
77For site licenses and volume subscriptions, call 1-781-751-8699.

Speed Up High-Throughput Business Transactions with Parallel Processing — No Programming Required!

Speed Up High-Throughput
Business Transactions with
Parallel Processing —
No Programming Required!
Susanne Janssen and Werner Schwarz

Parallel processing helps to improve the throughput and processing time

of business transactions that must process lots of data in a tight time

frame. As most of you know, parallel processing refers to a program’s

ability to simultaneously process individual packages of a worklist.

But you, or the users you support, might not be aware that many high-

throughput SAP programs actually offer a “checkbox” for enabling

parallel processing. Members of your company’s SAP IT team,

performance specialists, consultants, and even power users can enable

this option, instructing the system to process the discrete workloads that

comprise that application in a parallel, rather than sequential, fashion.

In so doing, they achieve greater throughput in a drastically reduced

amount of time.

Of course, not all high-throughput applications offer this option, and

even for those that do, parallel processing isn’t always the remedy for

sub-optimal performance. So, in this article we offer advice on:

• How to determine whether parallel processing can solve a high-

throughput application’s poor performance.

• How a high-throughput application with a built-in parallel-

processing capability splits up the workload to achieve greater

throughput, and what options are available to you to maximize

its performance.

• When parallel processing appears to be a viable remedy to slow

throughput, but the program doesn’t inherently support this

capability, how concurrent batch jobs can be used to boost

throughput.

• Lastly, how the two most common pitfalls of parallel processing can

be recognized and either avoided or corrected.

(complete bios appear on page 94)

Susanne Janssen,

Performance & Benchmark

Group, SAP AG

Werner Schwarz,

IBS Consumer Industries,

SAP Retail Solutions

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.78

Are You Sure Parallel Processing

Is the Answer?

When the jobs that comprise a program take too long

to run, don’t be too quick to invoke parallel process-

ing or batch jobs. Do a sanity check first. Make sure

that the overall construct and customizing of the

business process are in order; if they are, check the

code for gross inefficiencies. You’d be surprised

what performance surprises lurk there!

Our team recently had the opportunity to assist a

manufacturer of domestic appliances with an ailing

Make-to-Order Backflush. In layperson’s terms, the

Make-to-Order Backflush is a batch job that looks at

the bill-of-material line items inherent to a product

and then initiates the orders that get those items trans-

ferred from stock to a manufacturing facility. In this

case, the Make-to-Order Backflush was looking at the

things the people in the assembly lines had to have

on hand (such as stickers, screws, etc.) to produce a

particular appliance. It was initiating the transfer of

those materials from stock to the manufacturing

facility via something called “Materials Movements.”

In the SAP system, every Materials Movement leads

to follow-on Material documents and Financial docu-

ments. Upon closer inspection, we found that this

customer’s system had been customized in a very

non-efficient way. Customizing settings were trigger-

ing Material documents and Financial documents

(lots of them!) for inconsequential materials. There

were even documents for drops of oil! The process-

ing of these documents was consuming an excessive

amount of system resources.

Not only was the customizing inefficient, the

construct of this business process was just plain

wrong. (This customer’s best bet was to use the

Bulk Material process instead of the Make-to-Order

Backflush.) Until these kinks were worked out,

turning to parallel processing for this job’s work

packages would be premature.

!!!!! The lesson we hope to impart

with this example is this…

When trying to ascertain the root of a high-

throughput application’s performance problem,

look at the big picture. Has the right SAP

solution been invoked? If it has, is the

customizing in order? If you can answer both of

these questions with a resounding “yes,” then it

makes sense to invest time, money, and energy

digging into the code to unearth performance

problems there.

If the Construct and Customizing of the
Ailing Business Process Aren’t the Culprits,
Check the Code

Had we not found any problems with the construct

and customizing of the business processes associated

with this customer’s ailing Make-to-Order Backflush,

we would have examined the code itself. An

Figure 1 Top Five Programming Performance Traps (at DB Level)

" There are missing indexes on the database.

" Customer exits are filled with inefficient SQL statements.

" Identical SELECT statements exist within one transaction, causing several accesses to the same
data and thus more loads on the database than necessary.

" The program fails to leverage SAP’s buffer mechanism. The result is that data needs to be retrieved
from the database instead of from the application layer, creating a bigger drain on system resources.

" Database calls have incomplete WHERE clauses, which cause the number of data records loaded
from the database to be much higher than actually required.

79For site licenses and volume subscriptions, call 1-781-751-8699.

Speed Up High-Throughput Business Transactions with Parallel Processing — No Programming Required!

Figure 2 The Parallel-Processing Option for the Material Requirements Planning Transaction

application’s code offers a seemingly endless number

of possibilities for slow performance! You’ll want

to focus initially on the most likely culprits. In

Figure 1, we offer a quick summary of the perfor-

mance traps we suggest you look for first (or what

you should instruct a developer to look for on your

behalf) in order to rule out bad coding practices as

the source of poor throughput. Much more complete

and comprehensive guidelines can be found at

http://service.sap.com/performance.

Once you’ve ruled out the three Cs — Construct,

Customizing, and Code — as the sources of troubled

throughput for your high-volume application, it’s

time to turn to parallel processing. Or is it?

The option to invoke parallel processing does not

exist for every high-throughput program. It is only

available in applications in which a software devel-

oper has built parallel-processing provisions into

the code. We wish we could present a definitive

listing of every SAP program that offers the parallel-

processing option. It’s just not possible. What we

can tell you is that most applications that were

designed from the start to handle large data volumes

do offer the option. But not all.

In applications that do offer the option, the user is

usually presented with a checkbox to invoke parallel

processing, as is the case with the Material Require-

ments Planning (MRP) run shown in Figure 2. In

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.80

this figure, you can see that we checked the box to

enable the option.

What about applications that don’t offer this

option? And there are quite a few.1 For these appli-

cations, you can employ several batch processes to

achieve parallel processing of the workload.

So when you have determined that parallel pro-

cessing is the right plan of attack for your ailing high-

throughput application, you’ll be headed down one

of two paths:

• The ailing application has a built-in option

for parallel processing, of which you can take

advantage.

• The option for parallel processing was never built

into the application, so you’ll have to enact paral-

lel batch processes to achieve better runtimes.

We’ll show you how to optimize your program’s

runtime for both situations in the sections that follow.

Optimizing Runtimes for

Programs That Do Offer Users

a Parallel-Processing Option

In Figure 3, you see the Store Replenishment appli-

cation from SAP Retail, which manages a typical

high-volume transaction and thus has been designed

by SAP with a parallel-processing option. In this

screen, you can see that to invoke the option, users

simply need to click on the “Use parallel processing”

checkbox, which is located in this application’s

“Technical options” section.

Note that the parallel-processing option is usually

located in the “Technical options” section of the

transaction, but not always; not all transactions pro-

vide such a section. The location of this checkbox

isn’t standard across applications — it’s situated at

the discretion of the application’s developer. Some-

times it is located on the initial screen, sometimes on

a secondary screen. If the location of this checkbox

isn’t readily apparent, check the documentation or

SAP Notes.

An application’s developer also exercises discre-

tion over how the workload is to be split up once the

option is invoked. That is to say, the developer picks

the split criterion (it varies from application to appli-

cation) by which the total workload is divvied up into

smaller, discrete, non-overlapping workloads. In

addition, the developer may decide to allow the appli-

cation users to influence the size of workloads and

where processing takes place by providing options

like the ones you see in Figure 3: “Number of recipi-

ents per process,” “Logon/server group,” and “Max.

number of processes.” Once the workload has been

divided into smaller work packages, the program

assigns those packages, via remote function calls

(RFCs)2, to multiple R/3 instances for processing.

While users don’t need to understand the intrica-

cies of RFCs to benefit from invocation of the

parallel-processing option, they do need to understand

the relationship between RFCs and server groups,

because it is via server groups that RFCs are

assigned to instances for processing. The server

group the user selects for parallel processing

(“Logon/server group” in Figure 3) has an impact on

the application’s throughput. In addition, with the

proper authorization, the user may also be able to

define the server group itself and thus further influ-

ence performance.

In the sections that follow, we’ll provide you with

the information and insights you need to get the most

out of the parallel-processing options an application’s

developer has provided.

1 How could this omission be made? Our guess is that the developers

did not anticipate the applications would be used to process large

volumes of data.

2 In the SAP system, the ability to call remote functions is provided by

the Remote Function Call (RFC) interface protocol. RFCs enable

developers to write programs that call and execute predefined func-

tions between any two SAP systems or between an SAP system and

a non-SAP system, or even between functions within the same SAP

system. There are several kinds of RFCs — asynchronous (aRFC),

transactional (tRFC), queued (qRFC), and serial (sRFC). In the

context of parallel processing, we are concerned with aRFCs.

81For site licenses and volume subscriptions, call 1-781-751-8699.

Speed Up High-Throughput Business Transactions with Parallel Processing — No Programming Required!

What You Need to Know About Server Groups

A server group is a logical group of R/3 instances. In

any given R/3 system, those with the proper authori-

zations within the Computing Center Management

System (CCMS) can define as many server groups as

needed, then assign instances to those server groups.

A server group can consist of one or more instances,

and the same instance can be assigned to several

server groups.

In an application with the parallel-processing

option enabled, an aRFC (asynchronous RFC) is

started to facilitate the processing of a work package.

The aRFC typically specifies a server group (which the

user may select if the option is available, as in Figure

3), and a dialog work process3 is used on an instance

of that server group for the processing of that job.

The great advantage of using server groups is

that the system can assume responsibility for picking

which instance within a server group should be

invoked. The administrator, performance specialist,

or power user who is invoking the parallel-processing

option does not need to worry about prevailing sys-

tem loads and which instance should ideally get

picked to process a work item.

Figure 3 Invoking the Parallel-Processing Option in Store Replenishment

3 A dialog work process is a type of work process dedicated to process-

ing programs with user interaction (i.e., online transactions requiring

user input).

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.82

If you have the proper authority, however, you

can influence an application’s performance by adding

or deleting instances (i.e., processing power) for a

particular business process simply by changing the

server group definition. You can also set certain

value limits that establish whether the system can

push more work onto an instance, or whether the

instance should be regarded as fully utilized. We

show you how to do these things next. At no time

do you ever need to alter the selection variant or the

program’s code.

!!!!! Tip

With proper authorization, you can control which

instances get mapped to which server groups.

This means you can ensure that specific instances

are used for specific processes. For example, you

may want to make sure that helpdesk staff at a call

center have ample processing resources dedicated

to the applications they need in order to ensure

fast response times. By keeping all the instances

that should be reserved for the helpdesk staff out

of the server groups that are used for parallel

processing, you can ensure they have sufficient

resources.

Defining a Server Group

Assuming you have the proper authorizations, you

can use transaction RZ12 to define a server group,

assign instances to the group, and as of Release 4.5,

temporarily define the value limits for the load

situation of the instance, as shown in Figure 4.

Here, you can see that we have assigned instance

“us02d1_AL0_55” to an example server group called

“parallel_ generators.” You can choose any name for

a server group you like; we recommend using a name

that refers to the process or group of functions you

want the server group to handle.

Just beneath the “Group assignment” section

in Figure 4, you see a section labeled “Determina-

tion of resources.” The parameters set here influ-

ence the system’s assignment of workloads to this

instance.

Note that the values for many of these parameters

are percentages, not absolute values. Exceptions are

the parameters for general activation/deactivation of

the value limits, the parameter used to define the

minimum number of free dialog work processes, and

the parameter for the waiting time (as of Release 4.6).

Detailed information on the individual parameters

can be found in SAP’s online help and the SAP Library.

You can promote efficient load distribution by

setting the parameters that control the number of

instances or free work processes (WPs):4

! Min. no. of free WPs: This parameter, which

specifies the minimum number of free work

Figure 4 Display Assignment for Server Group

4 Unless you are very familiar with the technical details of the RFC

interface system administration in R/3, we do not recommend chang-

ing any of the other parameter settings.

83For site licenses and volume subscriptions, call 1-781-751-8699.

Speed Up High-Throughput Business Transactions with Parallel Processing — No Programming Required!

processes, must always have a value of at least 1.

However, experience has shown that it is better to

leave more than just one process free (we recommend

three, at least). For many reasons (e.g., filling the

number-range buffers, additional RFCs within the

program, monitoring, and so on), the system often

needs free dialog work processes for short periods.

For example, if no free work process is available

to fill the number-range buffer, processing time

increases because the system must wait until a dialog

work process is free. You may have to set up addi-

tional dialog work processes in operation mode for

runtime so that the number of processes that you want

to use for parallel processing and the free work pro-

cesses the system requires are both available.

! Max. no. of WPs used: You also may have to

increase the value of this parameter if the ratio of

work processes that you want to use to the total num-

ber of dialog work processes is higher than the per-

centage assigned to this parameter.

The fact that you assign an instance to a server

group and define value limits for the load distribution

on that instance in the same transaction (RZ12) often

leads to misunderstandings. The most common mis-

conception is that the value limits entered for the

instance in this transaction only apply when the

instance is included in the particular server group

it is assigned to in this transaction, and that other

parameters can be defined for the instance when it is

included in other server groups. However, there is

only one set of valid parameters for each instance.

The parameters that take precedence are the ones that

were set most recently.

This means that the parameter changes you make

when you assign an instance to another server group

will overwrite the parameters you previously entered

for the instance. For example, suppose you have two

transactions that will use parallel processing and that

these transactions will run at different times, one

during the day, one at night. In an effort to make use

of all available processing power for both transac-

tions, you assign instance A first to server group 1,

which is used at night; then you assign this same

instance to server group 2, which is used during the

day. If you modify the parameters of instance A

when you associate it to server group 2, those

changed settings will also apply when instance A is

used as a part of server group 1.

This restriction (only one parameter set for each

instance) generally does not cause problems, because

the settings of the parameters are usually oriented to

the hardware configuration (number of CPUs, amount

of memory) of the application server. As this does

not change, there is little need to use different param-

eter sets, except when the way you set things up most

recently (in the example, for a daytime run) might not

be the way you want them set up for another run (the

nighttime run).

!!!!! Tip

When arriving at suitable limits for the

“Determination of resources” parameters, you

should always take into account the operation

modes of the system: The server groups and the

value limits for the instances are usually defined

during the day. Programs for parallel processing

of mass data, however, often run at night! The

operation mode for nighttime processing is often

configured with more batch work processes and

fewer dialog work processes than for daytime

processing. If you base your settings for an

instance’s resource parameters on the current

(daytime) operation mode, rather than the

operation mode for the program runtime

(nighttime), the overnight program may use fewer

resources than you had planned. You should

therefore adjust the night mode accordingly.

Splitting Up a Larger Workload
into Smaller Ones

So much for optimizing the environment in which the

parallel workloads will be processed. Let’s step back

now and examine how developers split up a large

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.84

workload into smaller ones (this influences how you

might use choices offered with parallel processing).

There are two options:

• The program splits up the workload into fixed

packages.

• The program assigns small packages dynamically.

With the first method, where the program splits

the workload into fixed packages (the less common

and less desirable of the two), the developer has a

program analyze the current workload and divide it

into packages according to some suitable split crite-

rion defined by the developer. In a Retail application

for a nationwide chain of stores, for example, the

workload might be split up according to the indi-

vidual stores in the chain. In this case, the Intermedi-

ate Documents (IDocs) used to upload sales data into

the central system are split up according to the stores

from which they come. This split criterion will

ensure that a store’s data is not processed in parallel

(as this could cause locking conflicts).

If there are 100 IDocs, and five processes avail-

able for parallel processing (the number of processes

available can be determined either by the developer,

the application user via a selection screen, or the

number of available resources in the system), the

IDocs get evenly split among five aRFCs. IDocs 1-20

would then be assigned to one aRFC, IDocs 21-40 to

another aRFC, and so on. In a Financials application,

the split criteria might be pay-to intervals.

The advantage of this method is that a large load

can, in theory, be distributed evenly across instances,

as shown in Figure 5, and it can be implemented

quite easily.

Figure 5 Fixed Packages

���������

��������	

��������
 ���������

����������������������
������������������������

�����
�� ��

� � �

�������

�����
�� �� �������

�����
�� �� 	������

�����

�
� �������

�����
�� �������

���������

��������� ������ �!

���
��

"������

� � � � � 	
 � � ��

�� �� �� �� �� �	 �
 �� �� ���

#�$�����
��� �

��%��������
	�������

�� �� ��

�� �� �� ������

	� 	� 	�

���

85For site licenses and volume subscriptions, call 1-781-751-8699.

Speed Up High-Throughput Business Transactions with Parallel Processing — No Programming Required!

However, as we all know, theory and reality often

don’t mirror one another. How can the developer be

sure that the workloads associated with each package

(IDocs 1-20, 21-40, ... 81-100) will be roughly the

same size? If the packages are all the same size,

everything’s fine. But, consider that we’re talking

about different stores in different parts of the country.

Some stores may have lots more sales data than oth-

ers, causing different size workloads to be distributed

across the instances. If IDocs 1-20 are all very large,

while the rest of the IDocs are all very small, IDocs

1-20 are all going to be processed by the same job

allocation, even if the jobs set aside for the rest of the

IDocs are idle. This larger load will take more time,

and when it does, follow-on processes are likely to be

affected (i.e., they will suffer a performance hit). So,

while there are certainly runtime improvements in

that not all 100 IDocs are being processed by the

same job, this scenario is still subject to gross ineffi-

ciencies (and for this reason is not widely adopted).

Now let’s examine the more commonly used

method, where the program determines and assigns

data dynamically. This method is a bit smarter and

evaluates things as it goes along.

Take a look at Figure 6, and then look again at

Figure 5. Notice in Figure 6 that very small packages

Figure 6 Dynamic Distribution

���������

���
��

��������	
���

���
���

��
��������

���
���

���

���������

���
���

�

���������

���
��

�&%!���������'(���%���� �!

���
��

"������

� � � � � 	
 � � ��

�� �� �� �� �� �	 �
 �� �� ���

�

��

��!��)���
*�%�!�%(���+

�� ���

�� ��

�

����
�	��

����������������������
,�-�������� ����	������
������������������������

�� ��

�� ��

�� ��

�
 ��

� � � �

�� ��

�� ��

�� ��

	�

�	

�

��

 �

��

��

����

��

�

��

���

�� �	

�	��

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.86

(2 IDocs each) are being parceled out to the jobs, one

at a time. A customer’s IDocs are not pre-assigned

to specific jobs. A program starts one aRFC (or a

package of a few) for each IDoc object until all

objects have been distributed or no further aRFC can

be started, because either the system resources are

exhausted or the maximum number of jobs set by the

developer or the application user is reached. The

communications management of the aRFCs provides

an easy means to recognize the end of a job; as soon

as processing resources (server group work processes)

are available again, the distribution continues. The

individual job packages are small, so excessive

memory consumption is avoided.

This method of workload distribution has a good

chance to achieve an (almost) equal load for all pro-

cesses. The time to reach full completion of work

is minimized, and no system resources ever remain

unused. Even if the individual work packages have

drastically different processing requirements (i.e.,

some will take much longer than others to process),

dynamic distribution (to the next available process)

ensures that the next job will be assigned to the pro-

cessor with the smallest load so far.

User Options for Influencing
Workload Distribution

Take another look at the selection screen for enabling

parallel processing that we showed you earlier (for

easy reference, it is shown again here, as Figure 7).

If you activate the checkbox for parallel processing

Figure 7 Options for Parallel Processing

87For site licenses and volume subscriptions, call 1-781-751-8699.

Speed Up High-Throughput Business Transactions with Parallel Processing — No Programming Required!

here, then you must enter values in the other fields as

well — i.e., you will choose the server group to be

used, how many parallel jobs are to be used at most,

and how many work items should be processed in one

job (= size of package).

The application that you use may offer parallel

processing as the only option, it may offer only one

additional option (maximum number of processes), or

it may offer all of the options you see in Figure 7.

Does this mean that you can tell by the options

that are offered whether your application was

designed with fixed or dynamic assignments? Unfor-

tunately, there is no easy way to tell. Analyzing the

code (or getting a developer to do it for you) is the

only sure way to know. Even the existence of a field

for you to enter package size doesn’t necessarily

mean that the load is assigned a certain way.

If the developer has provided an option that

allows you to specify the number of processes the

packages run on, the value you enter here represents

an upper limit, as the program can use only the num-

ber of jobs that the system allows.

If the program provides dynamic job distribution,

the user usually finds an option to set the maximum

size of a single package (in Figure 7, it’s “Number of

recipients per process”). If there is no such field on

the selection screen for parallel processing, the user

can assume that the program probably does not use

dynamic load distribution.5 To set package size for

dynamic distribution, the user must enter a value in

the field for the maximum package size.

Assuming the user can adjust package size, what

is the optimal package size? Unfortunately, there is

no answer that applies to all situations. However, we

can say that if you decide to use very large job pack-

ages by entering a large value in the “Number of

recipients per process” field, you are likely to have

the same situation as when a load is distributed in

fixed packages. If the packages are large and the

workload of each object is roughly the same, a good

load distribution can be expected, but (as we dis-

cussed earlier) if this assumption is wrong, and a

larger-than-expected load takes more time to process,

follow-on processes will be delayed. In addition, the

program needs more memory for large jobs, so lim-

ited memory may become a bottleneck. Also, con-

sider that with the longer runtime required by a large

load, time-outs might be a problem.

In cases where you run into memory problems,

our recommendation is to first decrease the package

size, which should reduce the memory used per job.

If this doesn’t help, reduce the number of jobs on the

application server, so that the total amount of required

memory is reduced.

Invoking Batch Jobs for

Programs Without a Parallel-

Processing Option

If you’ve ruled out the three Cs — Construct, Cus-

tomizing, and Code — as the culprits for poor

throughput and determined that parallel processing is

indeed the right antidote for your ailing application,

what do you do when a parallel-processing option

does not exist for that program? You divvy up the

workload into smaller work packages yourself, then

get multiple concurrent batch jobs going to process

those work packages in parallel.

Before you attempt to do this, you must have a

solid understanding of the type of load you’re dealing

with. Suppose, for example, that you are a retailer.

This time, we’ll assume you’ve got 1,000 stores, all

of which need to send Point-of-Sales (POS) data back

to the central system for processing. To be able to

handle this load, you need to plan for several batch

jobs and pick an appropriate criterion for splitting the

workload into smaller work packages. Then you can

define the batch jobs and assign selection variants in

the selection screen.
5 But as we said earlier, if there is no such field, you cannot be sure that

distribution with fixed packages is used.

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.88

The selection variant then assigns to each of

these batch jobs the IDoc data that needs to be pro-

cessed. If the package loads are fairly predictable,

this method can work well. Because you define the

selection variant only once (and maybe only make

minor changes when store information changes),

the ongoing administration effort is minimal. Also

note that these batch jobs will only need to be

planned once.

Using the CRM Billing transaction Transferring

Billing Documents to Accounting, you can transfer

billing documents with a transfer block, or you can

manually transfer incorrectly transferred documents

to the active accounting components. In Figure 8,

you can see that in a mySAP CRM billing transaction,

we have elected to divide things up according to the

number of billing documents.

!!!!! Tip

We recommend you use relatively stable data as

selection criteria, such as stores or bill-tos. To

define changing data as a selection criterion

is not a good idea. For example, we do not

recommend using numbers of IDocs, deliveries,

or orders because these constantly change.

Figure 8 Billing Transaction

89For site licenses and volume subscriptions, call 1-781-751-8699.

Speed Up High-Throughput Business Transactions with Parallel Processing — No Programming Required!

Imagine what could happen if the stores in our

example are of different sizes, however. The loads

for the packages could differ quite dramatically, with

the result that there might be a few long-running jobs

still executing after all other jobs finished their work.

To avoid this scenario, you would have to judge the

runtime caused by each IDoc in order to define pack-

ages of almost equal load (see Figure 9). But the

load from each store can differ from day to day, so

that you would have to perform this analysis every

day. Furthermore, the amount of data sent in from

each store may change significantly every day. Still,

it beats having no parallel processing at all!

You have only two ways to assign batch jobs

to instances:

• You can assign one job to one instance when

configuring your batch job as a background job.

In this case, the job can only run on the assigned

instance. If there is no free batch work process at

the time you planned the processing, the job will

wait until another batch work process on the same

instance is free again. You cannot make adjust-

ments based on the actual load of the instance. If

the instance is under heavy load, the planned job

is processed on the same instance in addition to

the existing load, even though other instances

may have more resources available to process

that job.

• Alternatively, you can let the system assign the

batch job to a particular instance. This still

doesn’t guarantee that all the instances will bear

the same load or that the job will run on an

instance that has sufficient capacity. Particularly

annoying is the fact that you cannot partition off

particular instances and allocate those resources

to specific tasks. The only methods available to

you are either to use the job class to give basic

Figure 9 User Defines Batch Jobs of Almost Equal Load

.��$�/�'��

.��$�/�'�	

.��$�/�'�
 .��$�/�'��

.��$�/�'��

����

�����
�� �	 �
�����

	� 	�
�

�����
	� 		 	
�����

�� �	 �

�����
�� �� �������

�� �� ��

�����
�� ��

� � �

�������

�������

�������

�������

�������

�������

0��������%����%�

���
��

�����"������

� � � � � 	
 � � ��

�� �� �� �� �� �	 �
 �� �� ���

/�'���� ����%�'�����(%�1(�
��-��
0����$��2��&����������%������2��
!��$�% ��%��%�����������

���

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.90

directions for the jobs, or to exclude instances

from any batch work processes. The definition

of a job’s class is performed during the configura-

tion of the background job. The exclusion of

batch processes from an instance would have to

be done by the system administrator.

Note that this manual approach to parallel pro-

cessing can consume quite a lot of memory because

the data packages tend to be quite large.

Two Common Parallel-

Processing Pitfalls

If you have changed a program to run in parallel (by

invoking a built-in parallel-processing option or by

farming out the workload to concurrent batch jobs),

yet you notice a longer-than-expected runtime, you

will need to play detective to discover the reason.

The two most common reasons are locking conflicts

and resource constraints. In this section, we review

these performance pitfalls.

Performance Pitfall #1:
Locking Conflicts

What do we mean by a “locking conflict”? Whenever

there is a lock for a resource held by one process, and

another process is delayed or hindered in its work by

this lock, there is a locking conflict.

For example, whenever a process modifies a

record on a database, the database system locks this

record until the modification is either committed or

rejected. If another process tries to modify the record

while it is locked, this new modification is delayed by

the database system until the lock on the record is

released through the commitment or rejection of the

modification by the first process.

Locking conflicts can occur in other areas as

well. In SAP R/3, a lock may be set for a specific

system resource, e.g., enqueues (also known as SAP

locks). The behavior of a program is different under

different kinds of locking. Let’s look at the two

major types, enqueues and DB locks:

!!!!! Enqueues: When there is a locking conflict

involving an enqueue, the processing of the current

work item is usually canceled. In this case, the

runtime of your program does not increase; instead,

you’ll see that not all objects have been processed.

The process must be set up again for the missed

objects, which takes more time than you can afford

in a tight schedule. This type of locking conflict

can occur in common circumstances, such as when

you want to update the material stock for the same

materials in the same plant from several parallel

processes. Use transaction ST05, the Trace Request,

to observe where locks are set. Once you find the

enqueue, see if you can either avoid the conflict by

changing the split criterion or get the developer to

make adjustments to the program design to avoid

invoking this lock.

!!!!! DB locks: Conflicts that take place because of

database locks lead to higher runtimes, because the

second process is waiting until the lock of the current

process has been released. DB locking conflicts can

occur with any database table that is updated. You

can detect locking conflicts on the database at

runtime with the transaction monitor DB01. A good

development practice that helps avoid or clean up

these conflicts is to analyze the pattern of data

changes in the program and any others that run at the

same time. In addition, the developer should check

to see whether the criteria for splitting workloads is

appropriate when the same program runs in parallel

in several jobs. Finally, we often find in SAP R/3

that DB locking conflicts occur with the assignment

of unique numbers (this is discussed in the sidebar

on the next page).

Performance Pitfall #2:
Believing That N Parallel Processes Lead
to an N-Fold Increase in Throughput

During parallel processing of a large workload, one

91For site licenses and volume subscriptions, call 1-781-751-8699.

Speed Up High-Throughput Business Transactions with Parallel Processing — No Programming Required!

Avoiding Number Assignment Locking Situations

Unique numbers are often assigned to documents (such as new delivery or order documents), as

well as to IDocs. In general, the system determines the next unused number from within a given

number range or interval, then makes the assignment. Sometimes, however, a process stops after

it has requested the number assignment, but before the document could be saved. In this case, the

number has been specified but no document bears its assignment. This may not present a problem

for most of you, nor for most kinds of documents. If, however, you live in a country like Italy, where

the taxation authorities prohibit gaps in the number ranges of financial documents, you need to take

special precautions.

To meet the most stringent requirements for unique numbers, the default settings will often mark

the last number of an interval as “assigned” only when COMMIT WORK is called. In the meantime,

the entire interval is locked by the database and no other process can obtain a number from this

range of numbers.

Since the locks can actually last quite some time, conflicts can occur during parallel processing.

For each number range object, there is one entry in the NRIV table (an SAP database table that

is required for assignment of number ranges) that contains the interval and the latest assigned

number. When a new number is requested, the system locks this data record with a SELECT FOR

UPDATE command. The lock can only be released by either a COMMIT WORK or a ROLLBACK

WORK command. Now, when a parallel process requests a new number for one of its number

range objects, the process must wait until the lock is released. Depending on the number of

parallel processes and the amount of time the locks persist, the probability of locking conflicts on

table NRIV increases.

If you are in a situation where unique numbering regulations are not too restrictive, you can change

the default settings to avoid locking conflicts. With transaction SNRO (Number Range Object

Maintenance — the ABAP Workbench transaction used to create and maintain number range

objects), the developer (or the system administrator, or consultant) can define a buffer mechanism

for each number range object. In such a case, a certain range of numbers is taken from the

database table and stored in main memory. Whenever a number from this buffered number range

object is requested, the next free number is taken from the buffer and handed to the application

program. The system does not monitor whether there is a document created with this number, and

it is always ready to immediately hand over the next number.

The SAP documentation provides information on other possible solutions to number locking

problems.

might assume that throughput would increase by a

factor equivalent to the number of jobs run in parallel:

Parcel out the workload between two instances, pro-

cess them in parallel, and you might expect to double

throughput. Parcel it out to four instances and expect

quadruple throughput. Parcel it out to n instances

and expect an n-fold increase in throughput. Not

so fast!

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.92

An n-fold increase in throughput can only be

achieved if the work items can be processed by those

n instances in a completely independent fashion. This

means that there is no resource in the system that

becomes a bottleneck when several processes have

to use it.

Take, for example, a case where we assume the

network connection between the application server

and the database can transfer 100 MB per second. If

our program has to read 10 MB per second, there is

no problem. If we run this program in 5 parallel

processes, there is still no problem. But you can

imagine what happens if we run 20 jobs in parallel!

The network becomes a bottleneck, the data trans-

fer is delayed, and the runtime for the program

increases.

If you have a situation where using more pro-

cesses does not bring about a shorter runtime during

your performance tests, you need to find out whether

a system resource is the bottleneck that prevents

you from increasing the throughput (assuming, of

course, that you have already validated the three Cs

— Construct, Customizing, and Code). If you are

not able to remove this resource restriction (e.g.,

by obtaining better hardware, optimizing the pro-

gram, modifying the process design, and so on),

your parallel program will not be successful in

improving throughput.

If a suitable limited number of processes are

started per application server (depending on the num-

ber of CPUs) and the database server has enough

resources to execute this number of processes, then

it’s usually the I/O system of the database and/or

the enqueue server that becomes the bottleneck.

To know if either is the culprit requires a technical

performance analysis conducted by experienced

analysts. However, we can give you a few hints

about some of the monitoring transactions used for

such analyses:

! Problems with the database settings can be found

with SAP’s monitoring transactions for the database.

For example, transaction DB01 can reveal exclusive

“lockwait” situations, which can often explain why

programs appear to be doing nothing. With transac-

tion DB02, you can check for missing indexes and

many other issues that arise with tables and indexes.

Database transaction ST04 provides high-level statis-

tics; among its useful features, you can see if there

are problems with the database interface that services

the program’s requests for data.

! The detail screen of transaction STAT may

be displaying statistics that reveal unusually long

amounts of time spent on enqueue requests. You

will also find STAT useful for other statistics. In

STAT, after a pop-up, you can delimit the output

(e.g., users, time period, program) to get a list of

all transactions with your chosen characteristics

(see Figure 10); the results are sorted by response

time, DB time, CPU consumption, memory consump-

tion, etc.

If I/O is determined to be the culprit, you will

have to work with the database administrator to opti-

mize the system layout and/or the management for

storing the database tables on the file system. If it

is the enqueue server, the answer might be a better

CPU, binding a process to the CPU, and so forth.

Alternatively, a developer can customize the applica-

tion to reduce the number of enqueues by taking

actions such as limiting the size of the Materials

Management documents.

Conclusion

In the course of this article, we have made several

recommendations for using parallel processing

to solve the problem of a high-throughput applica-

tion that is taking too long to complete. Here is

a distillation of the lessons we hope you take

with you:

! Before attempting parallel processing in either of

its incarnations (enabling a parallel-processing option

or setting up parallel batch processes), make sure you

93For site licenses and volume subscriptions, call 1-781-751-8699.

Speed Up High-Throughput Business Transactions with Parallel Processing — No Programming Required!

(or your development team) have eliminated the

“three Cs” as sources of troubled runtimes:

- A poor Construct of the business process, or

a mismatch of the construct to a solution

- Inefficient choices for Customized settings,

which can waste system resources

- Performance traps in the Code, such as miss-

ing indexes or excessive SQL statements

! If the culprit is not found among the three Cs,

then the way work items are being distributed for

processing may be the reason your high-throughput

application is ailing. If it offers a “Parallel process-

ing” checkbox, you may be able to improve through-

put by enabling this option.

! As we’ve shown, it is possible for an authorized

user to optimize or tune the environment in which a

parallel program runs (via a server group definition).

In general, however, those unfamiliar with the details

of the RFC administration in SAP R/3 should limit

their adjustments to the parameters that control the

available number of free work processes.

! Even if the application you are using does not

offer a parallel-processing option, you can set up

Figure 10 Transaction STAT: The “Select Statistical Records” Screen

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.94

parallel batch processes, across which you can dis-

tribute the application’s load in order to achieve

processing efficiencies.

! Once your application is running in a parallel-

processing mode, if you are not getting expected

gains in cycle time, you can work with the database

administrator to check for the common culprits:

- Locking situations

- Resource bottlenecks, such as insufficient

CPUs or available processes

Susanne Janssen joined SAP in 1997. She is

currently a member of SAP AG’s Performance

& Benchmark Group, a team consisting of

performance specialists who consult and support

SAP colleagues and customers on mySAP.com

performance and scalability. Her responsibilities

include information rollout for performance,

benchmarks, and sizing. Susanne is also

co-developer of the Quick Sizer, SAP’s web-

based sizing tool. She can be reached at

susanne.janssen@sap.com.

Werner Schwarz joined SAP Retail Solutions in

October 1998 after working as a developer at two

other IT companies. Today, he is the development

team contact for all performance-related issues

concerning the IBS-CI (Industry Business Sector -

Consumer Industries). Werner’s major tasks

include information rollout and support of his

colleagues regarding performance during both

development and maintenance. He can be

reached at werner.schwarz@sap.com.

