 200 400 800

Number of entries in I_ITEM 1,000 2,000 4,000 8,000 16,000

Number of entries in I_SCHED 5,000 10,000 20,000 40,000 80,000

Runtime in standard table (ms) 4,224 16,648 73,005 316,304 1,280,566

Runtime in sorted table (ms) 31 67 148 303 613

Conclusion The runtime increase is considerably smaller for sorted tables with
a growing data volume than for standard tables.

problems if the volumes get large.6 As nested loops
like these are used quite often, the effect will increase
and the runtime problem will get more serious.

Optimizing Access Times for Standard Tables

After our examination so far, it’s not surprising that
read requests on internal standard tables, used in a
nested loop, are often the reason for long-running
programs. The next step to a solution should be clear

by now: if possible, use a sorted or hashed table
instead of the standard table. If you are lucky, there
is nothing more to do but modify the table definition
to make this change. Sometimes, however, it requires
some more effort, due to operations that are not
allowed for a hashed or a sorted table, in which case
you have to change the program code accordingly.

But what do you do if one or more of the restric-
tions of a sorted or hashed table prevent their use? In
this case, ensure that your standard table is sorted,
according to the key that is used for read accesses,
and use a READ … WITH KEY … BINARY SEARCH
when accessing the table. The runtime is then

Figure 7 (continued)

6 Note that these times are just for the loops, as no real work is
performed on the data at all.

45For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

comparable to a read request on a sorted table. For
reading a range of entries from a sorted standard
table, do not use a LOOP AT … WHERE, as the
runtime system cannot use and benefit from the sort
property. Instead, determine the index of the first
entry that satisfies your selection criterion with
READ … BINARY SEARCH. All following records
are then read with a LOOP … FROM INDEX, and
your program must verify for each entry that it still
fulfills the condition and will terminate the loop as
soon as one doesn’t. That way you can avoid reading
many entries unnecessarily.

Now two questions still remain:

• How can I ensure that the table is sorted
appropriately?

• What do I do if I need different sorting
sequences for different key accesses during
the program?

You will find the answers to these questions in
the following paragraphs.

Keeping Tables Sorted

The easiest way to sort a standard table, so that you
can use the BINARY SEARCH addition, is through the
explicit use of the SORT statement. Keep in mind,
however, that the SORT statement takes its time and
can be quite expensive, especially if the table is large.
Even if the table is already sorted correctly, the state-
ment will at least lead to a full scan of the entire
table. Sorting a partly sorted table can even increase
the required time considerably due to the sorting
algorithm used.

Therefore, avoid any unnecessary sorting — in
particular, do not sort the table before each BINARY
SEARCH read request! Furthermore, if you fill your
standard table, don’t keep it sorted by calling SORT
each time you append a new entry. Either fill the
table completely and sort it then, or — if you need
the table to be sorted before it is completely filled —
instead of simply appending it, add each new entry by
inserting it at the right index position to preserve the

sorting sequence. The bottom line: perform a SORT
on the internal table only rarely.

When performing a runtime analysis, you will
sometimes find a SORT statement consuming consid-
erable time simply because you must sort a large
table. You might be able to diminish the problem by
reducing the size of the table (e.g., by processing the
entire workload in smaller packages). This can help a
little, but you still have to sort the table.

Under certain circumstances, however, you can
guarantee the ordering of records by other means —
i.e., without executing the SORT — causing less or
no additional load.

Assume, for example, that the table is filled by a
single database selection. Sometimes it is better for
performance reasons to skip the SORT and instead
use the ORDER BY clause in the database selection.
Although conventional wisdom tells us to shift extra
load from the database to the application server, in
the following situations you can use the ORDER BY
statement in the database selection without hesitation:

1. If you are using FOR ALL ENTRIES and you
want the result set to be sorted by the primary
key: As the Open SQL layer has to sort the result
set by primary key anyway (in order to avoid
duplicate entries), adding ORDER BY PRIMARY
KEY to the selection does not cause any overhead
at all.

2. If the required sort order is the same as the
order in the index used by the database: In this
case, the ORDER BY statement will not result in
an additional overhead for the database, as the
result set will be sorted in this order anyway.

� Note!

Never rely on a certain ordering of the entries in
an internal table if you don’t ensure this by the
use of SORT or ORDER BY, or by filling the
table “manually” to preserve the required order.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.46

Using Tables As “Secondary Indices”

What can you do if a table is already sorted but the
sorting order is different from the key for the read
access? This can happen with sorted tables, where
the table key is different, as well as with standard
tables that are kept sorted. With the standard table,
this is not a problem if all accesses according to one
ordering are already processed before you need the
table in a different order. In that case you simply
re-sort the table using the SORT statement. But if
the accesses alternate repeatedly, you would have to
re-sort the table repeatedly, which is definitely not an
optimal solution for this problem.

If you have alternating accesses with changing
keys (that require different orderings of table entries),
consider creating (and maintaining) other sorted or
hashed tables as “secondary indices” that can be used
to speed up access. These index tables simply con-
tain the specific key that you want and the index
position of the corresponding record in the original
table. Since an index table has to support fast access
for a (further) access key, it is either a sorted or
hashed table with respect to this access key. With
this index table, you can determine the table indices
for all searched records in the original table. The
records can then be accessed very quickly using the
READ … INDEX statement.

Figure 8 An Index Table Example

Table
Index

City
Name

Index
Value

Table
Index

Last
Name

First
Name

City
Name

Index Table
(sorted by city name)

Application Table
(sorted by last name)

Atlanta 31

Boston 62

Denver 83

Los Angeles 24

Pittsburgh 75

Seattle 56

Washington8

Washington 47

1

Anderson Peter1

Anderson Tanja2

Black Julia3

Jones Carl4

Miller Anne5

Olson Mike6

Stevens Mary

Winters Ralf8

Washington

Los Angeles

Atlanta

Washington

Seattle

Boston

Pittsburgh

Denver

7

47For site licenses and volume subscriptions, call 1-781-751-8799.

Performance Problems in ABAP Programs: How to Fix Them

Note that although you have to perform two read
accesses for every record searched (one in the index
table and one in the application table), the total
runtime is still improved because you don’t have to
search the entire table.

There is, of course, an additional overhead that
results from creating this index table (both in terms of
storage space and time), but the faster access usually
outweighs the additional costs if the application table
is not extremely small. However, keep in mind that
once the index table is built, any modifications (like
inserting or deleting records) cause additional load —
essentially, you will have to update or re-create the
index table each time you make a change. If changes
will happen only rarely, the maintenance overhead is
still acceptable. Ideally, the application is first cre-
ated completely, and then you create the index table,
so that no further maintenance is necessary.

Under certain circumstances, it is even possible to
avoid the maintenance or re-creation of the index
tables with some additional effort. For example, if
the only modifications on the table are deletions, you
might be able to simply mark the record as invalid
without really deleting it from the application table.

Figure 8 shows a simple example. As you can
see, there is an application table that records personal
data, sorted by the last name field. Consequently,
any access using the last name field is fast because
we can use a binary search. If we wanted to access a
record using the city name, however, a complete table
scan would be necessary since the ordering doesn’t
support searching on that field. To circumvent that
problem we maintain an index table, which has the
exact same number of entries as the application table,
but each entry records only the new key (the city
name) and the index position of the corresponding
record in the application table. If the key is not
unique (as is the case here) several entries will be
found for the same key, each pointing to a record
with the same data value in the application table. Of
course, the index table is sorted according to its key.
Now, to access records by city name (for example, all
records where the city name is Washington), instead
of scanning the complete application table, we can
determine the index position of these records quickly
from the index table. Since the index table is sorted
by city name, we can use a binary search to quickly
read the index records, which will tell us the position
of the searched records in the application table (4 and
1 in the example) so they can be accessed directly.

The Keys to Avoiding Faulty Internal Table Handling

The most frequent reasons for an extended runtime in ABAP is the sub-optimal handling of internal
tables, which can cause dramatic non-linear runtime behavior with growing data volume. The following
key optimization techniques can often be applied through local changes in the program, without making
any changes to a program’s overall design or functionality:

� Use sorted or hashed tables, if appropriate.

� Use the READ operation with BINARY SEARCH on standard tables whenever possible (this
requires the table to be sorted appropriately!).

� Avoid numerous SORTs when ensuring the suitable sorting sequence of a standard table.

� Use secondary index tables if you need to perform read accesses on an internal table with
different keys.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.48

Then you would only have to perform an additional
check if a record is still valid. This is likely to be
much faster than maintaining the index table.

� Note!

You can find runtime comparisons for the use
of secondary index tables and other valuable
performance information in the “Tips & Tricks”
of transaction SE30. There you will find some
examples on how to use faster alternatives for
otherwise identical functionality (e.g., copying
an internal table or deleting duplicate entries).

Summary

As part of my work with SAP R/3 installations, I
have investigated numerous performance problems.
In my experience, I have found a relatively small
number of reasons to be responsible for a large num-
ber of these problems — in particular, problems with
database accesses and internal table handling in
ABAP program code.

With respect to database accesses, selections
without a suitable index and reading unnecessary data
are the most common causes of severe runtime prob-
lems. A suitable modification of the selection or
creation of a new index are usually simple and effi-
cient ways to ensure appropriate index use. Aside
from avoiding any unnecessary functionality, of
course, unnecessary database accesses can often be

avoided by adding checks on internal tables with
FOR ALL ENTRIES, by using SAP’s buffering
mechanisms, or by buffering data in read modules.

Problems due to a long runtime in ABAP are
usually caused by the improper use of internal tables
in nested loops, which results in a dramatic increase
in runtime as data volume grows. These problems
can usually be avoided by using the appropriate
table type for internal tables — i.e., sorted or hashed
tables — or by keeping standard tables suitably
sorted and performing all frequent accesses with a
binary search.

In the end, of course, the best defense is a good
offense. The issues described here are the ones I’ve
found to be the most common causes of runtime
problems in production systems — keeping them in
mind during the specification and design of your
programs will help you to avoid the costs of subse-
quent corrections.

Werner Schwarz joined SAP Retail Solutions
in October 1998 after working as a developer
at two other IT companies. Today, he is the
development team contact for all performance-
related issues concerning IBU Retail (Industry
Business Unit Retail). Werner’s major tasks
include information rollout and support of his
colleagues regarding performance during both
development and maintenance. He can be reached
at werner.schwarz@sap.com.

49For site licenses and volume subscriptions, call 1-781-751-8799.

Appendix: Conducting Performance Tests with Smaller Data Volumes

Appendix: Conducting
Performance Tests with
Smaller Data Volumes

Quite often, a program’s excessive runtime does not
become apparent until it reaches the production sys-
tem. The reason for this is simple: the database tables
in the test or integration system are usually small.
Furthermore, tests in these systems are usually per-
formed with only small data volumes because people,
understandably, tend to focus on functional tests in
the early stages and neglect performance tests. Com-
pounding this is that performance problems, like a
missing database index or non-linear runtime behav-
ior, aren’t immediately visible if the table has only a
few entries — a full table scan would still be quite
fast. On the other hand, no one wants to struggle with
performance problems in the production environment.
So what can you do to avoid this?

Ideally, before you use the program in the produc-
tion system, perform adequate performance tests in a
test system dedicated to performance testing, where
data volumes for test cases and database table sizes
are representative of the actual production environ-
ment. Although this is the most reliable way to con-
duct a performance test, it is not always feasible,
as creating a realistic environment for such a test
requires additional hardware and effort. If you can’t
set up an ideal test system with realistically sized data
volumes, you can still conduct adequate performance
investigations with smaller data volumes using the

ABAP Runtime Analysis (transaction SE30) and
Performance Trace (transaction ST05) tools.

You can use Performance Trace to find identical
selections, sequences of single accesses instead of
array accesses, or accesses that read unnecessary data.
Even with small data volumes you can check whether
there is an appropriate index for each selection. Per-
formance Trace can aggregate all “equal” accesses
on a table (i.e., not consider the actual values in the
WHERE clause) that use the same execution plan, so
that you can easily get a good overview of the differ-
ent database accesses, check their execution plans,
and determine the availability of a suitable index.

A non-linearity in the program coding usually
has a noticeable effect only with large data volumes.
Comparing the total runtime of two executions of the
same program with only small data volumes in both
cases (e.g., 10 or 50 items) is not likely to help you
detect these critical areas. But ABAP Runtime
Analysis provides you with detailed information on
the runtime for each module, so you can compare the
net runtime of both executions for each module inde-
pendently. Obviously, it’s almost useless to analyze
all modules — just compare the runtime of, say, the
10 or 20 modules with the highest net time from the
program execution with a data volume of 50 items.

SAP Professional Journal July/August 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.50

Analysis of runtime results

Module FILL_ITAB TEST1 TEST2 TEST3

Runtime: Second run 55.331 ms 28.535 ms 13.329 ms 11.661 ms

Runtime: First run 5.450 ms 0.897 ms 1.163 ms 0.942 ms

Ratio of run 2 to run 1 10.2 31.8 11.5 12.4

Interpretation Linear Highly non-linear Slightly non-linear Slightly non-linear

Conclusion Module TEST1 shows a highly non-linear runtime behavior while the others
are either linear, or display an acceptably minor non-linearity, suggesting that
module TEST1 is a candidate for further analysis.

 First run Second run

Take a look at the figure below. The screenshots
show the hit lists (both sorted by net time) resulting
from two test runs of the same program with different
data volumes — the first run contained 100 items

and the second contained 1,000. The data analysis
shown compares the runtimes of the top modules
from the second run with the runtimes of those in the
first run.

