
3For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

Put Better Programs into Production
in Less Time with Code Reviews:
What They Are, How to
Conduct Them, and Why
David F. Jenkins

David Jenkins became
an SAP consultant in
1995 after 29 years as
a Consulting Systems
Representative at IBM.
He currently develops and
teaches classes in beginning
and advanced ABAP
programming, ABAP
performance and tuning,
and Java, and consults
with clients on all aspects
of ABAP development.

Any […] fool can write code that a computer can understand,
the trick is to write code that humans can understand.

– Martin Fowler

One of the major strengths of SAP product offerings is the availability
of turnkey application solutions “out-of-the-box.”  Nevertheless, the
reality is that many of those solutions require additional functionality,
which is often provided through the use of custom programming —
in SAP environments, this is most often done in ABAP and, more
recently, also in Java.  It behooves us, then, as developers of SAP
software, to find and adopt ways of reducing both the time and cost
required to produce such software.  One method of achieving such
reductions is through the use of code reviews.

In this article, I’ll provide a brief introduction to the concept of
code reviews — what they are, how they’re conducted, and what
benefits you can expect to receive from their use — along with
some tips for conducting code reviews in your own development
environment, including an extensive sample checklist you can use as
a template.  Whether you are a developer or a manager, you will find
some information in this article that you can use to enhance the delivery
of error-free programs on time and within cost constraints.

Code Reviews: An Overview

There is no substitute for a close examination of others’ code — no
code should be released into production until someone other than the

(complete bio appears on page 24)



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.4

author has read and understood it.  The generic term
“code review” is used to describe the process of
having a third party evaluate your program at various
points in the development cycle, prior to placing
it into productive use.  The objectives of such a
review include:

• Defect discovery

• Conformance to specifications

• Identification of opportunities for process
improvement

• Knowledge transfer

• Exploration of alternative strategies

• Assessment of follow-up on previously
identified problems

• Identification of risks

Code reviews can take any number of forms, and
the terms used to describe those forms are numerous.
However, the most commonly used names describing
types of code reviews are inspections, team reviews,
and walkthroughs, which I will briefly introduce here.

Inspections

According to Wiegers,1 an inspection is a formal
process for examining work product to assure that it
satisfies its functional specifications and customer
needs, and that all pertinent standards, regulations,
procedures, etc., have been followed.  Major outputs
of the inspection process are metrics intended to
quantify defects discovered during inspection.

Inspections include well-defined stages, such
as planning, overview, preparation, meetings, and
follow-up.  The inspection meeting usually comprises
the culmination of all inspection activities (other than
follow-up) and generally follows a formal procedure,

with attendees taking on formal roles.  These roles
often include:

• Author: Authors typically do not serve as meet-
ing moderator, reader, or recorder (see below).

• Moderator: Moderators work with authors to
plan the inspection and lead the rest of the inspec-
tion team.

• Reader: Readers present the material undergoing
inspection at the formal inspection meeting.

• Recorder: Recorders log comments, action
items, recommendations, etc., that arise during
the inspection meeting.

• Other: Others may be invited to participate in
the inspection meeting, but are not assigned
specific duties.

Code inspections are generally recognized as
being the most productive for uncovering defects.
Because of the formality of the inspection process and
the possible complexity of problem solutions, I have
observed that inspection meetings are often limited
to defect discovery, and that the identification of
problem solutions is accomplished outside of the
inspection process.

Team Reviews

Team reviews involve small groups that review a
product to see that it is ready for productive use and
that it satisfies specifications.  The essential differ-
ence between an inspection and a team review is often
defined by the level of formality with which the
review is conducted.

In an inspection, the leader of the inspecting
group is typically not the author of the target pro-
gram, and meeting participants may be assigned to
critique certain parts of the program being scruti-
nized.  A team review, on the other hand, is often led
by the program author, and all participants may be
asked to report on any issues they have uncovered
during independent reviews of the entire program.

1 In addition to my own observations and experiences, this article
makes use of information gathered from a number of sources.  Publi-
cations of authors mentioned throughout this article are listed in the
“References” sidebar on page 23.



5For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

Team reviews tend to be less formal than inspec-
tions, and hence less productive.  Van Veenendaal
reports that team reviews may uncover as few as
two-thirds the number of errors that are revealed by
inspections.  Team reviews may be more suitable
when the product itself does not warrant the formality
of a full-fledged inspection, or formal inspections
don’t conveniently mesh with the organizational
culture.  It is not uncommon for organizations just
beginning to institute review processes to take a “toe-
in-the-water” approach and to start with team reviews
as an introductory step.

Walkthroughs

Walkthroughs are conducted even less formally than
team reviews.  At meetings (often moderated by the
program author), the author may describe both the
business or technical problem the program or system
was defined to solve and the program itself.  Com-
ments from attendees are solicited, and the thrust of
the walkthrough process may range from a solicita-
tion for ideas on how to solve a particular problem, to
provision for a vehicle to educate team members
about a project or product.

One of the biggest drawbacks to the walkthrough
approach is that because they are conducted without a
formal procedure and by various individuals, they
will probably lack consistency across the organization
— they may be casual in one department and disci-
plined in another, for instance, leading to varying
levels of detail.  On the other hand, they may provide
a useful vehicle for knowledge transfer — because a
walkthrough essentially involves a presenter and an
audience, more folks can be in attendance, and it may
be possible to use the meeting to educate others on
the product under review.

Additional Types of Reviews

There are yet other levels of granularity to reviews: in
pair programming, two programmers may work on a
single program, at a single workstation, and hence the
efforts of each are under continuous review by the

other.2   To the extent that two programmers work on
any given product, that product will undergo continu-
ous review.

Desk checks and passarounds involve the distri-
bution of code and supporting materials to one or
more individuals to solicit comments regarding all
aspects of the product.  Desk-checking by peers is
one of the least expensive forms of review, since it
involves only one reviewer’s time.  It is most appli-
cable when you are working under severe time con-
straints, the risk is low, and the peers doing the desk
checks have the level of skill necessary to identify
defects without additional input from others.

In general, I’ll use the term “code review” in this
article to refer to any of a number of activities, all
broadly intended to subject programs to some sort of
formal review process by third parties in order to
meet the objectives enumerated earlier (identify
defects, risks, non-conformance, inefficiencies, and
alternative strategies; enable knowledge transfer; and
follow up on previous issues).

Why Conduct Code Reviews?

Code reviews are often opposed because of the mis-
taken belief that they will slow development.  As
Wiegers points out, it’s not reviews that slow
projects — it’s defects.  Earlier defect detection
and remediation will reduce the amount of rework
required on the project, and shifting the defect detec-
tion to earlier stages of product development can
provide a huge payoff.  A number of studies (Jones,
Cooper and Mullen, Haley, and others) have found
that rework can account for as much as 60% of total
project development effort.  From my own experi-
ence, by far the majority of post-implementation

2 Pair programming is an integral component of a development
approach called extreme programming (commonly referred to
as “XP”).  XP is extreme in the sense that it takes 12 well-known
software development “best practices” to logical extremes.  A
complete discussion of XP is beyond the scope of this article.
See the “References” sidebar on page 23 for a pointer to an
excellent source of more information on this subject by Kent Beck.



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.6

work is concerned with defect remediation, as
opposed to implementation of additional functional-
ity.  The costs of major SAP implementations are
often measured in terms of tens, and as much as
hundreds, of millions of dollars — any reduction in
the rework portion of the associated development
effort can have a significant impact on the total
project cost.  Here are some benefits that have
accrued from the use of inspections:

• Gilb and Graham report that the cost of maintain-
ing a portfolio of 400 inspected programs was
one-tenth the cost (per line of code) for 400 simi-
lar uninspected programs.

• At AT&T Bell Labs, inspections reduced the cost
of error remediation by ten-fold (Humphrey).

• IBM saved 20 hours of testing and 82 hours of
rework per hour of inspection (Holland).

• Bell Northern Labs found that detecting defects
through inspection was two to four times faster
than detecting them through testing.

Other quantified benefits include the following:

• Hewlett-Packard reported an ROI of 1,000% on
their inspection process, and reduced time-to-
market in some cases by almost two months.

• During five years of code inspections, Primark
Investment Management saw a five-fold decrease
in product errors reported per customer per year.

• Litton Data Systems found that a 3% investment
in inspections (as a percent of total project effort)
reduced the number of errors found during inte-
gration and testing phases by 30%.

These are impressive numbers — the leverage
that code reviews provide to lower total development
and installation costs is obviously significant.

One might argue, however, that ABAP is a
“high-level” language, and hence less complex, and
therefore needs less reviewing to assure product
completeness and accuracy.  (Capers Jones has pub-
lished a table that provides a comparison of over 500

languages on the basis of language level.  The sidebar
on the next page shows a sampling of levels for vari-
ous languages — note that ABAP enjoys a relatively
higher level than the other languages shown.)  I
would argue, however, that the higher the level of the
language, the more significant the consequences may
be of a single defect.  It is even more important in the
case of a language such as ABAP, then, to assure that
installed code is as free of defects as possible.

On the other hand, Java does not share the high
language level of ABAP.  To that extent, it will take
significantly more statements to code equivalent
functionality, and hence the coding may provide
increased opportunity for defects due to the increased
number of lines of code.  Therefore in this case, too,
rigorous review will be required.

So, regardless of language or language level, it is
important to apply a review protocol to your custom
development.

As noted earlier, inspections are typified by a
higher level of formality than other modes of code
review and hence they afford the greatest possibility
for gathering and analyzing data regarding review
effects on the total project.  Nevertheless, other
review types also provide potential for significant,
albeit perhaps somewhat less striking, results.

Given that reviews provide the potential for
remarkable development cost reductions, how are
they implemented?  Before embarking on a code
review, there are two aspects that must be addressed:
what will be reviewed, and how the reviews will be
conducted.  In the next two sections, I’ll briefly cover
each of these subjects.

The Review Process:
What Will Be Reviewed

The process of program development entails much
more than simply writing, testing, and installing a set
of code.  For that reason, code reviews really should



7For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

Representative Language Levels

The numeric language level of a programming language may provide a convenient shortcut for enabling
a conversion of program size (in terms of logical source statements) from one language to another.
For example, if an application were to require 1,000 non-comment ANSI COBOL statements (level 3.5),
then it might take only 500 statements in a level-7 language (such as OS/2 REXX).  As the language
level increases, it takes fewer source statements to code a function point (FP).*   The following table
provides a language level comparison for a number of popular languages:

Language Level Average Number of
Source Statements per FP

ABAP 20.0 16

ANSI COBOL 3.5 91

C++ 6.0 53

Delphi 11.0 29

Eiffel 15.0 21

HTML 3 22.0 15

Java 6.0 53

Machine language 0.5 640

Pascal 3.5 91

Perl 15.0 21

SAS 10.0 32

SQL 25.0 13

Visual Basic 5 11.0 29

It would be a mistake, however, to correlate language level and total development productivity, since
coding may occupy as little as 30% of total activity on a given project.  For instance, if a program is
written in a language that’s twice the level of a similar program written using another language, one
could reasonably expect to find the programming effort reduced by 50%.  If the coding effort were only
30% of the total development activity, however, then the increase in total development productivity might
be only 15%.

* See Jones for a complete description of program function point analysis.  A consistent and definitive relationship of logical
source statements to function points has not been reported.  The values shown in the table above were computed by “backfiring”
— identifying the approximate number of logical source statements correlated to a single function point.  Bear in mind that local
development practices and the ways different languages deliver functionality make the ensuing results problematic.  Neverthe-
less, as a rough measure of programming language “height,” these results (published by Software Productivity Research) can
provide a useful guideline.



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.8

focus on all significant elements that affect the out-
come of the code preparation process, as well as the
code itself.  In no particular order, here is a partial list
of such elements, extracted from the IEEE “Standard
for Software Reviews”:

• Program documentation

• Maintenance documentation

• Database table design and index specification

• Source code

• User interfaces

• Business rules and business process models

• Project definition, including scope, schedules,
task lists, etc.

• Test plans

• User documentation

• User training materials and plans

• Development standards

While all of these are important aspects of the
development process, and should be reviewed
throughout that process, in this article I focus on
reviews of SAP development code itself (primarily
ABAP, and increasingly Java3) and the elements of
code reviews that pertain most directly to the code.
It is my experience that standards, performance, and
the proper utilization of the vast set of standard SAP
functionality that is available to developers are the
primary issues that arise during implementations —
these are exactly the types of issues that code reviews
address.  For instance, while user training is certainly
an important aspect of a project implementation, its
significance in a code review will be limited only to
the ways that training impinges on coding.

The Review Process: How the
Reviews Will Be Conducted

An effective review requires, to varying degrees of
formality, that a review process be put in place that
consists of, at minimum:

• Preparation

• The review meeting

• Documentation

• Rework and follow-up

Preparation

Code reviews are typically triggered when an author
announces that he or she has some work product
ready for inspection.  Reviews can also be triggered
by the achievement of a project development mile-
stone (“Ready or not — here we come!”).  It’s impor-
tant, however, not to see code reviews as milestone
events in and of themselves; the danger here is that
they become something to be “gotten through,” rather
than a development activity that aids in the achieve-
ment of a milestone such as phase completion, start
of integration testing, etc.  Once you have decided at
an overview level whether the program is ready to be
reviewed, there are four tasks to be accomplished to
prepare for an effective review:

1. Assign a moderator.

2. Assemble a review team.

3. Prepare the review team.

4. Schedule relevant events.

Step 1: Assign a Moderator

The moderator will lead the review process and
be responsible for all of its activities and elements.

3 With the impending release of SAP Web Application Server 6.30,
Java will assume an even more important role in the development of
custom code to enhance SAP systems.  The points made in this article
should apply almost equally to both ABAP and Java development
efforts.



9For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

So, who is likely to make a good moderator for the
review process?  Those who:

• Are good at planning and follow-through

• Have strong meeting facilitation skills

• Will not tend to dominate the meeting

• Are respected by other participants

• Can be fair and impartial

• Have the requisite technical and application back-
ground to do all of the above for the particular
project being reviewed

Who should not be considered for the moderator
role?  Those who:

• Lack the skills/characteristics mentioned above

• Are in the direct management chain of the
program author

Step 2: Assemble a Review Team

The review team will examine the work product prior
to the review meeting and will participate in the
review meeting.  It will be the team’s consensus that
a particular product is ready for production, or not.
There are two criteria for team selection that are
paramount:

• Team members must be technically competent
in the area to be reviewed.  This implies that
review team makeup in your organization may
vary from product to product.

• Team members must have the professional
respect and trust of the author.

When assembling such a team, the subject of
management participation will often arise.  It’s gener-
ally accepted that managers should not review
deliverables created by those who report to them,
since the manager could tend to evaluate the author,
rather than the author’s work product.  It’s also pos-

sible that other participants may be hesitant to iden-
tify defects if it is suspected that the manager is using
review results to feed the employee evaluation pro-
cess.  In one memorable situation where I was an
observer, participants failed to identify a single defect
in the work product due to the manager/employee
dynamic at work.  The product was subsequently
placed into production, where it failed absolutely
from its first use.

The subject of team selection is rife with organi-
zational behavior ramifications, and far too complex
for a detailed discussion here.  The point is that man-
agement participation should be addressed as an issue
when planning the review, and a decision for such
participation should be predicated on the level of trust
between author and manager, the technical compe-
tence of the manager, and other relevant criteria, such
as a proven track record of non-punitive participation
in previous inspections.  As Wiegers points out,
urging a manager to ignore employee capability when
observing defect identification is a little “like a judge
telling a jury to disregard something a witness just
said.”  To preclude such possibilities, the safest
course to follow is to exclude management participa-
tion in the review whenever possible.

Step 3: Prepare the Review Team

Decide what is to be inspected and assemble a pack-
age of all materials that will be required; then dis-
seminate the materials to the review team members.
At a minimum, the materials should include:

• The deliverable to be inspected, or a pointer to
the deliverable to be inspected.

• Testing outputs, depending on organizational
requirements and the type of problem a particular
program is designed to solve.  For instance, a
testing approach based on induction may be
required to show that a program will work under
all different input scenarios.  That is, if the testing
were to show that the program logic was correct
for zero inputs, that it continued to be correct for
a single input, and that given n inputs it is correct



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.10

for n+1 inputs, then reviewers could reasonably
assume that the program will work correctly for
x inputs (x = 0,1,2…n).

• Pertinent supporting documentation, such as
applicable standards and definitions, specifica-
tions, etc.

• Forms, which can be useful in facilitating the
review process at all stages, including aiding in
the preparation and packaging of review docu-
mentation of the entire process, and forming the
basis for gathering metrics on the effectiveness of
reviews in your organization.  Such forms can
range from the simple to the more complex.  For
example, Figure 1 represents a simple form that
can be used to record minor program problems,
such as typos.  Figure 2, on the other hand,
shows a more complex form that can be used to
record a summary of code review results.

The summary report, by the way, can be used to
record more detailed information regarding the
level of effort required to support the review

process.  For instance, it may be useful to gather
the labor hours expended by individual team
members, the level of effort involved in produc-
ing the work product, and the number and sever-
ity level of all defects detected during the review.

• Standardized checklists, which aid in making sure
that reviewers focus on important areas liable to
result in defect detection.  Given that the check-
lists are fairly exhaustive (that is, they identify
most of such areas), they also provide a frame-
work for the gathering of information used in
evaluating review success.  Here are a few of the
sections a code review checklist might include:

- Comments

- Documentation

- Naming (adherence to standards, clarity,
relevance, etc.)

- Coding

- Design

- Object-oriented design

Figure 1 A Simple Typographical Error Report Form

���������	
��������

��������� �������������������������������������������������

	
����
����� ����������������������������������������������

����� �����������������������������������������������������

�������� ���������
�

��������� ���������������������������������������������

��������� ���������������������������������������������

��������� ���������������������������������������������

��������� ���������������������������������������������
��������� ���������������������������������������������
��������� ���������������������������������������������



11For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

Figure 2 A More Complex Code Review Summary Report

��������	�����������������

�
����� ���������������������������������������������������

����������������� ������������������������������������������

������������ �������������� �
����������������� ���������������

�� ���������� ������������

��������!���� ���������

���������������������������������������� ���������������

���������������������������������������� ���������������

���������������������������������������� ���������������
���������������������������������������� ���������������
���������������������������������������� ���������������
���������������������������������������� ���������������

�����������	

���
"�������������� ���������������
 
�����
����#����������$����!��
�%� ���������������
&
�����������'����
�����������#� ���������������
&
�����������'���������
���
������� ���������������

������
(��
�����
���������������$�����)�������
�����������(���*�����%�
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������

�������������
�����
��$���������%������������������������������

- Code layout and sequencing

- Minimization of code duplication

- Support for testing

- Use of standard API functionality

Later in the article, I’ll provide more detailed
recommendations regarding checklists that are geared
to ABAP development.

Step 4: Schedule Relevant Events

Relevant review events include a preliminary
overview of review package items by participants,
the review meeting itself, follow-up meetings,
and so on.

With these four tasks complete, attendees will be
well prepared to enter the next phase of the code
review process — the review meeting itself.



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.12

The Review Meeting

The review meeting is the activity where team mem-
bers meet to discuss work product defects discovered
independently, prior to the meeting.  The primary
purpose of the meeting is to make an overall assess-
ment, by consensus, as to the suitability of the prod-
uct for production.  There are additional purposes that
the review meeting serves, not the least of which are
knowledge transfer and education.  Through the use
of group discussions, other team members can be
made aware of current projects (both requirements
and solutions), special techniques, and organizational
standards that may pertain to development.

Figure 3 represents an overall view of the review
meeting process and its major elements.

It cannot be overly stressed that it is the modera-
tor who leads the meeting.  She or he will guide the
meeting process, make sure that attendees participate
effectively, and, above all, lead the meeting to
its proper conclusion regarding the quality of the
reviewed product.

Most meeting problems arise out of the shortcom-
ings of the moderator’s performance (Wiegers).  In
particular, meetings that moderators allow to become
merely unstructured discussions will almost certainly
fail to meet the meeting’s objectives — all of us

have seen meetings that have lost their way and
failed to produce meaningful outcomes.  For that
reason, meeting activities should be well planned
in advance — a moderator’s checklist is certainly
apropos and helpful.

The sidebar on the next page shows just a sample
of items that can be included on the moderator’s
checklist.  The point is that the moderator should not
enter the meeting “cold.”  Code review meetings
work best when they follow certain choreographed
steps — the moderator’s checklist will help ensure
that those steps are followed.  Here is a list of the
general steps to be followed:

1. Start the meeting.

2. Present the material.

3. Identify defects.

4. Evaluate the results.

Each of these steps is described briefly in the
following sections.

Step 1: Start the Meeting

At the start of the meeting, the moderator must intro-
duce attendees who do not already know each other.
More important, the moderator must assess the

Figure 3 Review Meeting Elements

���	��
����	��

����������

� ������

� ���������

� ������

� ��
�����

� ������

��� 
!����
�

"������
"������

�������
������

#����
"��



13For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

attendees’ level of preparation.  If the moderator
assesses the group’s level of preparation to be insuffi-
cient, he or she must be prepared to end the meeting
at that time — this will pay off down the line in two
ways: it will encourage attendees to be better pre-
pared in the future, and it will remove the possibility
that the group will arrive at an erroneous consensus
regarding the quality of the work product.

Step 2: Present the Material

The reader (or, more rarely, the author) presents the
material under scrutiny.  The presentation is struc-

tured into manageable “chunks,” where each chunk
might be a small subroutine, 10-20 lines of code, or
some other manageable unit.

Step 3: Identify Defects

As units are presented, others in the group will point
out apparent defects.  Given the nature of the pro-
gramming beast, it is likely that there will be lively
discussions regarding potential defects — it is up to
the moderator to keep the discussions on track and to
resist the natural tendency to design/recommend
solutions for the defects identified.

An Example Moderator’s Checklist

� Things to be brought to the meeting, such as:

• Blank summary report forms

• Issue logs

• Defect checklist

� Things to be done at the start of the meeting, such as:

• Introductions of attendees

• Statement of objectives

• Meeting rules (only one person speaks at a time, for example)

• Brief introduction of the work product

� Things to be done at the end of the meeting:

• Record the team’s consensus in summary form

• If remediation is required, determine and record responsible parties for each follow-up activity

• Schedule follow-up activities

� Things to be done following required rework:

• Record final results on review summary form



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.14

For instance, reviewers may note that a program-
mer has used a READ TABLE … and that no provi-
sion has been made for efficient access to the table
in question.  The correction of that defect may
entail using a different table definition, adding a
BINARY SEARCH to the READ, or perhaps using
some other mechanism to improve efficiency.  It is
the moderator’s responsibility to make sure that the
identification of the defect is noted, but that the solu-
tion is to be crafted in a setting other than the review
meeting itself.

As individual defects are identified, they should
be assigned a severity level based on some simple
scale (see the sidebar above).  From my own experi-
ence, I would lean toward the simpler of the two

rating scales shown in the sidebar.  As the severity
levels become more granular, there is a greater
tendency toward hair-splitting, which is a non-
productive activity when the intent of the meeting is
to identify problems and make an overall assessment
of the production worthiness of a work product.

Step 4: Evaluate the Results

Once defects have been identified and categorized,
conclusions must be drawn as to whether the work
product as a whole is correct.  Some reasonable
scale of categorization must be used; typical ratings
might be:

• Accepted as is: No rework required

Severity Levels

A four-level scale is often used to assign severity levels to programming defects (Jones).  This simple
scale leads to a natural prioritization that serves to drive follow-on remediation activity:

   Severity Meaning

   1 Total application failure

   2 Major functional failure

   3 Minor defect

   4 Cosmetic only

 Severity Meaning

    High Major functional or application failure

    Low Minor functional failure; cosmetic issue

Since the major payoff from code reviews comes from the early detection and rectification of major
defects, a simple two-tiered scale often suffices:



15For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

• Accepted conditionally: Minor rework required,
but no further code review required

• Rework required: Defect correction required
with a subsequent formal review of the revised
work product

A major output of the review process is a package
of standardized documentation that incorporates the
meeting inputs, the documented defects, and the
overall product appraisal.  (There are other meeting
outputs, such as metrics to be used in evaluating the
review process itself, but they are not, strictly speak-
ing, used in the work product evaluation.)

Documentation

In addition to the documents already described (the
meeting inputs, the documented defects, and the
overall appraisal), the documentation package should
include the actual issue logs used by participants to
document defects found in their individual reviews of
the work product, and the completed checklists used
in the review process.

This documentation package serves a number of
useful purposes:

1. It serves as a permanent record of defects
detected, which aids in the process of knowledge
transfer in the case of project personnel
movement.

2. It can be used as a source for capturing metrics
regarding defect detection.

3. It can be used to assure that standardized criteria
are being applied in the appraisal process.

Bear in mind that the collection and maintenance
of this documentation should not be an onerous chore
— if it is, your review process will suffer.  Design
your review process to utilize the minimum documen-
tation commensurate with your organization’s goals
for the process, and provide all participants with

useful tools (pre-built templates and forms, email
distribution lists, etc.) to ease the documentation load.

Rework and Follow-Up

It is inevitable that reviews will reveal defects that
require follow-up and rework by the program author.
The documentation package is an invaluable aid in
providing an organized framework for approaching
the rework process.

As part of defect remediation, authors should
amend the defect documentation to reflect the
completion of the recommended changes, and/or to
document the approaches taken to correct the defects.
If an author elects not to correct a defect, documenta-
tion should be updated to reflect the rationale behind
that decision.  This type of documentation will serve
two purposes:

• It will serve to warn of potential problems that
might arise during testing or productive opera-
tion.  For instance, in the review, an identified
defect might center on the efficient access to data
held in a database table.  The programmer may
respond that the table in question holds very few
rows, and hence efficiency of access need not be
addressed in the current version of the code.
However, the very fact of including this informa-
tion in the defect documentation (that no correc-
tive action is being taken) provides notice that a
potential problem exists.

• It will help explain to major stakeholders that
explicit tradeoff decisions were made during the
development process.

It is likely that issues other than those concerned
with coding may arise during reviews.  In the rework
stage, these should also be addressed, resolved, and
documented.  In the example above, the appropriate
remedial activity might be to create an additional
index on the table in question.  In such a case, the
responsibility for remedial activity may more



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.16

appropriately lie with a database administration
group, rather than with the programmer.

The major purposes of effective follow-up are to
assure that authors resolve open issues documented
during the review meeting, and to assure that identi-
fied defects have been repaired correctly.  These two
distinct goals satisfy multiple purposes of the follow-
up process:

1. It allows authors the freedom to use their own
judgment when correcting defects.  If the author
attempts to rectify defects using all of the ideas
put forward by various reviewers, he or she
will surely lose interest in full participation in
future reviews.

2. It assures reviewers that their efforts and recom-
mendations are being taken seriously.  Without
such assurance, reviewers will lose the motivation
to participate fully in future reviews.

3. It has been shown that code corrections can intro-
duce additional errors at the rate of 5% to 60%,
depending on the complexity of the subject being
modified (Jones).  Erroneous fixes are especially
insidious when the change is a “simple” one-liner
— one that ostensibly needs no further verifica-
tion.  For instance, in order to speed up table
access, an internal table might be redefined as a
sorted, rather than standard, table.  This simple
change might not result in syntax errors in the

program, and even an extended program check
(transaction SLIN) may not uncover a problem.
However, if the original program placed data in
the table using APPEND rather than INSERT, it is
possible that a short-dump runtime error might
occur once the program is placed into production.

Figure 4 is a schematic representation of the
follow-up process, and it illustrates that the end
product of effective follow-up is a production-ready
deliverable.

With a little preparation, your review processes
can forestall many problems.  A major tool in your
arsenal will be a review checklist crafted to expose
common coding defects — including generic, ABAP-
centric, and Java-centric issues (see the sidebar on
the next page for a discussion of the considerations
involved in an SAP development environment).  The
checklist in the following sections is meant to provide
a framework you can use to build a checklist suited to
the specifics of your own organization.

An Example Code Review
Checklist

Checklists are an extremely important element of the
review process, since they help to ensure that reviews
are standardized.  The reviewer’s checklist is no
exception — using a common checklist assures that

Figure 4 The Follow-Up Process

$�����%&�
�
�	�	�	��

� ������
� '��	(	��

#����
"��

�����
���
!����
�

!����
�	��%
�����

)��	����*��



17For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

Code Reviews in an SAP Development Environment
What’s different about the development of custom programs for use in an SAP environment?  Should there
be any inherent differences in the way one uses the code review process in an ABAP shop as opposed to
some other development environment?  I believe so, due to the unique considerations involved in terms of
performance, component reuse, language technology, object-oriented programming, and Java:

� Performance: By far the largest numbers of problems that arise early on in the installation of new
SAP programs revolve around program performance — ABAP provides ample opportunity for
programmers to make coding decisions that can have significant negative impact on performance
(e.g., SELECT *, READ TABLE with linear search, LOOP AT … WHERE).  Luckily, these are the
problems that are best-suited to a thorough pre-installation review — experienced programmers will
be able to spot these quicker than a duck on a pill-bug (as we say in Texas).

� Component reuse: The ABAP Workbench provides extensive capabilities for the reuse of
programming through the use of function modules, BAPIs, type groups, remote invocations of forms
(subroutines), and include files.  From a single IDE, the programmer has access to all of these with
but a click or two of the mouse.  The problem, of course, is one of awareness — of knowing that
those components are available, and of making proper use of them when they’ve been identified.
Peer review offers a vehicle for pointing out to the program author opportunities for the effective
reuse of previously written (and presumably well-reviewed!) components.  For instance, I can’t
count the number of times I have seen newer programmers write their own forms and functions
to access nodes and leafs in a SET table, when there are literally hundreds of functions already
available to handle this type of processing.

� Language technology: To the extent that ABAP enjoys a relatively high language level, simple
changes in ABAP coding can have a significant impact on both performance and functionality.  For
instance, the failure to check for an empty reference table when using a simple SELECT … FOR
ALL ENTRIES can result in disastrous functional results accompanied by poor performance; the
failure to check the SY-SUBRC return code can result in inconsistent outcomes (and often provides
opportunities for some interesting debugging experiences).  These and other common coding
missteps are often overlooked by program authors, but can frequently be identified via the code
review process.

� Object-oriented programming: SAP has embraced the object-oriented programming model, while
still supporting an extensive set of Basis and functional programming, which retains the procedural
programming paradigm.  ABAP has not become totally object-oriented, and hence it is not
uncommon to find programs that employ elements of both programming models.  It is important,
therefore, that programs be scrutinized to see if they would be better written using one technology
versus another — reviewers with broad SAP/ABAP experience can often make that judgment more
effectively than newer programmers.

� Java: With the advent of Java as an alternative SAP development language, it will become
increasingly more important for programs to be reviewed to assure that they have been written
a) with the best available language; and b) using the best techniques for SAP development in
that language.  The addition of Java as a development alternative may serve to complicate the
development process, since it adds an extra dimension (language selection) to analysis and design
(while at the same time it provides for the development of programs better matched to functional
requirements).  For programs that address business-related problems, ABAP is often the better
choice, where Java may be better for complex GUI considerations.



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.18

all reviewers are scrutinizing programs for those
defects that the organization deems important, and
provides a standard set of criteria for measuring the
program (not the programmer).

The checks discussed in the following sections
are examples of what you might look for in ABAP
and Java programs.  They are not offered as a
preferred solution, but more as a framework upon
which you can craft a checklist that meets the particu-
lar needs of your own organization.

Coding Documentation

All program “modules” should have their own set of
documentation.  The documentation may be external,
it may be included in the program itself as a set of
comments, it may be included using the standard
ABAP module documentation facilities, such as those
provided for function modules, or it may be incorpo-
rated into JavaDoc documentation.  At a minimum,
the following elements should be documented:

� Program; class

� Function module; method

� Include file; import

� Code block (try/catch; if/then/else/endif; while/
endwhile; select/endselect; etc.)

Review Documentation

Programmers should provide additional docu-
mentation to support the review, including
documentation of:

� Extended program check (transaction SLIN)
output

� SQL Explains for all SELECT statements (using a
realistic representative set of selection constants)

� ABAP Runtime Analysis (transaction SE30)
output

Even for ABAP programs without apparent per-
formance problems, ABAP Runtime Analysis output
is useful.  It will point out the percentage of time
spent in database accesses versus time spent in other
ABAP activity.  Other reporting options will allow
reviewers to see which database accesses are the most
“expensive” and in which forms or functions the
program is spending most if its time.4

For analysis of Java programs, a number of
third-party solutions are available that will provide
much the same information for Java that ABAP
Runtime Analysis provides for ABAP.5

Naming Standards

The subject of naming standards is rife with emotion
— for every ABAP developer who believes that
internal tables should have names beginning with
itab_, there are just as many who believe that tables
should begin with t_.  And for each ABAP developer
who believes that global variables should be identi-
fied by a g_ prefix, there are as many who feel
strongly that identification of global scope is an
unnecessary burden upon the programmer or that
global variables should be noted using some other
identifier.

In the Java world, there is as much loud discus-
sion regarding naming conventions as in the ABAP
world.  Most Java programming texts, for instance,
devote a good part of an early chapter to this subject.
Since Java is case-sensitive, naming rules usually
emphasize the use of case to impart information about
the object being named — this provides the opportu-
nity for even more lively discussions regarding nam-
ing standards.

The point is that some standard for naming should
be adopted, and one element of the review process

4 For more on using the ABAP Runtime Analysis tool, see the article
“Performance Problems in ABAP Programs: How to Find Them” in
the May/June 2003 issue of this publication.

5 Google for “JAVA PROGRAM PERFORMANCE” to find pointers to
toolboxes, discussions, papers, etc., dealing with Java performance.



19For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

should focus on adherence to whatever naming stan-
dard has been embraced.  The following list identifies
some of the more common items that should be con-
sidered when promulgating your own ABAP develop-
ment standards, and provides examples of some of the
more commonly used naming conventions:

� Variables

• Local: l_…

• Global: g_…

� Internal tables

• Local: l_t_…

• Global: g_t_…

� Constants: c_…

� Selection screen

• Select options: s_…

• Parameters: p_…

� Ranges: r_…

� Forms

• Parameters: p_…

• Names: f_…

� Function modules

• Imported items: i_…

• Exported items: e_…

Opportunities for more complex naming stan-
dards exist — programs, function modules, BAPIs,
development classes, variants, and so on.  You may
choose to embed intelligence in the names of these
objects, such as company, type of program, primary
functional area, periodicity, etc.  Each of these con-
straints provides further opportunity for programmers
to stray from the prescribed path, and hence should be
subject to an organized review.

�   Remember!

Naming conventions are a form of restriction on
the code, which is the personal product of the
author.  As such, changing it is like changing the
colors on an artist’s palette.  Make sure, then,
that your naming standards have some basis of
rationality, that they are easy to remember, and
that they are not overly cumbersome.

Coding Techniques

Your organization has probably already defined a set
of coding practices that are to be treated as mandatory
techniques.  These might include:

� Return code testing and try/catch coding: Are all
available return codes tested and handled?

� Program performance considerations:

• Dead code removal: Has all unreachable code
been removed?

• Binary searching of internal tables: Is data in
internal tables handled efficiently?

• “Copyless” access to internal table rows
using field symbols: Is table data accessed
using the READ TABLE … ASSIGNING
construct?

� Database performance considerations:

• SELECT statements

- Optimal use of ORDER BY: Is database
data more efficiently ordered by ABAP
sorting, rather than through the use of
SELECT … ORDER BY?

- SELECT SINGLE

- SELECT … INTO TABLE

- FOR ALL ENTRIES IN



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.20

- Index usage: Have SELECT statements
been crafted to take advantage of avail-
able table indexes?

- SQL aggregate functions (MAX, MIN,
SUM, etc.)

- Nested SELECT usage: Are JOIN com-
mands used where applicable?

- OR usage: SELECT … WHERE … OR
can affect DBMS index selection — can
this be eliminated?

� Texts:

• Language support: Are text elements pro-
vided for all expected languages?

• Text element usage: Are text elements used in
lieu of text constants/literals?

� Code appearance: This is another subject sure to
cause lively discussion, but one that should be
standardized to one level or another.  Some of the
more common areas of scrutiny are:

• White space usage: To what extent should
white space be used to make code more
readable?

• Comments: To what extent should comments
be used?

• Code section (END-OF_SELECTION,
FORM, AT, etc.) order: This may be an issue,
especially in organizations where code may
be processed/reviewed/worked on in printed
form, rather than online form.

As you can see, this example checklist just barely
scratches the surface of what might be important to
your organization.  There are many other areas that
you may wish to consider depending on your particu-
lar environment:

� Strong(er) typing

� CASE statement usage

� Consistent pretty printing

� Inclusion of “unit test” methods in every class

� Java multithread considerations: deadlock;
serialization; events

� Scalability; appropriate field sizing

� Application-specific type definition and usage

� Meaningful variable naming

� Program maintainability (this is an area of subjec-
tive opinion — another reason for having experi-
enced technical heavyweights involved in the
reviews)

� Minimization of global variables

� Removal of debug code

� Testing for all exceptions following function calls

� Violation of encapsulation principles

� Placement of behavior in the correct classes

� Placement of modification and query behavior in
the same method

� Violations of the Law of Demeter6

� Storage of instance data in class variables

� Multiple statement lines

� “Long” forms7

� Excessive form/method argument list item counts

� Syntax errors in JavaDoc comments

� Full definition of external interfaces using
JavaDoc specification

6 See www.ccs.neu.edu/home/lieber/LoD.html for further information
on this subject.

7 Where “long” is commonly defined in terms of statement line counts.



21For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

The standards you’ll be espousing and the review
criteria you’ll be applying are often particular to your
organization’s needs and are further dependent on
subjective opinion.  The formulation of your particu-
lar review checklist, therefore, can be a contentious
and time-consuming exercise.  Given the mobility of
today’s IT workforce, it’s highly probable that you
will have programmers who have lived with standards
that differ markedly from those you’ve adopted, and
hence may have strong feelings (one way or the
other).  It’s likely that you’ll form a working group or
committee to document your standards.  The indi-
viduals you choose, therefore, should be those with
not only the technical maturity to be able to come up
with a workable set of standards, but also with the
flexibility to recognize that there may be more than
one satisfactory way to do things.

The process itself, however, will provide benefits,
since it yields a consensus-derived set of standards
against which programs will be measured, and it
serves to document those aspects of development that
your organization has deemed to be critical success
factors, which I will discuss next.

Critical Success Factors

A number of factors will directly affect the overall
success of your review (see also the sidebar on the
next page for some common pitfalls to avoid):

� Having peers, rather than customers, find defects

� Proper training of reviewers and team leaders

� Including reviews in the overall project plan

� Setting goals for the review, such as numbers of
items to be reviewed or quantitative goals for
defect detection

� Using analysis of prior reviews to shape the
review process

While the exact nature of these critical success
factors will depend upon your particular environment,

there are two aspects that must not be overlooked:
securing management support and preventing the
“program” review from becoming a “programmer”
review.  Without appropriate attention to these issues,
your code review cannot be successful.

Management Support

Do not believe for even an instant that the success or
failure of a review does not reflect the attitudes and
behavior of managers toward code reviews.  While
managers always want to produce quality products,
they also feel competing pressures to produce prod-
ucts according to aggressive schedules that may not
appear to allow for the time or resource commitment
of performing reviews or inspections.

If managers are not cognizant of peer reviews
and their potential benefits for the organization, they
will not build those reviews into their project plans,
they will not allocate the required resources, and,
above all, they will not communicate their commit-
ment to development team members.  Lacking such
management commitment, the equation is simple:
if code reviews aren’t supported and planned, they
won’t happen.

Wiegers has identified 11 indicators that help to
gauge the level of management commitment to code
reviews.  These are the levels to which managers:

1. Provide resources and time to develop, imple-
ment, and sustain an effective review process.

2. Set policies, expectations, and goals regarding
review practices.

3. Pursue the practice of reviews, even under
schedule pressure.

4. Include review time in project schedules.

5. Provide review training for participants in the
review process and attend the training.

6. Refrain from using review results as personnel
performance evaluation criteria.



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.22

Avoiding Code Review Pitfalls

Code reviewing is not without its pitfalls.  There are a number of common factors that cause a review
to fail:

� Including participants who do not understand the review process

� Including participants who understand the process but do not follow it

� Including unqualified participants

� Allowing the review meetings to become forums for problem-solving, rather than
problem-detection

� Lack of a champion — Someone who is familiar with the benefits of reviews can help assure the
success of your review.  Such a champion can overcome initial resistance and indicate to all levels
within the organization that projects can benefit from the review process.  I have seen instances
where the lack of such a champion resulted in the early demise of a review begun with enthusiasm
and promise.

� Chasing rats — Do not over-schedule the time allowed for review meetings; the goal of these events
is not to scrutinize, analyze, and comment on each and every line of code.  Rather, adequate time
should be allocated to review the code at a high enough level to assure that apparent defects are
discussed and obvious points of conflict with your organization’s standards are identified.  If too
much time is allowed for the actual review, reviewers may get bored, they may resent the time away
from their normal duties, and they may end up using their time to discuss inconsequential matters.

And finally, once you have implemented a vigorous review process, don’t let yourself be lulled into a
false sense of security.  For instance, code reviews may not, and often don’t, detect the kinds of errors
that only good quality assurance and actual use will detect.  For instance, where a code review might
uncover a memory leak, only usage monitoring may discover exceptional situations the program fails to
handle, such as memory exhaustion.

7. Refrain from using the level of review participa-
tion and constructive contribution as personnel
performance evaluation criteria.

8. Publicly reward early adopters of the code review
process.

9. Defend challenges to the review process from
other managers and customers.

10. Respect the review team’s appraisal of work
products.

11. Take an active, continuing interest in the review:

• Solicit status reports.

• Monitor the cost of the review.

• Assess the benefits of the review.



23For site licenses and volume subscriptions, call 1-781-751-8799.

Put Better Programs into Production in Less Time with Code Reviews: What They Are, How to Conduct Them, and Why

References

� Austin, Robert D. 1996. Measuring and Managing
Performance in Organizations. New York: Dorset
House Publishing.

� Beck, Kent. 2000. Extreme Programming
Explained: Embrace Change. Boston,
Massachusetts: Addison-Wesley.

� Boehm, Barry, and Victor R. Basili. 2001.
“Software Defect Reduction Top 10 List.” IEEE
Computer 34, no. 1: 135-137.

� Cooper, Kenneth G., and Thomas W. Mullen.
1993. “Swords and Plowshares: The Rework
Cycles of Defense and Commercial Software
Development Projects.” American Programmer 6,
no. 5: 41-51.

� Gilb, Tom, and Dorothy Graham. 1993. Software
Inspection. Workingham, England: Addison-
Wesley.

� Grady, Robert B., and Tom Van Slack. 1994.
“Key Lessons in Achieving Widespread
Inspection Use.” IEEE Software 11, no. 4: 46-57.

� Haley, Thomas J. 1996. “Software Process
Improvements at Raytheon.” IEEE Software 13,
no. 6: 33-41.

� Holland, Dick. 1999. “Document Inspection as an
Agent of Change.” Software Quality Professional
2, no. 1: 22-33.

� Humphrey, Watts S. 1989. Managing the
Software Process. Reading, Massachusetts:
Addison-Wesley.

� Jones, Capers. 1986. Programming Productivity.
New York: McGraw-Hill.

� Paulk, Mark et al. 1995. The Capability Maturity
Model: Guidelines for Improving the Software
Process. Reading, Massachusetts: Addison-
Wesley.

� Russell, Glen W. 1991. “Experience with
Inspection in Ultralarge-Scale Developments.”
IEEE Software 8, no. 1: 25-31.

� Van Veenendaal, Erik P. W. M. 1999. “Practical
Quality Assurance for Embedded Software.”
Software Quality Professional 1, no. 3: 7-18.

� Wiegers, Carl E. 2002. Peer Reviews in
Software: A Practical Guide. Reading,
Massachusetts: Addison-Wesley.

Program (vs. Programmer) Review

The literature listed in the “References” sidebar to the
right is full of discussions regarding the implications
of the review process vis-à-vis interpersonal relation-
ships.  It is important, for example, that both authors
and reviewers understand that the selection of work to
be reviewed is not a form of punishment.

It is also important that the data collected
during reviews not be used to assess author perfor-
mance — review metrics should not be used to
either reward or penalize individuals.  The purpose of
such metrics is to assist in understanding and improv-
ing your development processes, not to evaluate
individuals.

Austin has devised a term, measurement dysfunc-
tion, to describe the outcome of such evaluation:
people are motivated to behave in ways that produce
results inconsistent with desired goals.  There are a
number of behaviors that can be caused by such
dysfunction:

� Developers may avoid submitting work products
for inspection, or may refuse to inspect others’
work for fear of participating in an activity con-
strued to result in possible punishment for the
reviewed author.

� Reviewers may withhold identification of defects
during formal reviews.

� Reviewers may spend unproductive time discuss-
ing finer points of whether the problem with an
item is a true defect or a cosmetic issue.

� Review goals may make a subtle shift toward
finding fewer, rather than more, defects.

In summary, if program authors or reviewers
perceive the review process to be a punitive one,
rather than one that provides benefits for all partici-
pants, they will be reluctant to play a productive part
and the review will surely fail.



SAP Professional Journal            July/August 2003

www.SAPpro.com       ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.24

Summary

This has been a very brief introduction to the subject
of code reviews and their applicability in the SAP
development environment.  A number of authors have
written extensively on this subject — I have included
a list in the sidebar on the previous page that contains
references to publications cited in this article.  These
books, papers, and articles will provide a broader
treatment of the subject than these pages allow.

In brief, ABAP (and Java, as well) code reviews
can significantly reduce development costs and can
assist in assuring that your SAP development projects
are completed on time.  The very existence of a set of
review considerations means that your organization
has made a thoughtful evaluation of what is impor-
tant.  They have the additional benefits of providing a
framework for the generation of documentation that
records development tradeoffs, aids in training, and
provides a penalty-free forum for knowledge transfer.

David Jenkins has been involved with Data
Processing since 1957, when he entered the
business as a punchcard machine operator.  Dave
worked for a Houston bank for 10 years before
receiving his B.S. in Math from the University of
Houston.  He then joined IBM, where he worked
in various marketing support positions, supporting
contractors at the NASA Johnson Space Center.
While at IBM, Dave spent a year teaching at New
Mexico Highlands University as part of IBM’s
Faculty Loan Program.  Since leaving IBM,
Dave has received a master’s in Management,
Computing and Systems from Houston Baptist
University, and has finished coursework for a
Ph.D. in Management Information Systems at
the University of Houston.  Since 1996, Dave
has been a consultant specializing in ABAP
development — his latest assignment has been at
ChevronTexaco, supporting their installation of
SAP IS-Oil Production and Revenue Accounting.

Dave is married with four children and one
beautiful granddaughter.  He and his wife Joy live
in the country 80 miles west of Houston, where
they enjoy the wide-open spaces and fresh air, and
their dog, cats, rabbit, fish, and purple martins.
Dave can be reached at david.f.jenkins@usa.net.


