
3For site licenses and volume subscriptions, call 1-781-751-8699.

Optimize Database Access and Increase System Performance Through More Efficient ABAP Programming

Optimize Database Access and
Increase System Performance
Through More Efficient ABAP
Programming
Rehan Zaidi

I often find ABAP developers struggling to optimize their programs

in order to meet their users’ performance requirements. An ABAP

program can be slow for a variety of reasons, but one of the most

common is the presence of long-running SQL statements, which affects

a program’s overall runtime. These statements can also cause over-

consumption of both database and network resources, and could

potentially become a threat to your R/3 system’s overall performance.

So what causes “expensive” SQL statements? What are the basic

techniques for optimizing database access processing? What are the

available utilities in an SAP R/3 system for achieving more streamlined

and efficient data access? This article answers these questions by

providing an overview of database access optimization for ABAP

developers who have practical experience in database programming.

I will start with a brief introduction to Open SQL and the SAP

architecture, and then I will discuss the various techniques available

to you for speeding up data access in ABAP programs. Using sample

code along the way, I will also illustrate these techniques in action and

point out the most common coding mistakes developers make.

Database Access in SAP R/3 —

A Brief Background

In an R/3 system, data is stored in a relational database. A relational

database consists of tables that are two-dimensional data structures

defined by rows (data records) and columns (fields). The smallest

Rehan Zaidi is an SAP

Technical Consultant at

Siemens Pakistan. He has

been involved in ABAP

development at both

in-house and remote

implementations of SAP R/3.

Most of his work includes

designing and writing

country- and customer-

specific applications for

the SAP HR module, and

he is also familiar with the

BAPI, ALE, and Workflow

components.

(complete bio appears on page 22)

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.4

possible combination of fields that can uniquely

identify each table row is called a key. Each table

must have at least one key, and each table has one

key that is defined as its primary key. In a relational

model, the relationship between various tables is

expressed in terms of foreign keys. A combination

of fields in a table is termed a foreign key if it is the

primary key of another table.

Application programs can address this database

by means of a standardized language known as SQL

(Structured Query Language), which contains state-

ments for reading, modifying, creating, and adminis-

tering database tables. SQL is embedded in the

ABAP language via two kinds of statements:

• Open SQL (a database-independent subset of

standard SQL)

• Native SQL (the language of the database system

being used)

Open SQL statements are fully integrated into

ABAP and allow you to access data regardless of the

database system that the R/3 installation is using.

Open SQL consists of the Data Manipulation Lan-

guage (DML) portion of standard SQL; in other

words, it allows you to read and change data.

Figure 1 lists all Open SQL keywords and their

respective functions.

Open SQL, along with other ABAP statements,

can be used to simplify and speed up database access,

as you will see later in this article. It supports buffer-

ing of certain tables and statements on the application

server, thus preventing excessive database access.

Buffers are partly stored in the working memory of

the current work process, and partly in the shared

memory for all work processes on an R/3 application

server. In situations where an R/3 system is distrib-

uted across more than one application server, the data

in the various buffers is synchronized at set intervals

by the buffer management.

Open SQL statements do not access the database

directly. They are checked at compile time and con-

verted to the proper SQL statements for the specific

database system.

Native SQL statements, in contrast to Open SQL

statements, are only loosely integrated into ABAP,

but allow access to all of the functions contained in

the programming interface of the underlying database

system. So, if you want to use specific features of a

certain database that are beyond what Open SQL can

do, you’ll need to use Native SQL. Obviously, pro-

grams that use Native SQL become inextricably

linked to the database system for which they are

written, so when writing R/3 applications, Native

SQL should be used as a last resort.

Figure 1 Open SQL Keywords and Their Functions

Keyword Function

SELECT Read data from database tables.

INSERT Insert lines into database tables.

UPDATE Change the contents of lines in database tables.

MODIFY Insert lines into database tables or change the contents of existing lines.

DELETE Delete lines from database tables.

OPEN CURSOR, Read lines of database tables using a cursor.

FETCH,

CLOSE CURSOR

COMMIT WORK Confirm all changes made in a database logical unit of work (LUW*).

ROLLBACK WORK Undo all changes in a database LUW.

* A sequence of database operations that must be executed either in its entirety or not at all.

5For site licenses and volume subscriptions, call 1-781-751-8699.

Optimize Database Access and Increase System Performance Through More Efficient ABAP Programming

SQL and the SAP Architecture

In order to understand how SQL statements affect the

runtime of ABAP programs, you need to understand

the underlying SAP system architecture.

SAP R/3 is based on a multi-tiered architecture.

It consists of three layers:

• The presentation layer

• The application layer

• The database server layer

In a single R/3 installation, there can be many

presentation servers (client frontends), and one or

more application servers, but there can be only one

database server. R/3 supports databases such as

SAP DB, Oracle, SQL Server, DB2, and Informix.

The ABAP programs containing the SQL statements

run on the application server, while the data resides

on the database server.

On the database server, large amounts of data are

administered using a Relational Database Manage-

ment System (RDBMS) that maintains the data and

the relationships between that data (see Figure 2).

Figure 2 A Typical Architecture of an SAP R/3 System

����������	

��
��

�������	��
��������
��	�����	�

�����

��������
����

�������

��������
����

�������

��������
����

�������

���
����

�������

���
����

�������

���
����

�������

�������������	������	

��������� 	����!�����

��������
���
����"

���������
��������

�����

!������	��
�����

���������#����

�
��

��
��

��
�

�
$

�%
��

��
�

��
�$

��

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.6

statement is present in the buffers of the application

server, it is made available to the program from there.

Otherwise, the database interface converts this Open

SQL statement into the corresponding Native SQL

statement of the underlying RDBMS, and then sends

the statement to the database server. The database

server determines the rows requested by the Native

SQL statement (the result set) and sends them back to

the application server. The processing of the program

then continues.

Keeping the above architecture in mind, the

important factors that determine performance are

the following:

• Physical data input/output: As mentioned

earlier, the data is stored on the hard disk of the

database server. Reading data from the database

server (or writing data to it) involves a large

amount of physical data input and output, which

can become a bottleneck when large amounts of

data are involved.

• CPU and memory usage: The more data that is

read from the database, and the more frequently it

is read, the more CPU resources and memory are

Figure 3 Executing an Open SQL Statement

The RDBMS forms the link between the users and the

actual data, and provides services that are called by

the work processes of the application server. The

RDBMS consists of a large memory area containing

caches for storing frequently used data. The data is

stored permanently on the database server’s hard disk

and is managed either by the file system or directly

by a physical layer of the RDBMS.

Now let’s examine in detail what happens

when a program containing an Open SQL statement

is executed. Suppose you write the following

SELECT statement in your program:

SELECT * FROM SPFLI
 WHERE carrid = 'LH'
 AND connid = '1234'.
 ...
ENDSELECT

This code is executed on the application server (see

Figure 3). The statement is passed on to the compo-

nent of the application server known as the database

interface. If the data requested by the SELECT

����������	�
��
��

�&��
 	���������

��������
�	
����

�
��
������

&�''���
��������
 	���'��� ��������

��
��
!��	�
()

����
��
()

7For site licenses and volume subscriptions, call 1-781-751-8699.

Optimize Database Access and Increase System Performance Through More Efficient ABAP Programming

required, and this has an adverse effect on the

speed of the program.

• Network load: The database server generally

resides separately from the application server.

Communication between work processes and the

database server take place through a network

connection. As increasing amounts of data are

transferred from the database server to the appli-

cation server, the network load increases consid-

erably, which adversely affects the speed of the

ABAP program.

So how can you prevent your SQL statements

from causing these factors to negatively affect your

program’s performance? By following these five

“golden rules” to ensure their efficiency:

1. Optimize the size of the result set (i.e., the num-

ber of rows that the statement returns).

2. Optimize the amount of data to be transferred

from the database to the application server.

3. Optimize the number of data transfers.

4. Optimize the time required to search the database

and retrieve the result set.

5. Optimize the load on the database.

After exploring each of these, I will also demon-

strate how to use a special utility called SQL Trace,

which shows you how your program interacts with

the database. It shows you which Native SQL state-

ments are created from your Open SQL statements

and which parameters are passed to the database. It

also provides information on how the database deter-

mines the result set by showing you the execution

plan and, most important, tells you the execution time

of each SQL statement. With all these capabilities,

SQL Trace is a valuable tool for scrutinizing your

program’s performance with respect to database

accesses.

Let’s now take a closer look at each of the five

golden rules.

Rule #1: Optimize the Size

of the Result Set

The amount of time it takes to access the result set

depends on the number of rows found in the database.

More rows means a longer transfer period from the

database to the application server. To keep this time

(and thus its effect on performance) minimal, you

need to keep the size of the result set minimal, and

the only way to do this is to restrict the data that is

selected. By restricting the data up front, you addi-

tionally avoid having to later expend resources filter-

ing out unwanted data with additional ABAP coding.

For example, do not select a large data set and

then reject unwanted data with CHECK. This method

is shown in the following example, where all data

records from table SFLIGHT are transferred to the

application server and discarded immediately, except

for those where CARRID equals “LH” and CONNID

equals “3577”:

SELECT * FROM SFLIGHT.
 CHECK SFLIGHT-CARRID = 'LH'
 AND SFLIGHT-CONNID = '3577'.
 ...
 ...
ENDSELECT.

Open SQL provides the WHERE and HAVING
clauses to achieve this purpose more efficiently by

allowing the database server to make the selection

before the data transfer, so no unwanted data is trans-

ferred to the application server. Wherever possible,

include all selection conditions in the WHERE clause

(using AND) and use the relational operator EQ (“=”)

to check for equality between fields:

SELECT * FROM SFLIGHT
 WHERE CARRID = 'LH'
 AND CONNID = '3577'.
 ...
 ...
ENDSELECT.

!!!!!

"""""

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.8

actually needed. Read all lines of a table only in very

rare cases.

Rule #2: Optimize the Amount

of Data Transferred

Data is transferred in blocks from the database server

to the application server. The exact size of a block

depends on the settings of your R/3 system, but typi-

cally the size is about 32 KB. The greater the number

of blocks to be transferred, the greater the network

load. To optimize programs, the number of blocks

must be as minimal as possible.

An ABAP programmer should always try to

avoid reading the complete data record (SELECT *)

and instead read only the data that is actually needed

(SELECT F1, F2, ... FROM). Suppose you require

only the two fields CITYFROM and CITYTO from

the table SPFLI, and you want to select only the

instances where CARRID equals “SQ” and CONNID

equals “0026”. In this case, you should avoid the

following coding:

SELECT * FROM SPFLI
 WHERE CARRID = 'SQ'
 AND CONNID = '0026'.
 ...
ENDSELECT.

A much better approach is to restrict the selection

to the fields that are really needed:

DATA: FROM LIKE SPFLI-CITYFROM,
 TO LIKE SPFLI-CITYTO.
SELECT CITYFROM CITYTO INTO (FROM,TO)
 FROM SPFLI
 WHERE CARRID = 'SQ'
 AND CONNID = '0026'.
 ...
ENDSELECT.

Here only the fields CITYFROM and CITYTO are

transferred to the application server and stored in the

variables FROM and TO, respectively.

Another way of restricting the number of selected

rows is to use the HAVING clause, which is used in

conjunction with the GROUP BY clause. It allows you

to select groups of rows (GROUP BY) that fulfill a

certain condition (HAVING). Aggregate expressions

are used to formulate these conditions. Consider the

following example:

DATA: cnt TYPE I.
SELECT count(*) INTO cnt FROM sflight
 WHERE carrid = 'AU'
 GROUP BY connid
 HAVING SUM(seatsocc) > 100.
 ...
ENDSELECT.

This coding selects the number of flights per connec-

tion from airline “AU” whose connections have,

in sum, at least 100 passengers. To perform this

selection, it not only selects all lines from database

table SFLIGHT with the value “AU” for CARRID,

but also groups all lines with identical values for

CONNID. These groups are then restricted further

by the condition that the sum of the contents of the

column SEATSOCC for a group must be greater

than 100.

If you want to read a single line of a database

table, or you are sure that the WHERE clause lists all

the primary key fields of the table, it is better to use

the SELECT SINGLE statement. A SELECT
SINGLE statement is the fastest method if all key

fields are checked for equality and are listed in the

sequence in which they appear in the table. Suppose

table my_tab consists of the primary key fields f1,

f2, and f3. The SELECT statement should look

as follows:

SELECT SINGLE * FROM my_tab
 WHERE f1 = field1
 AND f2 = field2
 AND f3 = field3.

To sum up, keep the result set as minimal as

possible. Avoid reading the entire contents of a

database table and do not access rows that are not

!!!!!

"""""

"""""

"""""

9For site licenses and volume subscriptions, call 1-781-751-8699.

Optimize Database Access and Increase System Performance Through More Efficient ABAP Programming

explicitly counting each row as it is transferred to the

application server. Not a very efficient method.

Now look at the following coding:

SELECT COUNT(*) INTO CNT FROM SPFLI
 WHERE CARRID = 'LH'.

This line of code does exactly the same thing with

respect to the final result: counting the number of

rows in the result set. However, rather than transfer-

ring the data to the application server and counting

the rows there, here the counting is performed on the

database server side. No need to transfer any data

from the result set to the application server, except

when the final result is stored in CNT. This means

that no unnecessary data is transferred, and thus the

network load is kept to a minimum.

Avoiding unnecessary transfers is not just a mat-

ter of SELECT statements. It can also be employed

when changing existing data. For example, if you

want to change only some columns in certain rows of

a database table, use the UPDATE ... SET statement.

First select the desired rows using the WHERE clause,

then set the desired columns to the new value. This

is shown in the following example, which sets the

plane type to “A380” and decreases the price for

flight “AA1234” by 200:

UPDATE SFLIGHT SET
 PLANETYPE = 'A380'
 PRICE = PRICE - '200.00'
 WHERE CARRID = 'AA'
 AND CONNID = '1234'.

Note that using the UPDATE ... SET statement

to make changes in the existing data is much more

efficient than using a separate work area to make

these changes, since a separate work area would

require additional data transfer via the network.

In summary, transfer only data that you really

need and move computations to the database side

whenever possible.

If you want to limit a result set to only a certain

number of lines, you should always use the UP TO n
ROWS addition in the FROM clause. For example, you

should avoid coding like:

SELECT * FROM SCARR.
 IF sy-dbcnt = 5.
 EXIT.
 ENDIF.
 ...
ENDSELECT.

A more efficient alternative is the following,

since it transfers only the number of rows you really

want to the application server:

SELECT * FROM SCARR UP TO 5 ROWS.
 ...
ENDSELECT.

In situations where you want to perform calcula-

tions on data, it is advisable to use the aggregate

functions that the SELECT clause provides. Instead

of reading individual entries from the database and

performing the calculations yourself on the applica-

tion server, have aggregate functions perform the

calculations on the database side, which is much

quicker, especially if you transfer the data solely to

compute the result.

The aggregate functions that Open SQL provides

are MAXIMUM, MINIMUM, AVERAGE, SUM, and the

COUNT of all values of a particular column as well as

the number of rows that meet the selection criterion,

i.e., COUNT(*). Let’s look at the following coding

example:

CNT = 0.
SELECT * FROM SPFLI
 WHERE CARRID = 'LH'.
 CNT = CNT + 1.
ENDSELECT.

The coding determines the number of connections for

airline “LH” and stores the result in variable CNT by

selecting the required rows from table SPFLI and

!!!!!

!!!!!

"""""

"""""

"""""

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.10

Rule #3: Optimize the Number

of Data Transfers

Remember that for the execution of every SELECT
statement, the database interface accesses the data-

base server (via the network), the database server

determines the result set (either from scratch or

from a cache), and the database server then sends

the result set back to the database interface. These

activities consume both network and database system

resources, thus you should make every effort to mini-

mize the number of times the database is accessed —

e.g., by avoiding redundant access to data.

Suppose there is a table ZTAB containing 50

entries and, in your application, you wish to read the

table 1,000 times for values based on field f1. One

alternative would be to use a SELECT statement each

time, as follows:

SELECT SINGLE * FROM ztab
 WHERE f1 = fieldvalue.

Since table ZTAB in this example is relatively

small, a better approach would be to make a replica of

the database table in your program and then access

the desired line in that table via a READ statement. In

order to do so, use the INTO clause and provide a

table instead of using the implicit work area:

SELECT * FROM ztab INTO TABLE itab.

Then retrieve the data from that table via a simple

READ statement:

READ TABLE ztab WITH KEY
 f1 = fieldvalue.

This method is much quicker since activity happens

only on the application server side and there is no

need to access the database.

Of course, with a large table, the above strategy

would violate Rule #1 (“Optimize the Size of the

!!!!!

Result Set”), so avoid such a coding practice when

the number of rows is very large. For example, if

table ZTAB contains 10,000 entries and you need

to read it only 100 times, it is better to use the

SELECT SINGLE statement instead of populating

an internal table.

In some situations, you may find that a SELECT
statement is executed many times with the same set of

values passed in the WHERE clause. As an example,

take a look at the following statement:

SELECT SINGLE * FROM t512t
 WHERE spras = sy-langu
 AND lgart = w1.

Suppose the above statement is written in a loop and

there is a chance that the value of w1 is identical to

what it was in the previous iteration (loop cycle). In

that case, since the value of sy-langu remains the

same throughout, the SELECT is called despite the

fact that the work area t512t already contains the

desired data.

A better way is to omit the unnecessary SELECT
in this case, as shown below:

IF w1 <> t512t-lgart
 OR t512t-spras <> sy-langu.
 SELECT SINGLE * from t512t
 WHERE spras = sy-langu
 AND lgart = w1.
* else data already there
ENDIF.

Here, an IF statement is used to call the SELECT
only when the value has really changed.

Nested SELECT loops are a serious problem.

In a relational data model, it is quite common for

logically interconnected data to be split up into sev-

eral tables. In situations where a developer has to

access the interconnected data, many developers often

employ a nested SELECT statement to enable this,

with disastrous effects on the overall performance.

!!!!!

"""""

"""""

"""""

11For site licenses and volume subscriptions, call 1-781-751-8699.

Optimize Database Access and Increase System Performance Through More Efficient ABAP Programming

1 Note that the result set is transferred in blocks, so not every loop

through a SELECT ... ENDSELECT results in a database access.

If this were the case, the number of accesses would increase to

100 * <average size of result set for inner SELECT>. Of course,

however, there are more than 101 network transfers, depending on

the block size and the size of the result set in bytes.

2 For simplicity, I have used the INNER JOIN. However, you can also

use a LEFT [OUTER] JOIN. In addition to what the INNER JOIN
does, the OUTER JOIN also includes in the result set the fields in the

left-hand table for which there is no corresponding match in the right-

hand table. The fields that are supposed to be filled by data from the

right-hand table are assigned NULL values.

As an example, consider the tables SPFLI and

SFLIGHT, which are interconnected by the fields

CARRID and CONNID. Suppose you wish to find

all the carriers and their respective details. You can

use the following simple piece of code:

DATA: CARR TYPE SPFLI-CARRID,
 CONN TYPE SPFLI-CONNID,
 SEATS TYPE SFLIGHT-SEATSOCC.
SELECT CARRID CONNID INTO (CARR,
 CONN) FROM SPFLI.
 SELECT SEATSOCC INTO SEATS FROM
 SFLIGHT
 WHERE carrid = CARR
 AND connid = CONN.
 ...
 ENDSELECT.
 ...
ENDSELECT.

This construct, without a doubt, provides the right

result. But it is slow and unnecessarily consumes a

lot of system resources. The inner SELECT state-

ment (on table SFLIGHT) is executed for every data

record of the outer SELECT statement (on table

SPFLI), which can become a hassle if the outer

SELECT yields a large number of rows. Suppose the

number of rows from table SPFLI is 100 — the inner

SELECT is then also processed 100 times. The total

number of database accesses (SELECTs) amounts to

101 (1 for the outer SELECT, and then 1 for each of

the 100 rows of the result set). Since every SELECT
consumes a certain amount of time (and resources),

the large number of SELECTs could slow the pro-

gram significantly.1

There are two methods available to you for solv-

ing this problem:

• ABAP JOINs — Nesting of SELECT loops can

be avoided by using the JOIN command in a

!!!!!

SELECT statement.2 It enables you to link tables

based on certain conditions between their related

fields. The condition between the outer and inner

tables is specified using an ON clause. So, an

equivalent statement to the previous nested loop

example that uses a JOIN instead is:

SELECT P~CARRID P~CONNID
 F~SEATSOCCINTO
 (CARR, CONN, SEATS)
 FROM SFLIGHT AS F INNER
 JOIN SPFLI AS P
 ON F~CARRID = P~CARRID
 AND F~CONNID = P~CONNID.
 ...
ENDSELECT.

The above program fragment results in a single

SELECT loop, which means 1 database access

instead of the 101 in the previous example, thus

increasing the overall program performance.

Moreover, less data is transferred from the data-

base server to the application server. To deter-

mine the result of a SELECT statement, the data-

base system creates a temporary table containing

the lines that meet the ON condition. Any WHERE
condition is then applied to the temporary table.

After that, only the data that is actually needed is

transferred to the application server.

• Dictionary Views — An alternative is to define

JOINs as views in the database. Views are stati-

cally and globally defined in the ABAP Dictionary

and can be used by all ABAP programs. Views

are implemented in the ABAP Dictionary as

INNER JOINs. The fields that are common to

both tables are transferred only once from the

database server to the application server. Views

are more efficient than implementing ABAP

JOINs since they utilize the buffering advantages

offered by the SAP system.

"""""

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.12

This statement enacts a mass update of several lines

in a database table. Here, the key for selecting the

lines to be updated and the values to be changed are

taken from the lines of the internal table itab.

To sum up, minimize the number of data trans-

fers. Each data transfer adds to a program’s execu-

tion time.

Rule #4: Optimize the Cost

of Database Searches

The time required to search for the result set depends

on the number of rows in the database table. Data-

bases provide a mechanism known as indexing to

speed up the selection of records from a large data-

base table. Make every effort to formulate your

SELECT clauses according to the table indexes.

Think of an index as a copy of a portion of a

database table. The fields of the index are stored

in a sorted form, which enables faster access to the

records of the table (using algorithms such as binary

search). The values listed in the index represent the

search criteria of a WHERE clause. The index con-

tains a pointer that links the index entry to the corre-

sponding entry in the database table (see Figure 5).

Suppose we write the following Open SQL

statement:

Figure 4 A Comparison of ABAP Dictionary Views and ABAP JOINs

Dictionary View Explicit JOIN

Only INNER JOIN possible INNER JOIN and OUTER JOIN permissible

Buffering advantages can be utilized Buffering bypassed by ABAP JOIN

Globally defined — Defined locally in a program, so only this program can

can be used in more than one program utilize it

JOIN condition statically defined JOIN condition can be varied in program according to the

user’s requirement

Figure 4 shows a comparison of the Dictionary

View method and the ABAP JOIN method.

Another method for reducing the number of data

transfers and for programming complex database

operations is to use subqueries in the WHERE clause.

Subqueries give you an efficient way to access more

than one database table in the same Open SQL state-

ment. The data from the subquery is not transferred

to the application server, but instead the subquery is

evaluated in the database system.

For example, consider the following coding:

DATA wa TYPE sflight.
SELECT * FROM sflight AS s INTO wa
 WHERE EXISTS (SELECT * FROM spfli
 WHERE carrid = s~carrid).
 ...
ENDSELECT.

In contrast to the nested SELECT example on the

previous page, here only those rows where the field

CARRID of table SPFLI equals the field CARRID of

table SFLIGHT are transferred to wa.

When using the statements INSERT, UPDATE,

and DELETE for more than one row of a database

table, it is more efficient to use an internal table

followed by a single Open SQL statement, instead of

calling an Open SQL statement for each row. An

example of this is the statement:

UPDATE dbtab FROM TABLE itab.

"""""

"""""

13For site licenses and volume subscriptions, call 1-781-751-8699.

Optimize Database Access and Increase System Performance Through More Efficient ABAP Programming

is then determined and transported to the application

server for further processing.

In an SAP R/3 system, each database table has a

primary index that consists of the table’s key fields.

The index is created and administered by the R/3

system, and is automatically created in the database

when the table is activated. The primary index is

an example of a unique index.3 When using the pri-

mary index, it is always fastest to mention all of

the primary key fields with an EQ operator in the

WHERE clause. If none of the primary index fields

appear in the WHERE clause of your SELECT state-

ment, the system searches the entire table to deter-

mine the result set. This is known as a full-table

scan, which can become a substantial bottleneck if

there are a large number of rows in that table. For

Figure 5 Linking the Index Entry to the Database Table

3 An index of a table is a unique index if the fields contained in the

index uniquely identify each record of the table (i.e., there are no

two records in the table that have the same index).

���	*�����	*�+
�	�� ��!�,

&�	���
������

���������,����

�!$�,-�

� ��!�, �

��� �

��� �

��� �

��� 	

�� �

�� �

��� ��

)�. /

)�. 0

��� ��

��� �

��� ��

��� ��

��� ��

����, ���� � �!$�,�$� � ��!�,

��� �� �������� ���

��� �� �������� ���

��� �� �������� ���

112)3 11111114)�.

��� �� �������� ���

��� �� �������� ���

��� �� ��������
��

��� �� ��������
��

112 &� 11111112)�.

��� �� �������� ���

��� �� �������� ���

��� �� �������� ���

��� �� �������	 ���

��� �� �������� ���

����������	
�
��
����	����	�
��	�
	����������

SELECT * FROM SCOUNTER
 WHERE AIRPORT = 'LCY'.

Let us assume that an index called “AIRPORT” exists

for the table SCOUNTER. When the above query is

sent to the database server, the database optimizer

locates the index that is best for accessing the data (in

this example, the AIRPORT index). So, instead of

searching the entire SCOUNTER table for the rows

where the field AIRPORT is equal to “LCY,” the

optimizer carries out a binary search in the AIRPORT

index, as shown in Figure 5. This is known as an

index-range scan. Via the index, the optimizer finds

the sequential numbers of the rows (in the actual

table) that fulfill the query criteria (WHERE AIRPORT
= 'LCY'). Each index row contains a pointer to the

corresponding record of the table SCOUNTER.

These pointers (or sequential numbers) are used as a

link to the complete data record so that the fields not

contained in the index can also be read. The result set

"""""

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.14

4 A field is highly selective if a small proportion of table rows can be

selected by using it (i.e., a field that significantly restricts the set of

results in a selection).

such situations, SAP allows you to create secondary

indexes (via transaction SE11) that can restrict the

number of entries searched.

It is worth creating secondary indexes only when

you want to select table entries based on fields not

contained in the primary index and the search is

very slow.

Conditions to Keep in Mind
When Using Indexes

! The index search is very fast if you check all

index fields for equality and combine them with

the AND operator. For example, in the following

SELECT statement, the primary index (CARRID,

CONNID) is used:

SELECT SINGLE * FROM SFLIGHT
 WHERE CARRID = 'LH'
 AND CONNID = '1234'.

Even if not all index fields are mentioned in the

WHERE clause, a quick search can be achieved by

specifying the fields in the same sequence in which

they appear in the index definition.

! Avoid using the NOT operator in the WHERE
clause, since this will prevent the database optimizer

from using the index. The database system supports

only SQL statements that are defined in positive

terms — for example, EQ and LIKE (not NE and

NOT LIKE). If possible, invert the logical expression

instead.

The database optimizer halts when it sees an inner

OR in an expression of an SQL statement. Try to

reformulate such conditions into forms relevant to the

index, such as an IN condition. For example, you

should avoid the following SELECT statement, which

has an inner OR:

SELECT * FROM SPFLI
 WHERE CARRID = 'AU'

 AND (CITYFROM = 'FRANKFURT'
 OR CITYFROM = 'NEW YORK').

It’s better to rephrase the WHERE condition in a way

that the OR is outmost — i.e., the WHERE condition

consists solely of subexpressions that are combined

by OR and contain only AND or IN:

SELECT * FROM SPFLI
 WHERE (CARRID = 'AU'
 AND CITYFROM = 'FRANKFURT')
 OR (CARRID = 'AU'
 AND CITYFROM = 'NEW YORK').

While defining secondary indexes, fields that are

highly selective4 should be included. It is best to

place such fields at the beginning of the index so that

there are fewer rows on which to perform the binary

search, and thus less time is required.

! Try not to create more than five indexes for a

single database table. First, whenever table fields are

changed, the indexes also need to be updated, which

places a load on the database server. Second, there

are more chances for the database optimizer to choose

a “wrong” index. To ensure that this does not hap-

pen, the fields of the indexes should be as disjunctive

as possible.

! An index should consist of no more than four

fields of a table. The index has to be updated each

time you modify its fields in a database operation,

which then places an extra load on the database

server.

! In extreme situations — e.g., if your SQL state-

ment is rather complex — the database optimizer

might not use any index and will try to search the

entire table for the result set. This can be avoided by

providing the optimizer with HINTS, which (as the

name indicates) provide the optimizer with an indica-

tion of the index to be used for a particular table.

!!!!!

"""""

"""""

15For site licenses and volume subscriptions, call 1-781-751-8699.

Optimize Database Access and Increase System Performance Through More Efficient ABAP Programming

Open SQL allows you to specify HINTS in the

SELECT statement by using the %_HINTS clause.

For more information on specifying HINTS, refer to

OSS Note 129385.

In summary, keep the cost of searching the data-

base to a minimum. A slow search could result in

increased runtime and thus decreased performance.

Rule #5: Optimize the Load

on the Database

As mentioned earlier, there may be many presentation

or application servers, but there is just one database

server in a single R/3 installation. If you aren’t care-

ful, the database server can quickly become over-

loaded, so make every effort to reduce the load on

the database.

There are several different ways to reduce the

load, including the following:

• Use table buffering.

• Avoid rereading the same data.

• Use the ABAP SORT clause instead of

ORDER BY.

• Avoid the SELECT DISTINCT statement.

• Use logical databases.

In the following sections, I will describe these

methods in more detail.

Use Table Buffering

SAP provides a buffering facility for tables in order to

increase performance when records are being read.

Since the buffers reside on the application server, it

takes considerably less time to access a table that is

buffered locally rather than reading it from the data-

base server. In fact, SAP testing indicates that buffer-

ing improves accessing time by a factor of 10 to 100,

an improvement I have also noticed in my own expe-

riences. For example, reading an entry from table

T001 can take between 8 and 600 milliseconds, while

reading the same entry from the buffer takes between

0.2 and 1 millisecond.

The R/3 system manages and synchronizes the

buffers on the application servers. If an ABAP pro-

gram requests data from a particular table, the data-

base interface first checks whether the requested data

is already available in the buffers of the application

server. In that case, the data is read directly from the

local buffer. Otherwise, it is read from the database

and then copied into the buffer in order to satisfy the

next access of this data.

Now let’s take a closer look at what happens

when a record is read from a buffered table. Assume

a program requests some data from a table. If the

table is defined as buffered in the ABAP Dictionary,

the system checks the local buffer on the application

server to see whether any records of the table are

already there. If the data is present in the buffer, it is

passed on to the program. If not, the request is sent to

the database server, the data is then read from there,

and the buffers are updated according to the type of

buffering used. The buffering type defines which

table records are loaded into the buffer of the applica-

tion server when a table record is accessed.

There are three types of buffering:

• Full buffering: In this case, all records of the

table are loaded into the buffer when a single

record is accessed from the buffered table.

• Generic buffering: When a record from the

buffered table is accessed, all records whose

generic key fields match those of the accessed

record are loaded into the buffer. The generic

key field is the leftmost portion of the table’s

primary key. (Remember that a key is a combi-

nation of fields that uniquely identifies a table

row, and that each table has one key that is its

primary key.) The generic key field must be

defined when the buffering type is selected.

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.16

• Single record buffering: In this case, only the

records that are actually accessed are loaded into

the buffer.

When a buffered record changes, the buffer on

the application server is updated and the database

interface logs this change in the table DDLOG. If the

installation contains more than one application server,

the other application server(s) periodically read the

contents of table DDLOG to update their buffers.

This is known as synchronization and typically occurs

every 60 seconds.

Tables that are often read and rarely changed are

ideal candidates for buffering. Tables whose contents

are frequently changed should not be buffered, since

the buffers need to be updated each time the rows are

overwritten. This may increase both the load on the

application server and on the network.

Not all statements can be supplied from the

buffer, so when working with buffered tables, it is

important to know which statements will bypass the

buffer. When using one of the following statements,

you cannot take advantage of the maximum speed

buffering can provide:

• The DISTINCT addition, or any aggregate

expressions in the SELECT clause

• The ORDER BY clause or a GROUP BY /
HAVING clause

• Any WHERE clause that contains a subquery

or an IS NULL expression

• Any JOINs

• A SELECT ... FOR UPDATE

• All Native SQL statements

If you want your statement to bypass the buffer in

any case — e.g., to be sure to get the very latest data

records (and not some likely outdated ones) — you

can simply use the BYPASSING BUFFER addition in

the SELECT clause.

Avoid Rereading the Same Data

If you read the same data over and over again, you

increase both the number of database accesses and the

load on the database. In addition, on some database

systems, a “dirty” read may occur, which means that

the second time the data is read from the database

table, it may be different from the data read the first

time. In order to avoid all this, read the data once and

store it in an internal table (refer back to Rule #3,

“Optimize the Number of Data Transfers”).

Use the ABAP SORT Clause
Instead of ORDER BY

In order to sort the selected lines of a database table,

programmers usually use the ORDER BY clause in the

SELECT statement. Two of its common forms are

ORDER BY PRIMARY KEY and ORDER BY f1 … fn.

In the latter form, the database optimizer might not

choose the correct index to form the result set because

the optimizer does not support the ORDER BY f1 …

fn form in the SELECT statement. In this case,

sorting the result set places an extra load on the

database server, particularly when the hit list is

very large.

Since the database server is usually the bottle-

neck, and other application servers might have state-

ments waiting for execution, sometimes it’s better for

the overall performance to move the sort effort from

the database server to the application server. You can

shift the task to sort by reading the result set into an

internal table and then sort it using the ABAP com-

mand SORT:

DATA flights TYPE TABLE OF sflight.
SELECT * FROM sflight INTO TABLE
 flights.
SORT flights BY currency price.

Of course, the success of this measure depends

largely on the size of the result set. For very large

result sets, this might not be a feasible solution and

you would want to let the database server sort it.

"""""

17For site licenses and volume subscriptions, call 1-781-751-8699.

Optimize Database Access and Increase System Performance Through More Efficient ABAP Programming

Use Logical Databases

SAP provides many logical databases for reading

records from the database. Logical databases are

ABAP programs that decouple Open SQL statements

from application programs and have been optimized

by SAP for the best database performance.

However, it is important for the ABAP developer

to select the right logical database, otherwise it can

have a negative effect on performance. The sequence

of data that you want to read must correspond to the

structure of the logical database chosen. A logical

database has a hierarchical tree-like structure of tables

where there is one root node table (the highest level)

from which various levels of subnodes are derived

(linked). Thus, for example, it is not wise to employ

a logical database to read from a table’s lowest

subnode, because the system will have to read at least

the key data from all tables (starting from the root)

before finally reading the data from the required

table. In this case, it is advisable to use a SELECT
statement instead, which is more efficient because no

unnecessary tables are read.

To sum up, reduce the load from the database.

Since there is only one database server in an R/3

installation, any unnecessary load on it might result in

a decline of the system’s overall performance.

Using SQL Trace

If, after following the five “golden rules” and apply-

ing the techniques described so far, your program’s

performance is still too slow, or you simply want to

analyze your program’s database accesses and

COMMITs, you might want to use a special utility

called SQL Trace (transaction ST05).

SQL Trace allows you to see how the Open SQL

statements in your ABAP programs are converted to

Native SQL statements, and the parameters with

which the Native SQL statements are passed to the

database. In addition, you can view the runtimes of

Avoid the SELECT DISTINCT Statement

Similar to the ORDER BY clause, it is better to avoid

the SELECT DISTINCT variation of the SELECT
statement in cases where some of the fields to be

distinct are not part of an index. The database server

has to do more work in that case since it cannot

immediately identify duplicates. If you really need

distinct rows, an efficient alternative may be to read

all of the data into an internal table (itab) on the

application server, sort this table using the SORT
command, and then use the DELETE ADJACENT
DUPLICATES command to delete all redundant rows

transferred from the database server. This can greatly

reduce the load on the database server. Of course, it

depends on the number of duplicates, since effects

from the transfer of a larger amount of data can out-

weigh the savings on the database side.

For example, to determine all destinations for

Lufthansa from Frankfurt, instead of using:

SELECT DISTINCT cityto FROM spfli
 INTO TABLE itab
 WHERE carrid = 'LH'
 AND cityfrom = 'FRANKFURT'.

the following will likely be better for overall

performance:

SELECT cityto FROM spfli
 INTO TABLE itab
 WHERE carrid = 'LH'
 AND cityfrom = 'FRANKFURT'.
SORT itab BY cityto.
DELETE ADJACENT DUPLICATES
 FROM itab COMPARING cityto.

Here, the burden of rejecting duplicates is moved

from the database server to the application server. Of

course, this comes with additional costs, as a result

of transferring data to the application server that is

eventually discarded (contradicting Rule #1, “Opti-

mize the Size of the Result Set”). So use that method

only if the number of duplicates is small in compari-

son to the number of records in the result set. If the

number of duplicates is large, it is better to let the

database do the job.

!!!!!

"""""

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.18

each individual SQL statement, which are not neces-

sarily identical to the Open SQL statements of ABAP.

Traces are stored on the application server as text

files and any outdated traces are automatically over-

written by the system.

In order to carry out a trace, proceed as follows:

1. In one session, start the SQL Trace using transac-

tion ST05. The main screen appears, as shown in

Figure 6.

2. Select the “Trace on” button in the “Trace

Requests” frame of the main SQL Trace screen.

The trace is activated for the user — i.e., all

Figure 6 The SQL Trace Main Screen

the database operations under your user ID are

recorded.

3. In a second session, run the program that you

want to observe. If you want to trace a single

statement, use the ABAP Debugger to stop the

program right before that statement, select the

“Trace on” button, and then proceed using the

debugger.

4. In the second session, select the “Trace off”

button and then “List trace.”

Figure 7 shows a typical SQL Trace results list

19For site licenses and volume subscriptions, call 1-781-751-8699.

Optimize Database Access and Increase System Performance Through More Efficient ABAP Programming

The format of the generated output depends on

the database system used. As you can see in Figure 7,

the columns in the list are:

• Duration: The execution time of the individual

SQL operations in milliseconds. Longer times

would be displayed red.

• ObjectName: This indicates the dictionary

object whose data is accessed. It may be a table

or a view.

• Op (Operation): The database operations

involved. Typical examples are FETCH,

(RE)OPEN, and RE(EXEC).

Figure 7 A Typical SQL Trace Results List

generated from the following Open SQL statements

(i.e., the program run in step 3):

SELECT connid carrid INTO (con, car)
 FROM spfli.
 SELECT fldate INTO fld FROM
 sflight WHERE connid = con
 AND carrid = car.
 SELECT bookid INTO id FROM
 sbook WHERE connid = con
 AND carrid = car
 AND fldate = fld.
 ENDSELECT.
 ENDSELECT.
ENDSELECT.

!!!!!

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.20

• Rec (Records): The number of records found

or processed.

• RC (Return Code): This indicates whether an

operation was successful or not. A return code

of “0” indicates a successful operation.

• Statement: The statement being traced.

With nested SELECT statements (refer back to

Rule #3, “Optimize the Number of Data Transfers”),

an inner SELECT loop is executed for every outer

SELECT statement, resulting in a large number of

database accesses. In the example here, a SELECT
statement is processed for every row in table

SFLIGHT where the fields CONNID and CARRID

equal those of table SPFLI, and also for each row of

table SBOOK where the field FLDATE equals that

of table SFLIGHT. Each SELECT statement has its

own overhead in terms of time and system resources,

which makes this query extremely inefficient.

Figure 7 shows the large number of database accesses

R/3 makes on the tables SPFLI, SFLIGHT, and

SBOOK, along with the numerous database opera-

tions involved (in the “Operations” column) and their

corresponding durations (in the “Durations” column).

Figure 8 The Open SQL Statement Execution Plan

21For site licenses and volume subscriptions, call 1-781-751-8699.

Optimize Database Access and Increase System Performance Through More Efficient ABAP Programming

Figure 9 The Generated SQL Trace Output of the JOIN Statement

!!!!! Tip

If you wish to know more about a specific

statement, select it from the SQL Trace results list

and press the “Display” button (), which takes

you to the corresponding ABAP statement in the

program. To find out whether an index (primary

or secondary) is used by the database optimizer to

access a particular table, choose the “Explain”

button. The execution plan of this Open SQL

statement then appears, listing the indexes that the

database system would use to execute the Open

SQL statement (shown in Figure 8).

As you’ll recall, there is a much faster way to get

the results we’re looking for — by using JOINs

instead of nested SELECTs (refer back to Rule #3,

“Optimize the Number of Data Transfers”). Instead

of running the previous code in step 3, run the follow-

ing in its place:

SELECT a~carrid a~connid
 c~fldate b~bookid
 INTO (car, con, fld, id)
 FROM ((spfli AS a
 INNER JOIN sflight AS c
 ON a~carrid = c~carrid
 AND a~connid = c~connid)
 INNER JOIN sbook AS b

 ON b~carrid = c~carrid
 AND b~connid = c~connid
 AND b~fldate = c~fldate).
ENDSELECT.

The trace for this statement is displayed in Figure 9.

As you can see, instead of the previous 19 fetches, it

consists of just 9 fetches with a duration of only 521

milliseconds! Here, no unnecessary data is trans-

ferred to the program and the JOIN results in a single

SELECT loop, so no unnecessary SELECTs are pro-

cessed. Compare this with Figure 7, where the nested

SELECT statement — which subdivides into numer-

ous database operations, each with its own processing

time — resulted in a gigantic results list (and Figure 7

shows only a part of this list!). Using the JOIN
instead of nested SELECTs in this second code

example is much faster.

The above example demonstrates that SQL Trace

is a powerful tool for investigating and improving the

speed of your application. With its help, you can

easily check if certain measures add to an increase in

speed and to what extent.

Note that, in general, some of the improvements

you make may come at the expense of additional

runtime costs on the application server side, similar

to what can happen when you relocate the data set

"""""

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.22

to make sorting more efficient (refer back to the

discussion in the section “Use the ABAP SORT

Clause Instead of ORDER BY”). Since SQL Trace

addresses only the costs of accessing the database,

it may be wise to use additional tools like ABAP

Runtime Analysis (transaction SE30).5

Conclusion

This article explored the various means available to

you for optimizing database access. There may be

situations where the rules do not apply as they are

presented in these pages. You should not take the

techniques described here as hard-and-fast rules, but

rather as guidelines. There may be scenarios where

you have to give priority to one factor over another,

such as minimizing network load rather than database

5 While a discussion of Runtime Analysis is beyond the scope of this

article, you can find more information in Axel Kurka’s article “How

Plausibility Checks Detect Bottlenecks in ABAP Programming” in the

January-March 2001 issue of SAP Insider (available in the Article

Archives at www.SAPinsider.com).

resources. It is up to you and your organization to

decide which guidelines best fit the particular prob-

lem you are facing. My hope is that this article will

help you to make this decision wisely.

Rehan Zaidi studied Computer Science at the

FAST Institute of Computer Science (now known

as the National University of Computer and

Emerging Sciences) in Karachi, Pakistan. Rehan

is working as an SAP Technical Consultant at

Siemens Pakistan. He has been involved in ABAP

development at both in-house and remote

implementations of SAP R/3. Most of his work

includes designing and writing country- and

customer-specific applications for the SAP HR

module. Having used many elements of the

ABAP Workbench, Rehan is also familiar

with cross-application components such as

BAPIs, ALE, and Workflow. He can be

reached at rehan.zaidi@siemens.com.pk

or saprehan@yahoo.com.

