
3For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

Evaluating the Quality of Your ABAP
Programs and Other Repository
Objects with the Code Inspector

Randolf Eilenberger and Andreas Simon Schmitt

Software that fails to meet defined standards of quality can have
untold consequences for users and developers alike. Suppose you
build a wonderful application, but nobody can install it because the
documentation is incomplete, and the process is error-prone and
poorly tested. Or consider a program that just crawls along on
the production system, although it always performed well in the
development environment. Understandably, users will flatly refuse
to work with the application for well-grounded productivity reasons.
Of course, you can then call in the experts to run some performance
tests, examine the trace files, and try to identify the bottlenecks. But
correcting defects in this late phase — on the production system — is
significantly more expensive than doing so early on in the planning,
design, or development phase.

To reach and sustain a high level of quality, developers and quality
managers must know precisely how closely their programs adhere to the
relevant standards. Some standards, such as functional correctness, are
relevant for every application or product, while others apply only to a
subset. Clearly, usability is important only for programs that have a user
interface. Accessibility, security, and performance also come to mind,
as well as — among many other characteristics — the existence of an
adequate user manual, support for upgrades, or the ability to perform
data archiving.

A new tool called the “Code Inspector” can help you easily identify
some of these types of shortfalls in your ABAP programs. The Code
Inspector scans programs for potential problems that are closely related
to the static ABAP code, particularly in the areas of performance and
security. Best of all, you can now obtain this information while the

Randolf Eilenberger,
Performance and

Benchmark Group, SAP AG

Andreas Simon Schmitt,
Business Programming

Languages Group, SAP AG

(complete bios appear on page 30)

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.4

program is being developed, so you can correct any
issues before they reach the production system. To
introduce you to the Code Inspector, this article will:

• Present the Code Inspector framework.

• Explain how to work with this new tool.

• Review some important checks that are built-in
and ready to use.

Options for Determining
Program Quality

Aside from design and code reviews, the most effi-
cient technique for controlling program quality is
testing. While not always possible, it is desirable to
use automated tests to evaluate adherence to stan-

dards. You further need to distinguish between
dynamic and static tests (see the sidebar above). In a
dynamic test, you execute the program or scenario to
be tested and process some test data. In a static test,
you evaluate the quality of an object from its static
definition. For example, you might try to determine
program quality by analyzing the static code.

Good candidates for static checks include naming
conventions, layout style guides, and other simple
programming standards that are tightly associated
with the static code. To some extent, you can also
use static checks to look for the use of statements
related to system stability and security, such as data-
base hints or expressions that manipulate programs.

In contrast, program performance strongly
depends on the dynamically executed code and
the processed data. Performance is not normally

Leveraging Dynamic and Static Tests

To perform dynamic tests, you create test cases and test data, execute the tests, and evaluate the
results from the tracing tools. The advantage of dynamic tests is that nearly all detected problems will be
relevant. But you can only locate a defect if the critical code path containing the defect is part of a test
case and will be executed. You can approach, although never reach, complete coverage of all possible
code paths by extending the number of test cases — thereby increasing the cost, however. Even if you
have abundant test cases, the occurrence of a defect may also depend on a data constellation that you
never considered.

You can compensate for some of these drawbacks by using static analysis during the development
process. As static tests are often easier to automate than dynamic tests, they can also decrease your
testing costs. Think of static checks as expert systems that extend the normal ABAP Syntax Check.
The knowledge that you gain from program analysis leads to the development of static checks. For
example, consider the following Open SQL statement:

SELECT SINGLE * FROM DBTAB WHERE NAME = AUTHOR.

If the NAME field is not the first field in a database index (or the second field, when the table is client-
dependent and the first field of the index contains the client), this statement will typically lead to a full
table scan. For a database table DBTAB that contains many entries, the result will be a long runtime.
Therefore, the corresponding expert static check searches for SELECT statements in a program and
compares the WHERE clauses with the definitions of the accessed database tables and their indexes.
The check raises a message if NAME is not the first (or second) field of a database index of DBTAB.

5For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

a problem on the development system, where adequate
test data rarely exists, but it can quickly become one in
the production system. Fortunately, you can make
some assumptions about program performance based
on static analysis. For example, by analyzing both the
source code and the data dictionary definition, you can
determine whether an Open SQL statement might
become a performance bottleneck because of a badly
coded WHERE clause or missing database index.

To perform static quality checks, you really need
a tool for scanning a lot of source code and other
object definitions efficiently. Starting with SAP Web
Application Server (Web AS) Release 6.10, you now
have such a tool with the new SAP Code Inspector. It
checks programs, function groups, classes, and other
repository objects. As an ABAP developer, you can
easily select all the objects for which you are respon-
sible. As a quality manager, you might want to select

all objects for a number of packages, combine this set
of objects with a compilation of individual checks,
and then run a test that executes the combination.
The Code Inspector architecture supports efficient
data sharing of individual checks, as well as the
option to run the test in parallel in up to 12 tasks.
Consequently, you receive test results within minutes,
even for very large object sets.

The Code Inspector Framework

Let’s start by examining how the Code Inspector
supports the static analysis of ABAP programs and
other development objects. With this powerful new
tool — or perhaps better to say “framework,” since
you can easily extend it with new individual check
modules — you can:

Obviously static checks have some shortcomings of their own. In many cases, static checks only refer
to the possibility of problems that a statement might pose. These problems may never occur because:

• The statement will never be executed. Or, it will only be executed very infrequently or under
extraordinary circumstances, so it will never be a problem on a production system.

• The statement will never be executed with critical data. In the example we just discussed, if the
database table contains only a few entries, even in the production system, a full table scan would
have no impact.

A static check can rarely judge the relevancy of a piece of code. Nor can the check foresee what data
a program will process on a production system. Clearly, the success of a static check relies upon a
sapient developer reviewing the check results to decide whether a potential problem could evolve into a
real one.

We recommend a combination of static and dynamic tests for best results. For example, the SAP
product has a defined set of performance standards. To monitor compliance with these standards, we
would use a combination of the following tests:

• Static performance checks with the Code Inspector (transaction SCI) for all objects.

• Dynamic checks with Runtime Analysis (transaction SE30) and Performance Trace (transaction
ST05) for the most important scenarios.

Since these tools are a fundamental part of SAP Web Application Server (Web AS) technology, be sure
to use them in your own testing, too.

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.6

• Check single objects and object sets.

• Combine individual checks easily into a set
(referred to as a check variant).

• Save and reuse object sets, as well as check vari-
ants (which can also be transported through the
system landscape).

• Set parameters to control check behavior.

• Achieve fast check execution as a result of check
data sharing and optional parallel processing.

• Access online documentation for checks and
result messages.

• View all check results consistently in a hierarchi-
cal tree format.

• Navigate directly to the object that raises a
message.

Technically, the Code Inspector framework con-
sists of two functional areas:

• The test driver: The test driver defines and
stores the test tasks (referred to as inspections),
executes them, and stores and displays the results.

• An extensible set of checks: The Code Inspector
comes with many built-in checks (and more will
be added in future releases), but you can also
define your own. These additional checks can
share the prepared data of the objects to be exam-
ined. In other words, the Code Inspector only
performs data preparation tasks (such as dissect-
ing a program into its individual ABAP tokens)
once per object.

To use the Code Inspector, you work with ele-
ments that define and control its operation. Figure 1
illustrates these elements and the relationships
between them. An inspection (the test you run) con-
sists of the combination of an object set (the objects
to scan) and a check variant (the set of checks to
perform). Executing an inspection then produces the
results as output. Next we’ll examine each element
in a little more detail.

Figure 1 Elements of the Code Inspector

��������	�

��������

��	�����

�������
���

����������

����
�����
	������

����
	������

������	�
��	���

����� ������

�!���"

����	������

#!�������������

$%&�&������

���������������

'������		��

�����	�!()

���

���

�������

�

�

�

�

�

�

�

���

7For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

Check Variant

The Code Inspector comes with a variety of indi-
vidual checks that are organized into functional
categories such as syntax, performance, and security.
Some checks also have parameters that allow you to
further control the concrete scope of the check and
its behavior. Therefore, the complete specification
of a check is the reference to the individual check,
extended by its parameters. A check variant is a
compilation of one or more individual checks. In
order to apply a check to an object, you must first add
the check to a check variant. You can name and save
check variants for later reuse, as well as transport
them through the system landscape.

Object Set

Checks operate on objects. An object can be any
development object that exists in an SAP system and
has an entry in the catalog of repository objects (table
TADIR). In other words, you can choose programs
(reports, function groups, classes, interfaces), screens,
user interfaces, database definitions, global types, and
so on. An object set is the specification of the list of
objects you want to scan. As of Web AS 6.20, the
Code Inspector offers four different ways to create
object sets. You can select objects from:

• The catalog of repository objects (table TADIR)

• A transport request

• The results of an intersection or union of two
other object sets

• The results of a check execution (that is, an
inspection)

You can also save and reuse object sets, which
are identified by a name and a version number.

Inspection

An inspection is the specification of the test task,
which consists of two components:

• The checks to be performed, according to the
specified check variant

• The object set on which to execute the checks

An inspection can be either anonymous or named.
Anonymous inspections are temporary and not per-
sisted; named inspections are saved with a name and
a version number. A named inspection can be run
serially by one task, or in parallel by several tasks for
faster execution.1 After completion of an inspection,
a named inspection contains an additional component
— the results. Named inspections are designed to
handle large object sets (say, more than 20 objects)
and are necessary if you need the results to be per-
sisted. Use anonymous inspections for performing
small, ad-hoc queries on single objects or small
object sets, and when persistence is not required.

Working with the Code Inspector

The Code Inspector is an automated tool that allows
you to check the static definitions of repository
objects based on criteria such as performance or
security. As a result of the check, you see a hierar-
chical list with messages that refer to objects or state-
ments in objects that appear to be problematic.

These messages are classified as “Information,”
“Warning,” or “Error.” Especially for performance
checks, many of these messages only indicate poten-
tial problems. You must apply your knowledge and
common sense to decide whether the Code Inspector
hit the mark or was simply being hypersensitive. On
the other hand, the lack of any performance messages
does not guarantee that a program will be free of
performance problems.

We’ll examine how to interpret the results later.
First let’s look at how you use the Code Inspector.

1 For more on parallel processing, see the article “Speed Up High-
Throughput Business Transactions with Parallel Processing — No
Programming Required!” in the January/February 2002 issue of this
publication.

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.8

Calling the Code Inspector for a
Single Object

When you are working on a program, function mod-
ule, or class, you typically call the ABAP Syntax
Check directly from the editor. But wouldn’t it also
be nice to have the performance or security checks of
the Code Inspector at your disposal? As of Web AS
6.10, you can call the Code Inspector for the object
you are working on from the menu of the ABAP
Workbench (SE80), the ABAP Editor (SE38), the
Function Builder (SE37), or the Class Builder
(SE24). Simply select <Object> → Check → Code
Inspector (see Figure 2), where <Object> represents
“Program,” “Function module,” or “Class.”

� Function Module Checks

For a function module, a check examines the
entire function group to which a module
belongs, since function modules are not self-
contained objects from the perspective of a
syntax check.

When called from these workbench transactions,
the Code Inspector automatically applies the
DEFAULT check variant (see the sidebar on the next
page) to the examined objects. The inspection
results are not persisted.

Figure 2 Calling the Code Inspector from the ABAP Workbench Menu

9For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

Defining Global and Local Elements
Every instance of a Code Inspector element (inspection, object set, check
variant) can be either global () or local (). Global elements are visible
to, and usable by, every user in the system. To omit redundant definitions,
define elements as global when they are frequently or widely used — for
example, check variants that all developers in a department or the entire
system should use (such as the DEFAULT check variant for inspections
started from the workbench), or large and important object sets. On the other
hand, you want to minimize the number of entries that individual users see in
the F4 help. Declare elements as local when they are of interest only to a
specific user. For example, users should not create global object sets that contain only the objects for which
they are responsible.

Calling the Code Inspector
for Several Objects

To check objects other than programs, function
groups, or classes, or to check many objects at the
same time, you use the Code Inspector to create arbi-
trary object sets, add individual checks to check vari-
ants, and combine an object set and a check variant to
an inspection. Each instance of these elements can be
either global or local (see the sidebar above).

Creating and Tailoring Object Sets

In order to check more than one object, you define an
object set.

For example, suppose you want to check all
ABAP object classes for which a user named
“MORIARTY” is responsible. You would follow
these steps:

1. Call the Code Inspector (transaction SCI).

� Note!

For a global inspection,
the Code Inspector only
accepts the combination
of a global object set and
a global check variant.

Check Variants That Come with the Code Inspector
The Code Inspector package S_CODE_INSPECTOR comes with a variety of individual checks that you can
combine into check variants. You can transport global check variants (see the sidebar below) through the
system landscape like any other transportable SAP object. The Code Inspector comes with a few global
check variants, the two most important of which are:

• DEFAULT: Every inspection started from the ABAP Workbench uses the DEFAULT check variant, which
is extensive. This check variant contains the normal and extended ABAP Syntax Checks, as well as
additional performance checks and security checks. (We’ll examine these checks in more detail in the
section “Standard Checks That Come with the Code Inspector.”) You can also check workbench objects
with a different combination of checks by defining your own local DEFAULT check variant, which will then
override the global one. You create a local DEFAULT check variant either with transaction SCI or from
the result screen of a workbench inspection.

• PERFORMANCE_CHECKLIST: This check variant includes a basic set of checks for performance
analysis, such as “Analysis of the WHERE clause for SELECT, UPDATE, and DELETE.” It comprises
the most important performance checks to help you identify badly coded WHERE clauses or statements
that bypass the SAP table buffers already in the implementation phase. For a detailed description of the
performance checks, see the section “Standard Checks That Come with the Code Inspector.”

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.10

2. On the initial screen (see Figure 3), enter a name
for the object set (“SUSPECT” in the example)
and click the “Create” button (), which takes
you to the screen shown in Figure 4.

3. In the “Object Assignment” area of the “Select
Object Set” tab, enter the SAP user name
“MORIARTY” in the “Person responsible” field
— not to be confused with the “Person Respon-
sible” field at the top of the screen, which is the
name of the person responsible for the object set
(“HOLMES” in the example here).

4. In the “Object Selection” area in the lower part
of Figure 4, enter an asterisk (“*”) in the “Class”
field to limit the object set to classes only. With-
out the asterisk, the object set would also include
other types of objects (function groups, programs,

Figure 3 Creating the Object Set

Figure 4 Selecting Objects to Include in the Object Set

11For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

etc.). The asterisk also ensures that all classes
assigned to the user “MORIARTY” will be
included. If you enter “CL_A*” instead, only
classes that start with “CL_A” are selected.

5. Save the object set by clicking the “Save” button
() in the standard toolbar.

6. To review the object list, click “Display Objects”
(). If you are not satisfied, change your selec-
tions and save the object set again.

Once you have created and saved an object set,
you can then tailor your object selections further.
In the “Object Assignment” area (see step 3 on the
previous page), you can also select objects that are
assigned to a particular:

• SAP application component ID

• Software component

• Package

• Original system

Use these options to include or exclude single
packages or components. Note that these options are
linked by AND operations. If you choose entries that
define a set without an intersection, the resulting
object set will be empty.

In the “Object Selection” area (refer back to
step 4 on the previous page), using the tabs you can
select many different types of single objects or ranges
of objects. Figure 5 describes when to use each tab,
and which contains the appropriate options for select-
ing an object type.

Figure 5 Using the Tabs in the “Object Selection” Area

* If you select an object type on this tab, make sure that the Code Inspector has a check to handle the object type. Otherwise,
the object will be part of an object set, but no check will occur. As of Web AS 6.20, the checks delivered by SAP can examine
program-like objects (classes, programs, and function groups) and database table definitions. Of course, you can also add a new
check to examine objects of another type, and then select the objects on this tab.

Tab

“Classes, Func.
Groups...”

“Free Obj. Choice”

“Programs”

What You Can Select

Specific classes, interfaces,
function groups, programs or
reports, dictionary types (data
element, structure/table, view,
physical pool/cluster, table type),
and type pools.

Any TADIR object type (such as
TABL for tables).

A program based on
characteristics (such as program
type or status) taken from the
table of report sources
REPOSRC.

When to Use It

To include these predefined object types
in your object set.

To include an object type that is not
defined on the previous tab.*

Only if you are familiar with the SAP
concept of programs and includes. If you
simply want to add a program or report to
your object set, use the tab “Classes,
Func. Groups...”.

Since mistakes (such as not specifying
a program name) on this tab can lead
to very long response times, you must
check the “Activate Selections” box on
this tab in order to activate the selection.

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.12

� Deletion Date

A daily background job prevents the Code
Inspector from accumulating too much data.
Inspections and object sets have an automatically
generated deletion date of 50 days ahead, which
means that the inspection or object set will be
deleted after 50 days. Inspections that have not
yet been executed, as well as object sets included
in those inspections, are excluded. To keep your
object sets or inspections for a longer time,
simply change the deletion date. You can change
the deletion date individually for individual
inspections and object sets.

Finally, if you check the “Selections Only” box at
the top of the “Select Object Set” tab (see Figure 4),
your selection criteria will be saved, but no object list
will be generated (referred to as a virtual object set).
When you use a virtual object set in an inspection
run, the Code Inspector will generate an up-to-date
object list at runtime to ensure that the inspection
does not examine an outdated object set. Use virtual
object sets when objects are commonly created or
deleted in the selected range of your object set (such
as a package). In those cases, using a fixed object list
would apply an outdated state of the object set.

Creating a Check Variant

After creating an object set (see the sidebar to the left
for additional methods), the next step is to decide
which checks you want to execute on those objects.
The Code Inspector always uses check variants,
which are compilations of individual checks, instead
of single checks only. (We’ll examine the standard
checks that come with the Code Inspector in more
detail later in this article.) The standard check vari-
ants that come with the Code Inspector may be suffi-
cient at first, but sooner or later you will want to
create your own check variants for more flexibility.

Creating a check variant is a simple process.
You select checks from a tree that contains all active

Other Methods of Creating an
Object Set

Creating an object set from scratch is typically
the first method you learn. Once you become
familiar with using the Code Inspector, other
methods of creating object sets offer added
power and flexibility. You access these
additional methods via the following tabs on
the object set screen (refer back to the screen
shown in Figure 4):

• Edit Object Set: You can unite or intersect
object sets and filter them based on the
attributes “Object Type,” “Object Name,”
“Package,” and “Responsible.” Use this
option when you want to create an object
set that consists of some combination of
two other object sets. Note that this option
does not work with virtual object sets.

• Object Set from Result: You can create
a new object set containing objects that
triggered messages in an inspection.
Again, you can filter the set based on the
attributes “Object Type,” “Object Name,”
“Package,” and “Responsible,” and also by
a single check, its message codes, and
message priority (“Error,” “Warning,” or
“Information”). Use this option if you want
to determine your result set in several steps
— in other words, use any objects that
raise issues in a first inspection as the
object set for a subsequent inspection.

• Object Set from Request: You can also
extract object sets from transport requests/
tasks and filter them based on the attributes
“Object Type,” “Object Name,” “Package,”
and “Responsible.” If there are program-
like objects in the request, the new object
set will contain only their associated main
programs (programs, classes, or function
groups instead of includes, methods, or
function modules). Use this option when
you want to check the objects in a transport
request. For example, you might want to
ensure that only objects adhering to your
security rules are transported into your
production system.

13For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

check categories with their respective active indi-
vidual checks.

� Check Administration

When you create a new check variant, the Code
Inspector displays the current check variant tree.
To add or remove a check (for example, suppose
you implemented a new check), select GoTo →
Test Administration. You will see a list where you
can activate or deactivate individual checks and
check categories by checking or unchecking the
box in front of the check class.

Follow these steps to create a new check variant:

1. In transaction SCI, enter a suitable name for the
check variant and click the “Create” button ().

2. To add a check to your check variant, select
the checkbox next to the check (as shown in
Figure 6).

3. To see information about a check, click the
“Information” button () next to the checkbox.

4. Do the following for checks with user parameters:

- An arrow with a box below it () next to the
check name indicates that you can set one or
more parameters to further define the check
attributes. These attributes can be input
parameters or can activate a sub-check (a
component of a single check that can generate
a message). Click the arrow to display a pop-
up where you can set the parameters.

- After setting the parameters, click “Execute”

Figure 6 Adding Checks to a Check Variant

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.14

Anonymous Inspections

Anonymous inspections and their results are not stored persistently. The object sets to be checked are
restricted to a maximum of 50 objects; larger sets generate an error message. Anonymous inspections
are thought to be used for ad-hoc analysis. If you need to check only a few objects and do not need
persistent results (such as when you want to test whether a single check works as you expect — it’s
always a good idea to first check a single object only), press the “Create” button () without entering a
name for the inspection. You can then combine a small object set or a single object with an existing
check variant (“Predefined”) or one picked spontaneously from the tree of checks (“Temporary
Definition”). When you press the “Execute” button (), the inspection will be executed immediately on
the local server.

After running an anonymous inspection, press the “Results” button () to see the results. Pressing
the “Repeat” button () enables you to change the input parameters for and restart an anonymous
inspection. Remember that you will lose the results of the previous inspection when you press the
“Repeat” button or leave the “Inspection” screen.

() on the resulting pop-up. Some checks
will only be executed if the parameters are
set appropriately.

For example, the search functions can only
be performed if you specified a search word,
and that search word must have at least three
characters. If a check can be executed with
the current parameter settings, the box below
the arrow is green. If not, the box is grey. If
a check is selected but its parameter settings
are not valid, the Code Inspector refuses to
save the check variant.

5. To save the check variant, click the “Save”
button ().

Creating and Executing an Inspection

You now understand how to create an object set and a
check variant. Next, you want to apply the individual
checks of the check variant to the objects in the object
set. This process happens during the inspection run.
So you will need to combine a single object or an
object set with a check variant to define the test task
that performs the inspection.

Remember that inspections can be anonymous
or named. Anonymous inspections are useful for
ad-hoc queries with only a few objects where you do
not need the results to be persisted (see the sidebar
below). You use named inspections when you are
dealing with large object sets and/or want to persist
the results.

A named inspection is stored persistently with
its results. It can handle object sets containing any
number of objects and runs either on the local server
or in parallel tasks on the servers of a server group.
The server group automatically handles load balanc-
ing between the different servers, making parallel
processing more efficient.2 Since executing an
inspection with many objects puts a heavy load on
the SAP system, you can also run a named inspection
outside working hours by scheduling it in a back-
ground job.

Follow these steps to create and run a named
inspection:

1. In the Code Inspector (transaction SCI), enter a

2 To create a server group, choose RFC → RFC Groups from the menu
of transaction SM59.

15For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

Figure 7 Creating a Named Inspection

name for the inspection and click the “Create”
button ().

2. Combine an object set, a single object, or objects
from a request with an existing check variant (see
Figure 7).

3. You can run the named inspection in one of
two ways:

- Choose the “Execute” () button to start the
inspection immediately on the local server in
a single task.

- Click the button to display the “Execu-
tion Options” pop-up screen (see Figure 8).
Here you can further control how and when
the inspection is run.

This screen is where you can select a server

Figure 8 Setting the Execution Options for an
 Inspection

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.16

Figure 9 The Inspection Screen After Completion of an Inspection Run

group on which to run the inspection. Make
sure that the group contains only active serv-
ers that have sufficient resources. The
“Maintain Server Group” button () takes
you directly into the server group mainte-
nance screen (SM59), where you can create a
server group and define the resource param-
eters for the servers in the group. To sched-
ule the inspection in a background job, click
the “In Background” radio button.

Press “Continue” () to start the inspection.
If you selected the “In Background” option,

you first see a screen where you can schedule
a job for your inspection.

� For Large Object Sets

Run the inspection on a server group when the
object set is large (for example, more than 50
objects), so that it is performed in parallel in up to
12 tasks on all servers of the server group (if they
have free resources). The load will automatically
be split into packages of 10 to 50 objects.

17For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

When an inspection run completes successfully,
the inspection screen displays a status message across
the bottom of the screen, as shown in Figure 9. Press
the “Results” button () on the “Inspection” screen to
display the results.

The Code Inspector displays the results of the
inspection in an easy-to-read hierarchical tree format.
Figure 10 shows an example display of the results of
an inspection run.

Figure 10 Results of an Inspection Run

Check category

Single check

Priority

Message code

� Priority Color Codes

• An entry in the red column in Figure 10
(the left column) indicates an error message.

• An entry in the yellow column (the middle
column) indicates a warning message.

• An entry in the green column (the right
column) indicates an information message.

Message

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.18

Suppressing Inspection Messages with Pseudo-Comments

Many Code Inspector checks provide advice or notes rather than error messages. Even something
that the result tree indicates as an “Error” can nevertheless be correct under specific circumstances.
For this reason, you may want to explicitly skip these messages by inserting pseudo-comments
directly into the code that caused a message during the inspection.

For example, a performance check of the Code Inspector might indicate that “a database table is
accessed without specifying a WHERE clause.” Press the “Information” button () in front of the
check message to display the online documentation for the check (like the documentation shown in
Figure 11). It will tell you that the statement will lead to a full table scan when executed (or, if the table
is client-dependent, to a scan of all entries of the current client).

If you really need to read all the table entries during inspection (since there is no better way to access
the information), you can insert the pseudo-comment "#EC CI_NOWHERE, as the online documentation
will tell you, into the statement (or the line following the statement) in your ABAP program. The Code
Inspector will then suppress the message in further inspection runs. You will find the appropriate
pseudo-comment at the end of the online documentation that is provided for every check.

Each message contains the name of the examined
object and a short explanation of why the message
was raised. If the examined object is program-like,
you also see the source code position of the statement
that caused the message. Double-clicking the mes-

sage text takes you to the ABAP Workbench, where
you can display and edit the object. For further
explanation, press the “Information” button () next
to the message. You will then see an explanation of
the problem (see Figure 11) and further links within

Figure 11 Information Provided for a Check Message

19For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

We chose to implement this method to define an exception for the Code Inspector, instead of one
based on entries in exception tables. We prefer pseudo-comments for the following reasons:

• Developers must touch the code in order to omit a message. Hopefully they will first think
carefully about doing it right, and only then consider inserting a pseudo-comment.

• With pseudo-comments, the object that raises the message and the proper exception are
kept together.

• Pseudo-comments serve as a form of documentation. Developers must make it clear that
they recognize the message and the possible problem, but that they decided to suppress the
message anyway.

You can also choose to run an inspection that ignores all pseudo-comments. This method can be
useful in conjunction with a search for pseudo-comments (which can also be accomplished with the
Code Inspector) to review whether pseudo-comments are being used appropriately.

the Code Inspector online documentation. For some
checks, the Code Inspector also suggests a pseudo-
comment that you can insert in the code to suppress
that message (see the sidebar below).

� Inspection Statistics

Every named inspection generates statistical
data about the inspection run. This information
is especially useful in situations where a run
has been interrupted due to a server shutdown
or an error during execution. After the run has
completed or aborted, click the “Statistics” button
() on the “Inspection” screen. You can see the
start and end time/date of the run, cumulated
runtime, names of involved servers, number of
tasks and objects, and the execution state of the
objects. Any error conditions are also noted.

The Top-Down Approach to the
Code Inspector

You have now learned how to create a new inspection

from the bottom up — first you create an object
set, then a check variant, and finally the inspection.
For novice users, we recommend this approach in
order to become familiar with the Code Inspector.
Later, you might find it quicker to use the top-down
approach instead:

1. Create a new inspection.

2. Choose an existing object set using the F4 help.
Alternatively, enter the name of a new object
set in the “Object Set” field. Double-click the
field and answer the “The Element Does Not
Exist. Create it?” pop-up with “Yes.” Create
and save the new object set, and return to the
“Inspection” screen.

3. Choose an existing check variant using the F4
help. Alternatively, enter the name of a new
check variant in the “Check Variant” field.
Double-click the field and answer the “The Ele-
ment Does Not Exist. Create it?” pop-up with
“Yes.” Create and save the new check variant,
and return to the “Inspection” screen.

4. Run the inspection.

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.20

Standard Checks That Come
with the Code Inspector

The Code Inspector comes with a set of built-in
checks that are organized into functional categories,
such as:

• Syntax checks and program generation

• Security checks

• Performance checks

• Search operations

To help you get the most out of the Code Inspec-
tor right away, we want to introduce you to the most
important checks in these categories. Since SAP is
continually extending the Code Inspector framework
with new check modules, you may find additional
checks in your system when you read this article.
When creating a new check variant, remember that
you can display the online documentation for an
individual check to learn more about it.

Syntax Checks and
Program Generation

This category contains checks that are associated with
the ABAP Syntax Check. All checks are standard
tests that are also available individually from the
ABAP Workbench. The advantage of applying the
checks in the Code Inspector is that you can combine
them with other checks and perform them on a set
of programs at the same time. The checks in this
category are:

• Normal ABAP Syntax Check

• Extended Program Check

• Program Generation

You can add one, two, or all three of these checks
to a check variant. Since the ABAP Syntax Check is

also a part of Program Generation, you do not need
to combine them.

Normal ABAP Syntax Check

This check performs the ABAP Syntax Check, which
is also available from most workbench transactions.
You control its behavior by setting the following
parameters:

• One or Several Errors: Normally the syntax
check terminates after the first error is detected,
but you can also choose to proceed. If a fatal
error is detected or the maximum number of
50 errors is exceeded, the check is terminated.

• With or Without Warnings: In addition to error
messages, the syntax check also returns warnings
for minor syntax problems, such as missing
implementations of interface methods. You can
turn these warnings on or off.

Extended Program Check

This check uses the same set of checks that is avail-
able with the workbench transaction SLIN for single
objects. It processes static checks that are too com-
plicated or too time-consuming for the normal syntax
check. The first operation of this check is a normal
syntax check. If any error is detected, no further
checks are performed. The extended checks are
classified into the following categories:

• References to program external units:
Verifies that the external program units exist and
interfaces are used correctly. Program external
units are:

- Transactions, which are called with
CALL TRANSACTION 'tcod'

- Dialog modules, which are called by
CALL DIALOG 'dialog'

- Reports, which are called with
SUBMIT 'report'

21For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

- Function units, which are called by
CALL FUNCTION 'func'

- External forms, which are called by
PERFORM form IN PROGRAM program

- Screens, which are called by
CALL SCREEN nnnn

- Global messages, which are referred by
MESSAGE Ennn

- User interfaces, which are referred by
SET PF-STATUS and SET TITLE-BAR

- Authority objects, which are referred by
AUTHORITY-CHECK

• Multi-language enabling: Searches for con-
structs that hamper the use of a program in differ-
ent languages — for example, text literals without
text IDs. Text literals appear in the language in
which they were typed, and are not processed by
translation services.

• Package check: Detects the illegal use of objects
from other packages.

• EBCDIC/ASCII portability: Detects whether
a program behaves differently in EBCDIC and
ASCII (e.g., the comparison of character fields).

• Generation limits: Determines if generation
limits, such as the maximum number of data
objects, are close to being reached.

• Statements in wrong context: Scans for state-
ments that are used in an inappropriate language
context. For example, the COMMIT WORK state-
ment within a SELECT ... ENDSELECT loop
leads to the loss of the database cursor.

• Unnecessary items: Searches for form subrou-
tines that are not used in a program, or fields that
do not have read access.

Program Generation

Since every program generation starts with a syntax

check, this check is very similar to the others in
this category. The relevant difference is the fact
that this check also generates the load format (byte
code) of a program. You might want to use it to
precompile programs to avoid compilation when
a user wants to execute a program (which results
in delayed system response times). Program genera-
tion is also useful for removing inconsistencies
that sometimes appear in an SAP system during a
system upgrade.

Security Checks

Some ABAP statements can endanger stability, data
integrity, and overall program security when used
carelessly or with bad intent. The Code Inspector
security checks inform you of:

• Use of a statement that is deemed critical

• Use of a statement that infers ominous
database access

• Selected statements that don’t handle the
system return code

Critical Statements

This check searches for any of the following types
of statements that are considered critical, either for
system security reasons or because they could endan-
ger program stability:

• Internal statements: Some ABAP statements are
provided for internal use only in SAP programs.
For example, the SYSTEM-CALL statement
interacts with the ABAP kernel. SAP may
change these statements at any time without
notice, leading to incompatibilities in your pro-
gram. You should know if and when these state-
ments are being used.

• Statements where authority checks are neces-
sary: In the SAP system, automatic authority
checks protect the invoking of transactions

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.22

and reports. For performance reasons, these
automatic checks are only performed if the items
are called directly by a user. If they are called
internally by a program, the authority checks
must be performed by the calling program. You
should monitor compliance with this security
requirement.

• Database operations: The EXEC SQL statement
accesses database tables bypassing the SAP data-
base interface. The SQL syntax within the state-
ment may be specific to one database system,
thereby impeding program portability. Native

SQL statements also bypass the SAP table
buffers, which can lead to inconsistencies when
buffered tables are accessed. You should identify
instances where this condition exists to review for
possible impacts on data consistency.

In addition, the ROLLBACK WORK statement
reverts all database changes that were executed
since the last database commit statement. Incor-
rect use of this statement can lead to serious
inconsistencies in the transaction.

A database hint (that is, a guideline for the

Figure 12 Statements Covered in the Critical Statements Check

Problem Area

Internal statement

Authority check

Database

Repository objects

Type of Statement

Call of system functions

Call of system functionality

Generating programs and
screens

Call of transactions

Call of reports

Call of the editor

Use of Native SQL

Use of database rollbacks

Use of database hints

Read a program or text pool

Write/delete a program or
text pool

Read a screen

Write/delete a screen

Read a global type entry

Write a global type entry

Examined Statements

CALL 'cfunc'

SYSTEM-CALL

GENERATE REPORT
GENERATE SUBROUTINE
POOL
GENERATE DYNPRO

CALL TRANSACTION

SUBMIT REPORT

EDITOR-CALL

EXEC ... ENDEXEC

ROLLBACK WORK

%_HINTS ...

READ REPORT
READ TEXTPOOL

INSERT/DELETE REPORT
INSERT/DELETE TEXTPOOL

IMPORT DYNPRO

EXPORT/DELETE DYNPRO

IMPORT NAMETAB

EXPORT NAMETAB

Priority

Warning

Warning

Information

Information

Information

Information

Warning

Information

Warning

Information

Warning

Information

Warning

Information

Warning

23For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

database optimizer regarding how to handle a
statement) is specific to each database system.
You should only use database hints as an excep-
tion, and evaluate their use carefully.

• Reading or writing of SAP repository objects:
The main repository objects in an SAP system
are programs, screens, and global types. The
statements that manipulate these objects are
intended for use by internal development tools
only. Using these statements in application pro-
grams can potentially destroy the state of the
system. Reading these objects can also be prob-
lematic because their data structures can change
without any notice.

This check searches for all ABAP statements
identified as critical, as described in Figure 12.
You can select statement types individually or
in any desired combination by setting the check
parameters.

Access to Database Tables

This check searches for accesses to specific data-
base tables. Some database tables contain critical
information, such as personal data. Only programs
that are protected with authorization objects should

access these tables. This check can detect access to
specific tables if the table name is used statically.
You can specify a list of critical tables as a check
parameter. In addition, this check can detect the
following situations:

• Dynamic table accesses and dynamic WHERE
clauses might be critical because they can hide an
access to critical tables.

• The SAP system supports the concept of clients.
Data of different clients should be strictly sepa-
rated. In contrast with system programs, produc-
tion applications should only be allowed to access
the data of their own client.

Figure 13 presents the statements that you can
examine with this check. (In fact, there are two
checks, one for SELECT statements and one for
changing database accesses.) Again, you can com-
bine one or more different statement types by setting
the check parameters.

Handling of the System Return
Code SY-SUBRC

In the ABAP language, the system field SY-SUBRC
returns the success of a statement. In some cases,

Figure 13 Statements Covered in the Access to Database Tables Check

Type of Statement

Access to certain
database tables

Dynamic table access

Dynamic WHERE clause

Client-independent
database access

Examined Statements

SELECT, INSERT, UPDATE, MODIFY, DELETE

SELECT * FROM (dbtab) WHERE ...

INSERT, UPDATE, MODIFY, DELETE (dbtab)

SELECT * FROM dbtab WHERE (where_cond)

UPDATE dbtab SET A = a WHERE (where_cond)

DELETE dbtab WHERE (where_cond)

SELECT, INSERT, UPDATE, MODIFY, DELETE
... CLIENT SPECIFIED

Priority

Information

Information

Information

Warning

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.24

not handling this return code can be suspicious.
This situation is obvious in the case of the statement
AUTHORITY-CHECK, where disregarding the
return code means perform no authority check at
all. In other statements, the return or export param-
eters can be undefined if SY-SUBRC is not 0, which
can lead to application errors when the return code
is ignored.

This check examines whether statements handle
the system return code, as shown in Figure 14.
Again, you can select the statement types and freely
combine them by setting the check parameters. Addi-
tionally, you can specify any other statement in an
input list.

Performance Checks

The Code Inspector was developed in cooperation
with the SAP Performance and Benchmark Group,
and one of the goals was to achieve a set of auto-
mated performance checks. Together with dynamic
checks and expert performance sessions, these static
checks can help evaluate adherence to the practical
performance standard.

In short, these checks search for the following
conditions:

• Database accesses that will lead to high runtimes
because the WHERE clause does not use an exist-
ing database index

• SELECT statements that will implicitly bypass
the SAP table buffers, thereby causing unneces-
sary database accesses

• CHECK statements inside SELECT ...
ENDSELECT loops that sort out data read from
the database, indicating incomplete WHERE
clauses

• Nested loops over internal tables and nested
SELECTs, which can be the source of non-linear
runtime behavior

Analysis of the WHERE Clause for SELECT,
UPDATE, and DELETE Statements

These checks identify SELECT statements (or
UPDATE/DELETE statements) that cannot use any
database index. They compare the database fields
specified statically in the WHERE clause with the
index definition in the ABAP dictionary. If there
is no WHERE clause, or if the WHERE clause does
not contain a field of a database table index, the data-
base will perform a full table scan (or, for a client-
dependent table, a scan of all entries of that client).
This condition can be very harmful to performance.

Figure 14 Statements Covered in the System Return Code Check

Type of Statement Examined Statements Priority

Modifying database operation INSERT, UPDATE, MODIFY, DELETE Warning

Reading database operation SELECT, FETCH Warning

Authority check AUTHORITY-CHECK Error

Call function modules or methods CALL FUNCTION Information

CALL METHOD

Setting of locks (SAP enqueues) CALL FUNCTION 'ENQUEUE_...' Warning

Catching runtime errors CATCH ... ENDCATCH Information

Dynamic assigns to field symbols ASSIGN * (f) TO <fs> Information

25For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

For the SELECT statement, the check considers
only tables that are not buffered within the SAP table
buffers. A full buffer scan — though itself a threat to
program performance — is not deemed as critical as a
full scan on a database table.

Web AS 6.20 supports two independent checks,

one for SELECT statements and one for UPDATE and
DELETE statements. Figure 15 shows the options
you can specify as check parameters; we recommend
activating them all.

See the sidebar below for some pointers on what
to do with the results from this check.

Figure 15 Statements Covered in the WHERE Clause Analysis Check

* The message priority depends on the table size category (as defined in the technical settings for the table in the ABAP dictionary):

Table size category ≥ 2 → Priority = Error

Table size category < 2 → Priority = Warning

Examined Statements Priority

SELECT without a WHERE clause Error / Warning*

In a WHERE clause, no field of a table index

In a WHERE clause, no first (or second, for client-dependent tables) field of a
table index

What to Do Next:
If a WHERE Clause Cannot Use an Existing Database Table Index

Most important, do not create new database indexes for statements that are rarely used! Every index
puts an additional load on the database, since it must be maintained whenever entries are inserted or
deleted. Too many indexes also might confuse the database optimizer, increasing the risk of incorrect
access plans. Obviously, only experienced developers should change the index design. But first try
these suggestions for working around this situation:

• If the statement (form routine, method, program, etc.) is not used or needed anymore, just delete it.

• If the statement is only rarely used (for example, when it is part of a check program or tool that is
only used exceptionally), mark the statement with the pseudo-comment "#EC CI_NOFIELD (for
WHERE clauses that do not contain any index field) or "#EC CI_NOFIRST (for WHERE clauses that
do not contain any first field of an index).

• If the statement is frequently executed, try to rewrite the WHERE clause so that an existing index
can be used.

• If the statement is frequently executed and cannot be rewritten, either adjust the index design (be
careful, changes on an index can also affect other statements) or create a new index (be careful,
every additional index stresses the database).

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.26

SELECT Statements That Bypass
the SAP Table Buffers

Small tables that only change rarely (especially
customizing tables) should be buffered with the
SAP table buffers, which notably accelerates read
access. Since the SAP table buffers can only handle
simple statements, omit more complex statements
on buffered tables to avoid posing any risk to the
performance advantage. In addition to the explicit
bypassing buffers with SELECT ... FOR UPDATE and
SELECT ... BYPASSING BUFFER, many statements
bypass the buffer implicitly.

Figure 16 shows the most important types of
SELECT statements that bypass the SAP table
buffers in Web AS 6.20. This list could change in
the future, such as if the capabilities of the SAP table
buffers are extended. This check searches for all of
these statements. However, the check has no param-
eters, so you cannot limit the search to a single state-
ment type.

Note that this check does not cover the following

two statements that also bypass the SAP table
buffers:

• Use of Native SQL with EXEC SQL ... ENDEXEC

• Comparison between the fields of different data-
base columns in the WHERE clause (for example,
SELECT ... FROM dbtab AS A WHERE
KEYFIELD = L_KEY AND A~FIELD1 =
A~FIELD2)

While the second statement is very rarely used,
you can detect Native SQL with the critical state-
ments check.

See the sidebar on the next page for pointers on
some next steps you can take once you have the
results from this check.

SELECT ... ENDSELECT Loops
That Contain a CHECK Statement

To minimize the data transfer from the database to the

Figure 16 Statements Covered in the Bypass Table Buffers Check

Examined Statements Priority

SELECT on a buffered table in a JOIN Warning

SELECT on a single record buffered table without the explicit SELECT SINGLE
statement

Generically buffered area not fully specified

SELECT with sub-query

SELECT with aggregate function:

COUNT(), MIN(), MAX(), SUM(), AVG()

SELECT DISTINCT ...

SELECT ... GROUP BY ... [HAVING cond...]

SELECT ... WHERE a IS [NOT] NULL

SELECT ... ORDER BY, when the sort order differs from primary key

SELECT with CLIENT SPECIFIED, without the client field in the WHERE clause

27For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

application server, and to save database resources,
only the data really needed in a program should be
read from the database. To achieve this, the WHERE
clause should restrict the size of the result set of a
SELECT statement as much as possible.

This check searches for ABAP CHECK statements
inside of SELECT ... ENDSELECT loops that sort out
data after first reading them superfluously from the

database. Instead of doing so, the CHECK condition
should be incorporated into the WHERE clause.

A CHECK statement can be necessary in cases
where a complex condition cannot be handled by the
database interface — for example, if string operations
are involved. In this case, the developer might
choose to ignore the check, which again can be
accomplished with a pseudo-comment.

What to Do Next:
If a SELECT Statement Is Bypassing the SAP Table Buffers

Most important, do not rashly change the buffer settings of the respective table in order to buffer it more
generously (that is, with fewer key fields). Keep in mind that changing buffer settings may have an
impact on other statements. The SAP table buffer size is limited. Big tables that are fully buffered or
buffered with a generic key area of only one or two fields may displace many smaller tables. Inserts or
deletes on buffered tables lead to the invalidation of the buffered key range. If such situations happen
frequently, table buffering becomes useless and simply resource-consuming. Consequently, only
experienced developers should change buffer settings. But first try these suggestions for working
around this situation:

• If the statement (form routine, method, program, etc.) is part of the customizing of your application,
check whether you should add an explicit BYPASSING BUFFER statement to the SELECT
statement. Maybe you need to bypass the buffer and are using the implicit bypass as a feature.
But the list of statements that bypass the table buffers could change, so when you want bypassing,
express this explicitly!

If you don’t need bypassing but cannot omit it, mark the SELECT statement with the appropriate
pseudo-comment "#EC CI_... (in the Code Inspector results, the online documentation for the check
provides the specific pseudo-comment to use).

• If the statement is frequently used in a production system, try to rewrite the WHERE clause so that
the buffer can be used.

You can replace JOINs that contain a buffered table with explicit SELECTs on each table. Or, you
can replace DISTINCT and ORDER BY with ABAP functionality. (Remember that ORDER BY
bypasses the buffer only if the sort order is not based on the primary key.) For example, you might
use a SORT of the internal table, instead of sorting in the database with the ORDER BY statement.
Of course, replacing these statements is only reasonable if the SELECT statement that fills the
internal table can be satisfied by the SAP table buffer.

• Lastly, consider changing the buffer settings of the table. Look at the various table accesses in the
where-used list. It may be that buffering the table is not reasonable at all.

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.28

Nested LOOPs and Nested SELECTs

The Code Inspector can also find nested LOOP and
SELECT statements. Nested loops are a frequent
source of non-scalable coding, because the runtime
for loops over internal tables that are accessed
sequentially increases linearly with the number of
entries. Nested loops of this type can therefore have
quadratic (or even worse) runtime behavior, meaning
that doubling the number of entries will lead to four-
fold (or higher) runtimes.

Normally, only a dynamic check can determine
whether the code inside a loop will behave linearly.
The same is true for nested SELECT statements;
in the end, the developer must decide whether the
coding is correct as is, or whether to replace a
nested SELECT with a JOIN or a construct with
SELECT ... FOR ALL ENTRIES.

Using the Code Inspector
for Search Operations

The Code Inspector was designed primarily for
static analysis of development objects. But the
framework is also suitable for other purposes, such
as testing for compliance with naming conventions,
generating statistics about code key figures (such as
the number of statements), and search operations.
The first two checks are still under construction.
However, with Web AS 6.20, the Code Inspector
provides two search operations for use with
ABAP programs:

• Search for single tokens (words)

• Search for complete statements

Of course, the ABAP Workbench offers search
operations, too. However, Code Inspector search
operations offer the following unique advantages:

• Pattern-based searching with wild-card characters
“*” and “+”

• An arbitrary number of search patterns

• A parallel search mode that makes it applicable to
a large number of objects

• Persisted search results

As you can imagine, Code Inspector search
operations are very helpful when you need to reorga-
nize many programs, such as when renaming proce-
dures or replacing statements.

To search for single tokens or complete state-
ments, create a check variant that only contains one
or both of the search checks. You can specify check
parameters of one or more search patterns with at
least three characters. Then, to perform the search,
simply create and run an inspection as usual. Match-
ing patterns in your object set will appear with the
priority “Information” in the standard Code Inspector
result tree.

What Checks Are Coming
Next?

The list of built-in checks currently includes syntax
checks, performance checks, security checks, and
search operations. SAP plans to continuously extend
the number of built-in checks. If worthwhile and
technically possible, new checks may ship with
Web AS 6.10/6.20 support packages. Otherwise,
they will be part of an upcoming Web AS release.

Figure 17 describes some of the checks that are
currently under construction.

Helpful Hints

Here are some helpful hints to keep in mind as you
set out to use the Code Inspector in your own applica-
tion programs.

29For site licenses and volume subscriptions, call 1-781-751-8699.

Evaluating the Quality of Your ABAP Programs and Other Repository Objects with the Code Inspector

� If you want to display a Code Inspector element,
make sure that the local/global icon is set appropri-
ately (refer back to the sidebar on page 9). For
example, if you have created a global check variant,
the Code Inspector will give you an error message if
you try to display it with the icon set to “local.”

� Remember that there is a deletion date for object
sets and inspections! If you want to keep these ele-
ments longer than 50 days, simply change the dele-
tion date.

� If you save an object set, the object list can be
empty for different reasons. If your selections specify
sets of objects that have no intersection, the resulting
object set will be empty. Also, if the flag “Selections

Only” is set (refer back to Figure 4), no object list
will be created. This will be done at the moment of
the inspection run, if your selections are not in con-
flict with the following rules:

- In a customer system, putting an SAP object
into an object set is not supported.

- In a customer system, make sure that you are
working in the development system where the
object was created.

� To create a check variant, don’t just click on the
root checkbox of the check variant tree, which selects
all checks. Some checks need additional attributes to
be executable, so instead select the checks individu-
ally, as you need them.

Figure 17 New Checks Currently Under Construction

Check Type

Naming conventions

Inefficient parameter
passing

Full table search in
internal tables

Statement statistic

Description

Consistent use of naming conventions for types, variables,
procedures, and other entities in either a program or a package
makes it much easier to understand the code and the data model.
The Code Inspector will be able to check for compliance with most
conceivable naming conventions.

For procedure calls like PERFORM, CALL FUNCTION, and CALL
METHOD, you can pass parameters in two ways: call-by-reference
and call-by-value. Since the parameter value must be copied, call-
by-value is always less efficient. For internal tables and large
structures, the situation is admittedly worse than for simple integer
values. This check searches for the usage of call-by-value and
examines whether a simple switch to call-by-reference would be
possible without further consideration.

Access to an internal table entry is fast when supported by an index.
When no index can be used, the program must perform a sequential
scan of all table entries internally. For example, this situation
occurs if a program reads a sorted internal table with a key that
differs from its unique table key.

To answer the question “How much code do I have?” the most
important statistic is the number of ABAP statements in your
program-like objects. This check will be able to distinguish between
statements belonging to different types of modularization units.

SAP Professional Journal January/February 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.30

� Before checking a large object set with a
new check, or with a check where you are unsure
about the number of messages it could produce (for
example, one of the search operations), you should
first test the check with a single test object. The test
object should be one for which you expect to raise
a message.

Conclusion

You now have a basic understanding of the powerful
new Code Inspector tool, which allows you to
perform static checks on your choice of repository
objects:

• Check a single object (such as a program or a
class) by simply invoking the Code Inspector
from the menu of its ABAP Workbench editor.

• Check many objects at once by creating an object
set with the Code Inspector (transaction SCI).

• Combine a set of individual checks into a check
variant by using the simple checkbox interface to
select them and any available parameters from the
check variant tree.

• To fully specify a test, combine an object set and
a check variant to an inspection. After running
the inspection, view the results in a hierarchical
tree format.

In addition, you learned about some of the impor-
tant checks that come with the Code Inspector. These
ready-to-use checks make it easy for you to scan your
programs for some of the biggest potential problems,
including performance and security issues. Plus, we
took a glimpse into the future — new checks are
continuously under construction.

But suppose you have a particular check that
you always wanted to apply to your programs, and
we didn’t mention it in this article. We suggest a
do-it-yourself project! Seriously, we’re not being
lazy — just highlighting how you can make full use
of the Code Inspector. You can easily implement
and plug your own new checks into the framework
at any time, but that’s outside of the scope of this
article. For more details, go to the Performance
home page in the SAP Service Marketplace at
http://service.sap.com/performance. The Media
Library → Literature folder contains both the Code
Inspector user manual and guidance on how to build
your own checks.

Randolf Eilenberger received his doctorate in
physics at the University of Stuttgart. He joined
SAP in 1998, and since 1999 has been a member
of SAP’s Performance and Benchmark Group. As
a co-developer of the Code Inspector, he has also
implemented most of the tool’s performance
checks. Randolf can be reached at
randolf.eilenberger@sap.com.

Andreas Simon Schmitt studied and received his
doctorate in computer science and electronic
engineering at the Technical University of
Darmstadt, Germany. He joined SAP in 1991 as
a member of the ABAP Group (now the Business
Programming Languages Group), and since then
has participated in the design of the ABAP
language. As a development architect, he is
responsible for the ABAP Compiler. He has
designed and developed several internal and
external tools for static analysis of programs,
documentation, and other objects. He can be
reached at andreas.simon.schmitt@sap.com.

