
31For site licenses and volume subscriptions, call 1-781-751-8699.

A Programmer’s Guide to the New Exception-Handling Concept in ABAP

A Programmer’s Guide
to the New Exception-
Handling Concept in ABAP
Gerd Kluger and Christoph Wedler

Errors happen. There are few things more certain than that in software

development. We, as software developers, must account for this

inevitability in our programs and determine what should happen once

an error has occurred. Must the program terminate or is there a way

to recover? And what is the best way to specify handler coding for

specific errors?

In modern programming languages there is a concept that addresses

these issues. This concept is called exception handling. An exception

is an event during the execution of a program that interrupts the normal

flow of control. An exception-handling mechanism makes it possible to

react to these events.

In this article, we present a new exception concept in ABAP that

has been introduced with Release 6.10. We will provide detailed

explanations on how to work with these new exceptions and compare

them to existing error-handling capabilities in ABAP.1

Since the new exception concept is based on object-oriented (OO)

features, you should have some basic knowledge of OO principles. You

can find an especially good overview in the book ABAP Objects: An

Introduction to Programming SAP Applications by Horst Keller and

Sascha Krüger (Addison-Wesley, 2002).

Gerd Kluger,

Business Programming

Languages Group,

SAP AG

Christoph Wedler,

Business Programming

Languages Group,

SAP AG

(complete bios appear on page 50)

1 Note that some of these existing error-handling capabilities are, unfortunately, also called

“exceptions.” To distinguish between the two throughout this article, we use the term class-

based exceptions for the new ones and classical exceptions for the existing ones. If we

simply talk about “exceptions,” unless noted otherwise, we mean “class-based exceptions.”

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.32

What’s Wrong with

the Classical Exceptions?

If there are already exceptions existing in ABAP, then

why is there a need for a new exception concept? In

the existing concept, exceptions can be raised via the

RAISE statement, and function modules or methods

then declare them via the EXCEPTIONS clause. To

handle them, when calling the function module or

method you can define a mapping from each

exception’s name to a number, and then check the

sy-subrc for one of these numeric values once the

function module or method returns.

As an ABAP programmer, you probably know

how cumbersome it is to work with classical excep-

tions, since you must handle all of them immediately

after a function or method call. It is often the case,

however, that instead of handling all exceptions, you

will want to select only certain exceptions for han-

dling and pass on the rest to the caller. It is possible

to do this with classical exceptions, but it’s a rather

tedious process since you have to do the mapping

manually, exception by exception. Besides being

laborious, these mappings clutter your code

and make it difficult to read — if you look at the

coding there is no clear separation between the

regular coding that adds to the functionality of

your application and coding that is there for error-

handling purposes.

Another issue is the grouping of exceptions.

When you define the mapping between exceptions

and numbers you can group all exceptions, that

are not explicitly mapped, to a single group called

others. But beyond that, there is no way to

deal with similar exceptions, like there is with

runtime errors, which can be handled by CATCH
SYSTEM-EXCEPTIONS. There you have

error groups like arithmetic_errors and

conversion_errors, but you cannot define

your own error groups.

Then there is the issue of control flow, or lack

thereof. If you look closely at what happens when

a classical ABAP exception occurs, you will notice

that an actual change in control flow, one of the key

features of exceptions, does not take place. The

values returned are merely return codes. It is desir-

able to have a real change in control flow, even

across multiple levels of the call hierarchy. Program-

mers should be able to easily handle exceptions they

are capable of dealing with, and the rest should be

propagated automatically to the next level in the

call hierarchy.

Finally, a classical exception is just a signal

that a problem has occurred. There is no additional

information accompanying the exception, such as

information about the context in which the exception

occurred (e.g., its location). This is probably not

crucial for old exceptions since handlers tend to be

close to the location of the exception (due to the need

to handle exceptions immediately, as stated earlier).

In this case, the handler will most likely know about

the context, e.g., the parameter values. But if there

were exceptions that could change the flow of con-

trol, thereby making it possible for handlers to be far

away from the place where a problem occurred, the

ability to transport additional information to the han-

dler would become very important.

With Release 6.10, SAP introduced a completely

new exception concept in ABAP to overcome these

shortcomings. While influenced by languages like

C++ and Java, the ABAP exception concept has some

outstanding features of its own that make it unique

amongst all other languages.

Main Features of the

New Exception Concept

Exceptions in 6.10 are represented by objects that are

instances of classes. Each such class — called an

exception class — describes one typical exceptional

situation, e.g., a division by zero, an overdrawn

account, etc. The exception object is the occurrence

of such a situation at some specific point during

runtime.

33For site licenses and volume subscriptions, call 1-781-751-8699.

A Programmer’s Guide to the New Exception-Handling Concept in ABAP

This new approach solves many of the short-

comings programmers now wrestle with:

� Attributes can store additional information about

the cause of the exception situation. Since the

object can store any data, exception handlers need

no longer know the exception context; they can

simply get it from the exception object.

� Grouping is facilitated via inheritance. Every

class is a natural candidate to represent all of its

subclasses. There is one common ancestor to all

exception classes; it is called cx_root. To

carry it to the extreme, you could use this class

to define handlers for all types of exceptions.

� Inheritance enables refinement of exceptions —

e.g., by adding new attributes — so you can

reuse existing exceptions by making them

more specific.

The key principle of exception handling is the

change in control flow. The raising of an exception

thus comprises:

1. The creation of an exception object.

2. The propagation of this object along the call

chain until a suitable handler is found.

If no handler is found, a runtime error will occur.

Because you can store context information in the

exception object, a detailed description of the error

can be given, as you will see later in the article.

Raising and Handling Exceptions

Exceptions are raised to indicate that some excep-

tional situation has occurred. Generally, an exception

handler tries to repair the error, find an alternative

solution, or, where this is impossible, bring the sys-

tem to a consistent state and then pass on the error.

If the system cannot find a handler for an exception

throughout the entire call hierarchy, the program

terminates with a short dump.

Raising Exceptions

Exceptions can be raised at any point — in a method,

a function module, a subroutine, and so on. There are

two ways a class-based exception can be raised:

1. As a result of an error detected by the ABAP

runtime system — that is, the system raises an

exception while it is processing ABAP statements.

2. When an ABAP programmer explicitly raises

an exception to signal an error situation in his

or her coding.

The simple arithmetic statement below offers

an example of an exception raised by the ABAP

runtime system:

x = 1 / 0.

For this statement, where we’re trying to divide by

zero, the runtime system will raise an exception of

type cx_sy_zerodivide.

The syntax for raising an exception from within

your ABAP code is RAISE EXCEPTION.2 There are

two different syntactical variants that you can use to

invoke this statement. You can:

a. Raise and create an exception object

simultaneously.

b. Raise an exception with an exception

object that already exists.

In the first scenario, use the syntax:

 RAISE EXCEPTION TYPE exc_class
 [EXPORTING a1 = ... b1 = ...].

2 Raising class-based exceptions differs from raising classical excep-

tions in that the former uses the EXCEPTION addition with the

RAISE keyword.

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.34

After RAISE EXCEPTION, you use the TYPE option

with the name of the exception class from which the

exception object is to be created. Note that this syn-

tax is close to the CREATE OBJECT statement. You

can pass values to the exception class constructor

using exporting parameters. The constructor then

fills the object attributes with values, which the han-

dler can access at a later time.

The second, less common scenario occurs when

an exception object already exists. For example, it

may have been created explicitly using a CREATE
OBJECT statement. Alternatively, an exception may

already have been caught, but after checking some

of the attributes, the handler may have realized that

it could not deal with this exception properly, and

thus decided to raise it again. The syntax in this

case is simply:

RAISE EXCEPTION ex.

Note that ex must be an object variable bound to an

exception object instance.

Catching and Handling Exceptions

Handlers are used to “catch” class-based exceptions.

Handlers are defined for statements in a TRY block.

Each exception that is raised between the entry and

exit points of this block can be caught by an appropri-

ate handler.

The TRY block, together with the handlers, is

defined by a new syntactical construct — the TRY ...

ENDTRY construct — which starts with the keyword

TRY and ends with ENDTRY. Within the TRY ...

ENDTRY construct, you add handlers by specifying

CATCH clauses, which are initiated by the keyword

CATCH. The TRY block comprises all statements

between TRY and the first CATCH.

A handler consists of all statements between its

CATCH clause and the CATCH clause of the next

handler (or ENDTRY, if there are no more handlers).

The CATCH clause starts with the keyword CATCH,

followed by the names of the exception classes of the

exceptions to be caught. These may be followed in

turn by the optional INTO addition containing the

name of a variable for the exception object. This

addition is optional since you might be interested only

in the indication that a certain type of exception has

occurred, not in the exception object itself. The

statements directly following the CATCH clause are

executed only if the handler catches an exception.

Each exception is caught only once, by the first

suitable handler. A handler is “suitable” if its

CATCH clause lists either the class of the exception

or a superclass of it.

In the example shown in Listing 1, if an excep-

tion of the class cx_my1 is raised in line 1, neither of

the two handlers will catch it since it occurs before

the flow of control has entered the TRY block. If an

exception of the class cx_my2 is raised in line 3,

the handler in lines 8-10 will catch it. This happens

because cx_my2, like all other exception classes, is

a subclass of cx_root, and because the handler in

lines 5-7 does not catch it. If an exception of the

class cx_my3 is raised in the method m3, but is not

caught there, the handler in lines 5-7 will catch it.

Once the control flow reaches the end of the handler,3

the runtime system continues executing the program

after the keyword ENDTRY in line 11. The same

applies if no exception is raised within the TRY block.

Thus, after executing the statement in line 4, the

system continues after line 11.

This example shows that:

� Each handler can catch exceptions from more

than one class. It does this either explicitly, in

that the developer adds more than one exception

class (as for the first handler in lines 5-7), or

implicitly, in that when the developer adds an

exception class, all the exceptions of its sub-

classes are caught as well. In the extreme case

3 The end of the handler might not be reached if there is a statement in

the handler that changes the control flow by itself — e.g., RETURN or

the occurrence of another exception.

35For site licenses and volume subscriptions, call 1-781-751-8699.

A Programmer’s Guide to the New Exception-Handling Concept in ABAP

mentioned earlier, all exceptions are caught by

providing only the class cx_root.

� The sequence of handlers is important. If the

order of the two handlers were swapped, the

system would use the handler for all exceptions

of the class cx_root and the other handler

would never be used. To avoid this, the compiler

always checks that handlers are listed in the

program in ascending order, with respect to

inheritance.

� If a procedure is called within a TRY block,

the appropriate handlers in the corresponding

TRY ... ENDTRY construct will also catch all

exceptions that are raised but not caught within

that procedure.

If the system cannot find an appropriate

handler in a TRY ... ENDTRY construct, it searches

for handlers in the next outer TRY ... ENDTRY
construct. This is the TRY construct whose TRY
block was entered previously.4 If it cannot find an

appropriate handler there either, it continues the

search. If it eventually finds a handler — which

may be several steps upward in the call hierarchy —

Listing 1: Catching an Exception for Handling

 1 CALL METHOD o1->m1. "Can raise an exception of the class cx_my1
 2 TRY.
 3 IF RAISE EXCEPTION TYPE cx_my2. ENDIF.
 4 CALL METHOD o1->m3. "Can raise an exception of the class cx_my3
 5 CATCH cx_my1 cx_my3.
 6 "Handler of exceptions of the class cx_my1 (and subclasses)
 7 "--- any number of statements ---
 8 CATCH cx_root.
 9 "Handler of all the other exceptions
10 "--- any number of statements ---
11 ENDTRY.

!!!!! Note!

Only exceptions that occur in the TRY block

can be caught by a handler of the same TRY ...

ENDTRY construct. Since the TRY block

comprises only the statements between TRY and

the first CATCH, exceptions inside the handler

coding cannot be caught by a handler in the same

TRY ... ENDTRY construct. However, since TRY

constructs may be arbitrarily nested, exceptions

in handlers can be easily caught by local TRY

constructs inside of the handler.

When a handler catches an exception, the normal

flow of control is changed. In many cases, ending

procedures prematurely in this way causes objects to

be left in an inconsistent state or prevents resources

from being released. In particular, if the system

jumps several levels up the hierarchy, the handler

might not be able to take the appropriate corrective

measures. For this reason, there is another clause for

the TRY construct: the CLEANUP clause. It consists

of the keyword CLEANUP and a number of state-

ments that form the CLEANUP block.
4 This also explains why, in the example, the first handler can also

catch exceptions that are raised in method m3.

it stops processing all procedures, loops, etc., and

goes immediately to the appropriate handler.

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.36

The statements of the CLEANUP block are

executed whenever an exception occurs in a TRY
block that is not caught by the handler of the same

TRY ... ENDTRY construct, but rather in a surround-

ing TRY construct. Within the CLEANUP clause, the

system can, for example, restore an object to a con-

sistent state or release external resources.5

Each TRY ... ENDTRY construct contains a maxi-

mum of one CLEANUP clause. You must include it

after the last CATCH and before the ENDTRY, if at all.

If there is a CLEANUP clause, the system executes the

statements of the CLEANUP block and then propa-

gates the exception upward. This propagation may

cause the system to then execute the statements in

other CLEANUP blocks (in surrounding TRY con-

structs) until the exception is finally caught by an

appropriate handler.6

The CLEANUP clause exists solely to restore

objects to a consistent state. Since there is already

a handler for the current exception waiting to be

executed, the clause must be left in the “normal” way

through the ENDTRY. This means that any statement

that would force the system to leave the CLEANUP
block prematurely — such as RETURN or REJECT7

— is forbidden. If an exception occurs inside the

Listing 2: Using the CLEANUP Clause

 1 TRY.
 2 CALL METHOD o1->m1. "Can raise an exception of the class cx_my1
 3 PERFORM f1.
 4 CATCH cx_root.
 5 "Handler for all exceptions
 6 "--- any number of statements ---
 7 ENDTRY.

 8 FORM f1 RAISING cx_my.
 9 TRY.
10 IF RAISE EXCEPTION TYPE cx_my2. ENDIF.
11 CALL METHOD o1->m3. "Can raise an exception of the class cx_my3
12 CATCH cx_my1 cx_my3 INTO ex.
13 RAISE EXCEPTION TYPE cx_my4.
14 CATCH cx_my4.
15 "Handler for exceptions of type cx_my4
16 "--- any number of statements ---
17 CLEANUP.
18 "CLEANUP block, to restore a consistent state
19 "--- any number of statements ---
20 ENDTRY.
21 ENDFORM.

5 This is different from Java’s finally clause, which is always

executed. If you simulate Java’s finally clause in ABAP, you

have to put the statements from Java’s finally clause in the

CLEANUP clause and after the ENDTRY. In order to simulate ABAP’s

CLEANUP clause in Java, you have to introduce a flag that controls

the execution of the statements in the finally block.

6 The system processes CLEANUP clauses only if an exception is

caught by a handler on its way through the call hierarchy. If there

is no handler available, a runtime error occurs. In this case, the

system does not process the CLEANUP clauses, so that it can access

the relevant objects in the state they were in when the exception

was raised.

7 Statements such as EXIT, CHECK, or CONTINUE are forbidden only

if they would really lead the system to quit the CLEANUP block,

which, for example, is not the case if they appear in a loop inside of

the CLEANUP clause.

37For site licenses and volume subscriptions, call 1-781-751-8699.

A Programmer’s Guide to the New Exception-Handling Concept in ABAP

CLEANUP block, and is not dealt with inside this

block, a runtime error occurs.

Listing 2 clarifies how the cleanup clause works:

if in line 2 an exception of the class cx_my1 occurs,

the system goes immediately to the handler in line 4.

In line 3 there is a call to subroutine f1. If inside of

f1 an exception of the class cx_my2 occurs (line

10), then there is no handler in the TRY ... ENDTRY
construct of lines 9-20 available to catch it. However,

since the handler in line 4 catches the exception, the

system first executes the statements in the CLEANUP
block (lines 17-19) and then goes immediately to the

handler (line 4).

If in line 11 an exception of the class cx_my3
occurs, it is caught by the handler in lines 12-13 and

stored in the variable ex. Since the handler is also

used for exceptions of class cx_my1, the variable ex
must have the type of a superclass of cx_my1 and

cx_my3. The handler then raises an exception of the

class cx_my4. Note that the handler in line 14 does

not catch this new exception since it did not occur in

the TRY block. For the same reason, the system does

not execute the statements in the CLEANUP block, but

instead goes immediately to the handler in line 4.

Listing 3 summarizes the basic syntax of the

catching and handling exceptions. You can define

as many handlers as you want (even none). The

CLEANUP area is optional. Each CATCH clause can

have one or more exception classes. The INTO addi-

tion is optional.

Declaring Exceptions

Exceptions that are not caught lead to a short dump.

Thus, if you want to write a program that is not prone

to regular short dumps, it is important to know the

exceptions raised by the procedures8 you call.

Therefore, all exceptions that may occur when a

procedure is called must be declared in the procedure

definition. Such a declaration must serve not only

documentary purposes, but also as a guarantee for the

procedure caller that no other exceptions are to be

expected than those listed. The following sections

explain when and how to declare class-based excep-

tions, and to what extent these declarations are used.

Syntax and Semantics of the Declaration

You declare an exception by using the RAISING
clause when defining a procedure. After the

RAISING keyword, you must list the classes of all

Listing 3: The Syntax of the TRY … ENDTRY Construct

TRY.
 "--- Statements of the TRY block ---
 CATCH cx_a1 ... cx_an [INTO ex_a].
 " Handling exceptions cx_a1 to cx_an , n>=1
 ...
 CATCH cx_z1 ... cx_zn [INTO ex_z].
 " Handling exceptions cx_z1 to cx_zm , m>=1
[CLEANUP.
 "--- Statements of the CLEANUP block ---
]
ENDTRY.

8 The term procedure is the generic term for a method, function

module, or subroutine.

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.38

Choose the

exception type

the exceptions that the procedure may raise. In the

Class Builder or Function Builder, select the excep-

tion button for a procedure, select the checkbox for

class-based exceptions, and list the exception classes

in the table control (see Figure 1).

Note that each class declared in the RAISING
clause comprises all of its subclasses as well.9

To provide the guarantee for the procedure caller

that only the exceptions listed in the RAISING clause

leave the procedure, the compiler checks that all

exceptions that could be raised, but are not caught

locally, are declared in the interface.10 In order to

support changes in the procedure’s interface, the

compiler displays a warning in case of a missing

exception declaration — it does not stop the compila-

tion with a syntax error.

The reason for issuing a warning instead of an

error is that in real systems, procedure interfaces do

in fact change, and in huge application systems like

the SAP application server, there can be many appli-

cations that use a particular procedure. Obviously

you cannot invalidate all those applications simply

because they reference such a procedure for some

rarely used feature. Therefore, by issuing just a

warning, an application can be generated even if

exceptions have been added to the procedure interface

used by the application.

Since the compiler issues only a warning instead

of an error, and since the programmer could have

simply ignored the warning, the compiler has not

provided the guarantee to the procedure caller that

only exceptions listed in the RAISING clause may

leave the procedure. The guarantee must therefore

be provided by the runtime system: if an exception

leaves the call interface of a procedure without hav-

ing been declared in a RAISING clause for that

interface, a runtime error occurs.11 This is much

better than enforcing source code changes in all

clients, which would mean that the system cannot be

Figure 1 Declaring Exceptions in the Class Builder

9 If you want to emphasize that an exception of an implicitly declared

subclass can be raised by a procedure, you can explicitly list the

subclass in the RAISING clause, too.

10 For consistency, the compiler checks only method interfaces. To

check function modules and subroutines, use the extended program

check (transaction SLIN).

11 This error situation raises an exception in turn. See the upcoming

section “Violation of the Interface” for more information.

39For site licenses and volume subscriptions, call 1-781-751-8699.

A Programmer’s Guide to the New Exception-Handling Concept in ABAP

used before all changes have been completed. So,

the system keeps running as long as the erroneous

situation doesn’t occur.

In summary, the RAISING clause fulfills two

objectives:

1. It is used by the runtime system to provide the

guarantee for the procedure caller that it need

only expect exceptions that are declared in

the interface.

2. It lets the compiler confirm that all possible

exceptions have been taken into account —

whether they are to be caught locally or have

been declared in the RAISING clause.

Drawbacks of an Enforced Declaration

There are errors that can occur almost everywhere,

but which most developers do not want to or cannot,

for some reason, deal with — such as resource bottle-

necks or configuration errors. If we were to consis-

tently apply the rules on declaring exceptions, we

would have to declare such errors in almost every

interface. This would not lead to more robust pro-

grams. It would simply make programs unreadable,

less useful, or worse, less robust.

The reason for this surprising, counterproductive

effect is that users who use procedures or statements

in which such errors are raised have only the follow-

ing three choices, none of which is satisfactory:

1. They must include the exception in their

RAISING clause. Since we are talking about

errors that can occur almost everywhere, and

there are probably many such errors, this means

that the RAISING clause of almost every proce-

dure is cluttered with useless information.

2. They can catch the exception and terminate

the program. This prevents a suitable handler

far up in the call hierarchy from reacting to

the exception.

3. If users think that the exception will not occur

in their application, they write empty exception

handlers — i.e., handlers that will catch the

exception but do nothing. This is the worst pos-

sible choice since it prevents the detection of

bugs if the exception does occur. Unfortunately,

it is probably also the choice that most users

would make.

To get around this problem, there is a class called

cx_no_check whose subclasses do not need to

follow the usual declaration rules12: neither the com-

piler nor the runtime system will check whether

exceptions derived from cx_no_check are listed in

the RAISING clause. The user of a procedure must

be aware that these exceptions may be raised in addi-

tion to those listed in the RAISING clause.

There are also errors for which you want to pro-

vide the guarantee that they leave the procedure only

if they are listed in the RAISING clause, but you do

not want to force users of that procedure to deal with

an occurrence of the error. These exceptions, such as

cx_sy_zerodivide, are raised if a procedure is

called with wrong parameter values (such as a zero

divisor for the operation “/”) or, more generally, if its

precondition is violated.

Users of procedures or statements that can raise

such an exception do not want to be forced by the

compiler to either catch the exception or include it

in their own RAISING clause. If you divide by 2,

you know that cx_sy_zerodivide will not occur,

although it can in general occur during a division.

Thus you do not want the compiler to check whether

you have dealt with the exception.

Does this also mean that you do not want the

runtime system to check the RAISING clause, as

with exceptions inheriting from cx_no_check?

The answer is no. To see why, let us assume

that cx_sy_zerodivide is derived from

cx_no_check, and that you write a procedure

where you invert some number (i.e., divide 1 by that

12 Exception classes derived from cx_no_check cannot be declared in

a RAISING clause.

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.40

number) that you thought would never be zero.

If you were wrong, and an exception of class

cx_sy_zerodivide is raised, then you have

clearly introduced a programming bug. There are

two possible outcomes:

1. There is no handler for this exception of class

cx_sy_zerodivide and a short dump occurs.

The short dump shows the position of the division

operation inside the procedure and also shows the

call hierarchy, but there is no clear hint that your

procedure was the culprit.

2. There is a handler for exceptions of class

cx_sy_zerodivide far up in the call hierar-

chy that will catch all exceptions of type

cx_sy_zerodivide, even the one that was

induced by the programming bug. This would

prevent the detection of such errors in your

coding.

While the first scenario is annoying, the second

scenario is dangerous. To avoid these scenarios,

cx_sy_zerodivide is not derived from

cx_no_check, but from a special class

cx_dynamic_check, which has the property that

its subclasses are checked only by the runtime system

to determine whether they are listed in the RAISING
clause. Consequently, the runtime system will now

check the RAISING clause of your procedure. Since

cx_sy_zerodivide is not listed there, the excep-

tion induced by your programming bug will lead to a

short dump. It includes a message indicating that the

short dump was induced by your procedure, because

it neither catches the exception locally nor propagates

the exception.

In summary, the benefit of this approach is that

exceptions derived from cx_dynamic_check do

not annoy users who know that these exceptions

cannot occur (as would be the case with exceptions

derived from cx_static_check), and the prob-

lem is not shifted to others if these “impossible”

exceptions do in fact occur (as would be the case with

exceptions derived from cx_no_check).

Categories of Exceptions

The top classes in the exception hierarchy look like

Figure 2.

All four classes (cx_root,

cx_static_check, cx_dynamic_check, and

cx_no_check) are abstract. The main properties

of the three subclasses directly below superclass

cx_root are as follows:

• A cx_static_check exception can leave a

procedure only if it has been declared in the

RAISING clause of the procedure’s interface. As

mentioned in the previous section, both the com-

piler and the runtime system will check that all the

exceptions from this category, that may occur but

that are not handled locally inside of the proce-

dure, have been declared.

Figure 2 The Top Classes of the Exception Hierarchy

�������

�������	���
��� ���
����	���
��� �������
���

41For site licenses and volume subscriptions, call 1-781-751-8699.

A Programmer’s Guide to the New Exception-Handling Concept in ABAP

• A cx_dynamic_check exception can leave

a procedure only if it has been declared in the

RAISING clause of the procedure’s interface.

Only the runtime system performs this check

once an exception tries to leave a procedure.

• A cx_no_check exception can always leave

the interface of a procedure. Neither the compiler

nor the runtime system performs any interface

checks.

If you define a new exception class for your

application, choosing the right category is the most

important decision:

• The cx_static_check category should

be chosen if you want to make sure that this

exception is always dealt with and if a local

exception handler has a chance to do something

useful in the exceptional situation. If you

choose cx_dynamic_check when

cx_static_check should have been chosen,

you lose the assurance from the compiler that

the exception is always dealt with — i.e., short

dumps might occur, indicating that the exception

has not been dealt with. If you choose

cx_no_check instead, you make programming

in your application more difficult since this

exception must now be considered ubiquitous; if

the exception leads to a short dump, it is not easy

to see who is responsible for it.

• The cx_dynamic_check category is similar to

the cx_static_check category and should be

chosen if programmers can usually avoid the

occurrence of the exception beforehand; in most

cases the programmers know that the exception

will not be raised in their application context. If

you choose cx_no_check when you should

have chosen cx_dynamic_check, you have

the same problem as before (i.e., you lose the

assurance that the exception is dealt with). If you

choose cx_static_check instead, you risk

making programming in your application clumsy,

with the consequence that people write empty

exception handlers that prevent the detection of

programming bugs.

• The category cx_no_check should be chosen if

the exception can occur almost everywhere, but

most programmers do not want to or cannot deal

with such an exception, such as resource bottle-

necks. If you choose cx_static_check or

cx_dynamic_check when you should have

chosen cx_no_check, users are likely to write

empty exception handlers,13 which make it hard to

detect bugs.

Violation of the Interface

If the interface is violated by an exception of the

category cx_static_check or

cx_dynamic_check, the program does not termi-

nate with a runtime error. Instead, an exception of

the class cx_sy_no_handler is raised and a

reference to the original exception is stored in the

exception. Any handler for an exception of the class

cx_sy_no_handler catches a program error from

the called procedure, not the original exception. You

should really think twice before catching such an

exception,14 but there are situations where it could

be useful to do so (e.g., for a temporary bug

workaround).

Exceptions in Event Handlers
and Class Constructors

There is no RAISING clause defined for event-

handler methods. This is consistent since the concept

of “expecting” specific exceptions violates the

13 If you are in a situation where you get a cx_static_check or

cx_dynamic_check exception that should have been declared as

cx_no_check, do not write an empty exception handler. Throw

your own exception of category cx_no_check instead.

14 Remember that a suitable exception handler is found if the class of the

exception, or one of its superclasses, is listed in the corresponding

CATCH clause. Thus any handler that looks like CATCH
cx_sy_no_handler, CATCH cx_no_check, or CATCH
cx_root must also be prepared to handle this kind of exception.

A handler should at least write an error log in this case.

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.42

principle of the event mechanism. The trigger of an

event does not make any assumptions about potential

event handlers that are registered for the event. An

event is a one-way street — the trigger provides

information to the event handler (or handlers), but it

does not expect anything from them.

Thus all cx_static_check and

cx_dynamic_check exceptions that occur in

event handlers, but are not caught there, cause an

interface violation. An exception of the class

cx_sy_no_handler raised in this way can be

caught beyond event boundaries, just like other

exceptions of the category cx_no_check.

Similarly, you cannot define a RAISING clause

for class constructors. The user of a class generally

does not know that it is using the class for the first

time and thus that the class constructor is executed.

Defining Exceptions

Exception classes can be global or local classes.

When creating a global exception class, the Class

Builder ensures that its name follows the cx_ prefix

naming convention.15 Exceptions have some specific

properties — e.g., each exception has an explanatory

text assigned to it that describes the exception. In

the following subsections, we look at these properties

and see how the Class Builder has been adapted to

support them. If you define local exception classes,

you will of course have no such tool support, so you

have to take care of these aspects yourself.

Constructors for Exceptions

Exceptions are usually created and raised immedi-

ately. After calling the constructor of an exception,

you usually do not invoke a sequence of set methods

or attribute assignments. That means that all

attributes are usually set via the constructor. Follow-

ing this observation, the exception constructor is

automatically created as soon as you save the excep-

tion class. It has one optional parameter for each

non-private attribute.

Texts for Exceptions

Each exception has an explanatory text assigned to

it that describes the exception. The text is used for

error analysis in error logs or short dumps and there-

fore describes the exception from a technical point of

view. A good user interface therefore usually catches

exceptions and describes the error from a user point

of view, instead of simply forwarding the technical

message from the exception object.

For texts to adequately describe an exception,

you have to be able to set parameters for them.

Figure 3 shows an example.

Figure 3 Setting Parameters for Messages

In this example, it is not only important to

display that the bank details are incorrect, but also

to display the name of the account holder. For this

purpose, you can set parameters for exception texts

using (textual) attributes of the exception object. In

this context, textual means that the attribute has a

scalar type (for example, it is a C field, a string, an

������������ ���������

��������
�������

���� ����� !"##"$

%��& ��'���(��&

� ���)�*�����+� ���,���

� ����������+� (��&�*

-	�.��������� ��
�)�� ���+�*
��������	���
��
�
�����������
��
�/
��0�������
��
��1
���
��203

���������		
���

�	���
���
��	�������	����
�
���������
���
 ������

15 With the usual customer namespaces the prefixes ycx_, zcx_, and

/cust/cx_ are valid as well.

43For site licenses and volume subscriptions, call 1-781-751-8699.

A Programmer’s Guide to the New Exception-Handling Concept in ABAP

integer, etc.). This rules out internal tables, object

references, and structures.

Attributes can be included in the text by using

the name of the attribute surrounded by “&,” as in

“&name_of_attribute&.” If you want the “&”

symbol to appear in the actual text, you have to enter

it twice.

Consider the following example:

'Law Firm of &lawyer&&&&partner&'

together with the following attributes:

lawyer = 'Smith'
partner = 'Brown'

produces the following text:

'Law Firm of Smith&Brown'

You might want to define more than one text for

one exception class if you have two almost identical

error situations. For those kinds of exceptions, most

users do not want to define an exception class for

each of the two error situations, but it might be useful

to provide separate texts for an error analysis of the

two error situations.

The texts are stored in the Online Text Repository

(OTR). The exception object contains only a key

that identifies the text (together with the system lan-

guage). To make it easy to define texts for an excep-

tion, the Class Builder provides an additional “Texts”

tab for exception classes. For each text you insert

there, you also specify an exception ID, which is a

language-independent handle to the text. For the

default text, the exception ID always has the same

name as the name of the exception class. Figure 4

shows an example.

If you raise an exception without specifying a

text, the default text will be selected automatically.

You can create an exception using another text if

you provide a value for the parameter textid
of the exception constructor. Each exception ID

Figure 4 An Example Text Assignment

Exception ID

for default text

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.44

corresponds to a class constant that holds the OTR

key for the corresponding text. Thus, to create and

raise an exception cx_sy_file_open_mode
using the last text in Figure 4, use:

RAISE EXCEPTION TYPE
 cx_sy_file_open_mode
 EXPORTING textid =
 cx_sy_file_open_mode=>read_only.

Attributes and Methods of Exceptions

Attributes of exceptions are used to give the handler

more information about the error situation. You can

define attributes for exception classes like you would

for normal classes.

Exception classes inherit the following attributes

from cx_root:

• textid — Used to define different texts for

exceptions of a particular class, as explained

above. Affects the result of the method

get_text (see below).

• previous — If one exception is mapped to

another, this attribute can store the original

exception, which allows you to build a chain of

exceptions. If a runtime error occurs, the short

dump contains the texts belonging to all the

exceptions in the chain. Mapping one exception

to another may be advisable if, for example, the

context in which the first exception occurred is

important for characterizing the error situation

represented by the second exception (see the

upcoming section “Mixed Use of Class-Based

and Non-Class-Based Exceptions”).

Exception classes inherit the following methods

from cx_root:

• get_text — Returns the textual representation

as a string, according to the system language of

the exception, as explained earlier in the section

“Texts for Exceptions” (see also the attribute

textid above).

• get_longtext (available only since 6.20) —

Returns the long variant of the textual representa-

tion of the exception as a string (see also the

attribute textid above). In the Class Builder,

you can also specify a long text for each excep-

tion ID.

• get_source_position — Returns the

program name, include name, and line number

reached where the exception was raised.

Apart from the constructor, which is automati-

cally constructed, as explained earlier in the section

“Constructors for Exceptions,” no methods can be

defined in Release 6.10. Neither can you specify

aliases, interfaces, friends, events, and internal types

for exception classes. This restriction has been lifted

with Release 6.20.

Interaction with Existing

Error-Handling Methods

As described at the beginning of the article, there are

already several types of error handling available in

ABAP, namely:

• The classical ABAP exceptions that are raised

by RAISE and that can be handled by calling

methods and function modules using the

EXCEPTIONS clause. These exceptions cannot

be handled when calling subroutines; instead they

are propagated automatically to the next non-

subroutine level.

• Some of the runtime errors that can be caught

(i.e., catchable runtime errors) if the statement

that caused the runtime error is placed in a

CATCH SYSTEM-EXCEPTIONS block. Note

that none of the runtime errors is propagated

across modularization entities.

• Messages in the MESSAGE statement that can

also indicate an error. If the message is of type

“E” or “A,” it can be caught directly by calling

methods and function modules using the

EXCEPTIONS clause and the special (classical)

exception name error_message.

45For site licenses and volume subscriptions, call 1-781-751-8699.

A Programmer’s Guide to the New Exception-Handling Concept in ABAP

All these error-handling methods are subsumed

by class-based exception handling. However, the

concepts behind these methods are too different to

define a suitable mapping to class-based exceptions.

For this reason, these next sections explain how the

concepts interact.

Classical Exceptions in Methods and
Function Modules

Classical exceptions and the newer class-based

exceptions are two totally different concepts, so

there is a strict separation between them. In other

words, classical exceptions cannot be caught by

the CATCH clause of a TRY block. Conversely,

a class-based exception cannot be caught via an

EXCEPTIONS clause.

To drive the separation even further, each proce-

dure has to decide if it wants to raise either the old or

the new exceptions. It’s syntactically impossible to

specify a RAISING clause and an EXCEPTION
clause at the same time for the same procedure. If

you decide in favor of the new exceptions, you cannot

use any RAISE (or MESSAGE ... RAISING) state-

ment, and if you opt for the old ones, you cannot use

the new RAISE EXCEPTION.

Of course, in the implementation of your proce-

dure you might have to call other procedures that may

raise the other kind of exception. If you can’t handle

these exceptions locally, you will have to map them

— i.e., catch the exception and raise another excep-

tion of a proper type.

Migration of Catchable Runtime Errors

The process of catching runtime errors using CATCH
SYSTEM-EXCEPTIONS is now obsolete. A number

of rules apply to ensure a simple model for coexist-

ence between the old and new ways.

For every runtime error that can be caught by

CATCH SYSTEM-EXCEPTIONS, there is now a

corresponding exception class that can be used in a

TRY ... ENDTRY construct. Grouping of runtime

errors is also supported by respective classes and the

use of inheritance. Note that some runtime errors that

are virtually the same are now mapped to the same

class. For example, compute_int_zerodivide
and compute_float_zerodivide are both

mapped to class cx_sy_zerodivide16 and

arithmetic_errors (the group of all

arithmetic errors) is now represented by class

cx_sy_arithmetic_errors (see Figure 5).

Figure 5 Assignment of Runtime Errors to Exceptions

16 If you really need to differentiate between the two types of division by

zero, you can do so by inspecting the exception object.

����4�*�� ��5
4�*��

���67���	���8���
	9	
�

������������������67���:;����8���
	9	
�

���67���	����	�����9��:;�4

�������67���:;�����	�����9��:;�4
��������	�
���	���9��:;�4

��	�
���	�������� ��������	�
���	��������

������8���
	9	
�

���
����	���
���

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.46

Although CATCH SYSTEM-EXCEPTIONS
is now obsolete, it can still be used for backward-

compatibility reasons. Note, however, that any new

catchable runtime errors will only be catchable via

TRY … ENDTRY using the proper exception class,

but not via CATCH SYSTEM-EXCEPTIONS.17

For coexistence between the old and new ways,

the following rules apply:

� You cannot use CATCH SYSTEM-EXCEPTIONS
and TRY constructs or the statement RAISE
EXCEPTION in one procedure simultaneously.

If a procedure interface contains a RAISING
clause, you cannot use CATCH SYSTEM-
EXCEPTIONS in this procedure.

� If a catchable runtime error occurs in a proce-

dure without CATCH SYSTEM-EXCEPTIONS,

a class-based exception is raised. The rules for

class-based exception handling mentioned in the

previous section apply here.

� If a catchable runtime error occurs in a procedure

that uses CATCH SYSTEM-EXCEPTIONS, the

runtime system tries to catch the error according

to the semantics of CATCH SYSTEM-
EXCEPTIONS. If this fails, the new class-based

exception handling comes into play: since there

is no local handler, the exception handling tries

to directly pass the local interface and then

looks for a suitable handler in the call hierarchy.

If there is no handler available, a runtime

error occurs.

Messages in the MESSAGE Statement

The MESSAGE statement in ABAP has two functions

for most message types:

• Indicating an error and ending the normal pro-

gram flow

• Selecting an error handler according to the mes-

sage type (and context); all handlers display the

message text

These functions are strictly separated from each

other in class-based exception handling. In particular,

no assumption is made about possible handlers at

the place where an exception is raised. When you

raise an exception, the error has to be characterized

in just enough detail (by selecting the correct excep-

tion class, for example) that the correct handler

is activated.

Although message texts are not primarily

intended for interaction with end users, it can some-

times be useful to display them using the current

message concept.

In order to display the exception object’s excep-

tion text, you can use the MESSAGE statement in

the following way: first retrieve the textual represen-

tation by a call of get_text, then pass this text —

together with a suitable message type — along

to the MESSAGE statement. The example in the

upcoming section “Creating a History of Exceptions”

demonstrates this. In Release 6.20 you will be able

to pass the exception object directly to the MESSAGE
statement.

Restrictions

Not all system exceptions can be caught in all con-

texts, which was already the case for the old system

exceptions (CATCH SYSTEM-EXCEPTIONS). For

example, you can catch conversion errors in MOVE,

but not in SELECT. Although there are plans to

increase the number of runtime errors that can be

caught, and the number of contexts in which they can

be caught, this will be an evolving process.

Exceptions in a class constructor or a conversion

exit that are not handled locally lead to a runtime

error. This is comparable to exceptions occurring in

CLEANUP clauses. The reason is simple: since both

run behind the scenes, users cannot be aware of these

exceptions, so they must be handled locally.

17 For example, since Release 6.10, many SQL errors can be caught

using the new exception mechanism, but not using CATCH
SYSTEM-EXCEPTIONS.

47For site licenses and volume subscriptions, call 1-781-751-8699.

A Programmer’s Guide to the New Exception-Handling Concept in ABAP

Common Uses of

Exception Handling

To familiarize you with the new exception-handling

concept, in the following sections we provide you

with step-by-step descriptions of some common

use cases.

Return Codes Versus Exceptions

Before we go into detail on how to use the excep-

tions, we should say a little about when it is appropri-

ate to use exceptions at all. We often notice that

programmers use exceptions when it would be better

to use return codes.

As a rule of thumb, you should always ask your-

self if a certain situation is really exceptional or if a

user can expect the situation as a “normal” event. For

example, suppose you write a general search routine

that looks for a specific element in a collection. If the

element is not found in the collection, which is gener-

ally a “normal” event, it is better to use a special

return code to indicate this rather than to go so far as

to raise an exception.

On the other hand, there are situations that

are clearly exceptional, as in the division-by-zero

example given earlier, where raising an exception is

the proper way to deal with the situation.

For the majority of situations however, it depends

on the perception that you have. For example, let’s

assume that you want to define a method to delete

some element from a collection. How should you

behave in situations where the element you’d like to

delete doesn’t exist? The answer is that you will have

to decide whether the situation is exceptional or not.

If the element is expected to exist, you should raise an

exception; if not, just use a return code (if at all).

Creating a History of Exceptions

Suppose you want to handle an exception by raising a

new exception that is more meaningful to the user in

the specific situation. Nevertheless, you still want the

original exception to be included in the history of the

new exception.

Every exception has a previous attribute. To

create a history of exceptions, this attribute has to be

set in the handler code, as shown in Listing 4.

In the event that there is no handler that catches

the new exception, a short dump will occur. In the

short dump you will see the complete history of all

exceptions that are linked together by the previous
attribute.

Displaying Exception Messages on the Screen

Let’s assume that you want to display the text of a

caught exception on the screen, as was previously

possible for “T100” messages.

Listing 4: Set the “Previous” Attribute in the Handler Code

TRY.
 ...
CATCH cx_low_level_cxception INTO caught_exception.
 RAISE EXCEPTION TYPE cx_higher_level_exception
 EXPORTING attr1 = ...
 previous = caught_exception.
ENDTRY.

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.48

The MESSAGE statement has been extended,

making it possible to also output strings. The handler

simply has to get the text, and it can then output the

text using MESSAGE, as shown in Listing 5.

Although exceptions can be easily mapped to

messages, note that exception texts are primarily

intended as a way to describe an exception if it is not

caught and it ends the program. Interaction with the

user should be separate from the exception texts and

handled independently.

Mixed Use of Class-Based and
Non-Class-Based Exceptions

First, assume you are in the process of writing a

method m_new and you want to use class-based

exceptions in the interface. In the implementation,

you use a function module f_old that raises old

exceptions and you want to propagate that exception

to the caller of m_new.

Since you cannot use old and new exceptions in

combination, you will first have to define an excep-

tion class for the exception you want to propagate,

such as cx_m_new. The coding then looks like

Listing 6.

Now let’s look at the opposite scenario: suppose

you already have a function module f_old with

the interface containing an EXCEPTIONS clause.

Assume you want to call method m_new, which

raises new exceptions, in the implementation of

f_old. Since you cannot propagate the new excep-

tion, you have to either handle it or map it onto an old

exception. In both cases, you must catch the new

exception using a TRY construct in f_old, as shown

in Listing 7.

If the function module f_old does not yet have

an EXCEPTIONS clause, and the exception from

m_new is not to be handled locally, this exception

can be propagated simply by declaring it in a

RAISING clause that belongs to f_old.

Adding Exceptions to a Method
That Is Already in Use

Assume that a method do_something may raise

exceptions of the class cx_something (declared in

the RAISING clause of do_something) and that

this method is already used by many other proce-

dures. As part of the maintenance procedure, the

method is to be modified so that it can raise a new

exception called cx_new.

Listing 5: Output the Text Using MESSAGE

DATA str TYPE string.
 ...
TRY.
 ...
CATCH cx_some_exception INTO caught_exception.
 str = caught_exception->get_text().
 MESSAGE str TYPE 'E'.
ENDTRY.

49For site licenses and volume subscriptions, call 1-781-751-8699.

A Programmer’s Guide to the New Exception-Handling Concept in ABAP

Listing 6: Define a Class to Propagate the Exception

METHODS m_new RAISING cx_m_new.
....
METHOD m_new.
 ...
 CALL FUNCTION 'F_OLD' EXCEPTIONS not_found = 1.
 IF sy-subrc = 1.
* -- Mapping old exception onto new exception
 RAISE EXCEPTION TYPE cx_m_new.
 ...
ENDMETHOD.

Listing 7: Catch the New Exception Using a TRY Construct

FUNCTION f_old EXCEPTIONS old_exc_1 ... old_exc_n.
 ...
 TRY.
 CALL METHOD o->m_new.
 CATCH cx_m_new.
* -- Mapping new exception onto old exception
 RAISE old_exc_1.
 ENDTRY.
 ...
ENDFUNCTION.

There are two different possibilities here:

a. cx_new is a subclass of cx_something.

In this case, the interface of the method

do_something has not changed. The

RAISING clause is still valid and the procedures

that use it do not need to be adjusted.

b. cx_new is not a subclass of cx_something.

This is an interface modification, since the caller

of do_something can get a new type of

exception that was not expected until now. In

this case, the developer has to add the new excep-

tion class to the RAISING clause:

 METHOD do_something RAISING
 cx_something cx_new.

As a result, the previous procedures that used

do_something may be invalidated since they

did not expect the new exception cx_new; they

did not catch this exception locally or specify it in

their interface.

To simplify the modification process in these

cases, invalidation does not cause a syntax error,

as explained earlier in the section “Syntax and

Semantics of the Declaration.”

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.50

Conclusion

In these pages we have introduced a unifying concept

for all kinds of errors and other exceptional situations.

Such a concept is essential for writing generic ser-

vices that are to be used in various contexts.

This article has demonstrated the advantages

of this concept and hopefully has enabled you to

use exceptions in new and existing programs.

To summarize the advantages:

� There is a clear separation between error detec-

tion and error handling, and a clear separation

between “normal” coding and error handling. An

error induces a change of control to the appropri-

ate error handler.

� The use of classes makes it possible to support

exception handlers, for specific exceptions and

situations where you need to know every detail,

and generic handlers, which are suitable for a

whole group of exceptions.

� The automatic exception propagation across all

kinds of procedures makes exception handling

usable without forcing you to use a specific way

to modularize your programs.

� The concept of “checked” exceptions enables you

to find untreated exceptions directly at compile

time or makes it possible to identify the proce-

dure that should have handled the exception. The

different levels of checks avoid counterproductive

“check workarounds” like empty exception han-

dlers, which would sometimes be necessary with

a less flexible concept.

� Programmers have the ability to specify some

“cleanup” coding that will be executed only if a

procedure is left prematurely.

Although using new exceptions does not force

you to abandon existing procedures that use classical

exceptions, once you discover how easy the new

exceptions are to use, and the enhanced functionality

they provide, you will prefer them anyway — just

give the TRY a try!

Gerd Kluger studied computer science at the

University of Kaiserslautern, Germany. After

receiving his degree, he worked for a company

whose main focus was the development of

programming languages for business applications.

He was responsible for the development of the

compiler and programming environment for the

object-oriented programming language Eiffel.

Gerd joined SAP AG in 1998 and since then

has been working in the Business Programming

Languages Group. His main responsibility is in

the development of ABAP Objects and the further

development of system interfaces, especially with

regards to the file system.

He can be reached at gerd.kluger@sap.com.

Christoph Wedler received a degree in computer

science from the University of Erlangen,

Germany, in 1993. He joined SAP in 1999 and

is now a member of the Business Programming

Languages Group. Christoph is responsible

for the integration of XML into the ABAP

language and different parts of the ABAP

runtime environment. He can be reached at

christoph.wedler@sap.com.

