
29For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

A Developer’s Guide to
Creating Powerful and Flexible
Web Applications with the New
Web Application Builder
Karl Kessler

Karl Kessler joined SAP

AG in 1992 as a member

of the Basis modeling

group, where he gained

experience with SAP’s

Basis technology. In 1994,

he joined the product

management group of

the ABAP Development

Workbench. Since 1997,

Karl has been Product

Manager for SAP’s

business programming

languages and frameworks.

In Release 6.10, SAP retires the SAP Basis system and supplants it

with the SAP Web Application Server (Web AS). The SAP Web AS

provides the technical foundation for R/3 Enterprise,1 and is also the

translation technology for most of the other new mySAP.com offerings.

The difference between the SAP Web AS and the SAP Basis system is

that the Web AS includes native support for Internet protocols such as

HTTP, which eliminates the need to set up a separate Internet gateway

such as the Internet Transaction Server (ITS),2 and also includes a

brand-new development model called Business Server Pages (BSPs).

BSPs enable you to build web applications that can dynamically access

SAP data.

A BSP application is made up of a series of HTML pages that

contain server-side scripts, complete with basic ABAP statements such

as SELECT, and BAPI calls for accessing data on SAP components

such as R/3, BW, etc. You can code these scripts with either ABAP or

JavaScript. The choice is yours.

Whichever route you take — ABAP or JavaScript — you simply

surround your code with standard tags, and the code is executed with a

URL request. You can use any kind of HTML (Hypertext Markup

Language) or WML (Wireless Markup Language) tags in your pages.

How does a developer actually build a BSP application? You build

it with the Web Application Builder. Since the Web Application

Builder is based on the ABAP Workbench, ABAP developers should

1 R/3 Enterprise is the successor to R/3 Release 4.6C.

2 That’s good news for administrators!

(complete bio appears on page 58)

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.30

find it easy to navigate about and use this tool.

You’ll be building new web applications and web UIs

in the same way you’ve been building your ABAP

applications. Transaction SE80 provides access to the

structural overview of a BSP application. The ABAP

Editor and Debugger are at your disposal. But the

Web Application Builder is not limited to the ABAP

development environment. This tool complies with

the WebDAV3 standard, which means you can use

external editors (and/or employ skilled web designers

who are adept at using those external editors) to

design sophisticated user interfaces.

This article will acquaint you with the process.

Here, I will guide you step by step through the devel-

opment of a simple, two-page BSP application. By

the end of this discussion, I think it will be clear that

this new 6.10 tool uses an outside-in approach similar

to the one you find on leading Java and Microsoft

application servers.

Introducing Business Server

Pages (BSPs)

Web applications based on the Business Server Pages

principle consist of a sequence of HTML pages. The

pages may contain any kind of standard HTML or

WML tags. To dynamically include data from SAP

and non-SAP systems, logic (expressed as script

statements) is embedded within the page and

processed upon request to produce the final, static

HTML or WML page. In this way, data from SAP

and non-SAP sources can be retrieved, processed,

and formatted for output. This scheme parallels the

approach taken by Java Server Pages (JSPs) and

Active Server Pages (ASPs), which are widely used

in web application development.

In the code sample below, you see a simple BSP

in which the string Hello World is rendered five

times in different font sizes. The static HTML text

contains server-side ABAP code — in this case, a

do loop that is executed to produce the web page

dynamically. Inside the loop, the string is output.

The font size, which is declared as an ABAP variable

in line 2, is increased in line 7 before the loop is

reentered:

1 <%@page language = "ABAP" %>
2 <% data: fontsize type I value 1. %>
3 <% do 5 times. %>
4 <font size = <%= fontsize %>
5 Hello World.
6
7 <% add 1 to fontsize. %>
8 <% enddo. %>

As I mentioned earlier, the script code of BSPs

can be either JavaScript or standard ABAP.

!!!!! Tip

The use of JavaScript is just a matter of

syntactical taste. Both in ABAP and in

JavaScript, the underlying data structures are

ABAP variables such as fields, structures, or

internal tables. The integrated JavaScript engine

allows you to treat these variables as if they were

JavaScript variables.

During the lifetime of a BSP, script code is

executed in response to various events. For example,

an Initialization event would initiate the retrieval of

data from database tables or the invocation of func-

tion modules — i.e., a PBO (Process Before Output)

module. An Input Processing event would initiate a

reaction to a submission of form data after user input

— i.e., a PAI (Process After Input) module.

3 Web-based Distributed Authoring and Versioning

(www.webdav.org).

31For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

So how do you build a BSP application? You

build it with the Web Application Builder.

The Web Application Builder

The Web Application Builder for BSP applications is

a collection of integrated, individual tools that enable

the implementation of complex web applications.

Those who are familiar with ABAP Workbench-

based development for the ITS runtime platform will

find many similarities between the use of ITS and

Web Application Builder tools. But do not be misled

— BSP applications are not a substitute for ITS-based

scenarios.

Figure 1 provides an overview of the Web Appli-

cation Builder toolset. The main development tool is

the BSP Editor, which is used to develop dynamic

BSPs vs. IACs

Those familiar with Internet Transaction

Server (ITS) programming might ask, “What

are the differences between a BSP application

and an Internet Application Component (IAC)

written with Business HTML?” The greatest

difference is in the architectural approach.

ITS is an Internet gateway that enables SAP

transactions to run in a web browser and

allows developers to create an HTML layout

via an ordinary SAP screen with minimal

effort. Since an ordinary SAP screen is the

starting point, developers remain inside the

classical SAP dialog protocol. On the other

hand, BSP applications do not require

developers to think in terms of SAP dialog

steps, allowing a more flexible approach to

building web applications that is based on

dynamic pages scripted on the server side.

Figure 1 The Web Application Builder Toolset

Features

! Preview capabilities

! Basic script editing

! HTML code editing features (e.g., drag and drop)

! Syntax checks

! Support for third-party, WebDAV-compliant design and development tools

(e.g., Adobe GoLive)

! Integrated server-side ABAP and JavaScript debugging both in the BSP and the

event-handling code

! Out-of-the-box libraries for standards like HTML, WML, and XHTML

! Drag-and-drop tag definitions and attributes

! Stores images, icons, style sheets, etc.

! Accessible from within PC-based, WebDAV-enabled design tools

! Integrated with the Change and Transport System (CTS) for change control

! Enables customer branding of SAP-standard Web Application Server applications

! Enables “default” images (and other MIME objects) to be overridden selectively

Tool

BSP Editor

ABAP

Debugger

Tag Library

MIME

Repository

Theme

Editor

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.32

server pages — both the layout of a dynamic page

and its associated event handlers. The Tag Library,

MIME Repository, and Theme Editor are tools that

ease the typical development tasks associated with

HTML-based applications. These tools are explained

in more detail later on in this article.

The main runtime tool is the well-known ABAP

Debugger, which debugs BSP applications step by

step. If you have developed the script code in

JavaScript, a script debugger automatically pops up.

This is a major difference compared to ITS develop-

ment, where server-side debugging can become diffi-

cult. Since the Web Application Builder is integrated

in the traditional ABAP Workbench environment,

you can easily navigate to other Workbench tools,

such as the ABAP Dictionary, the ABAP function

and class libraries, and the ABAP Editor.

Figure 2 shows the anatomy of a BSP applica-

tion. A BSP application consists of a couple of

dynamic, scripted web pages, each of which has its

own parameters to make the BSPs more flexible.

Event handlers are attached on the page level. If you

want to separate the BSP from its business logic to

ease maintenance of the BSP, you can create an appli-

cation class that contains all the methods that consti-

tute the business logic.

!!!!! Tip

A BSP is compiled into a local ABAP class. While

this fact is an implementation detail, you can see

it easily when debugging a BSP application. The

page layout and the event handlers are methods of

the generated class, and the script code embedded

in the page is translated into code of the generated

layout method. Likewise, the page parameters

are also translated into method arguments of the

generated class. During debugging, all of the

generated method names become visible. This

should help you understand the syntactical rules

for page layout and event handlers.

To demonstrate these concepts, let’s look at the

tasks involved in building a very simple, two-page

web application.

Building a BSP Application:

Creating the First Page

There are six basic steps involved in building a BSP

application:

1. Define a new BSP application.

2. Add parameters to the page.

3. Mark up your page with HTML.

4. Embed data placeholders and code within

the page.

5. Add event handlers.

6. Add the finishing touches.

Let’s take a closer look at each of the steps by

building a simple demo application.4 This application

Figure 2 Anatomy of a Web Application

4 If you want to try this yourself, you will need access to a 6.10 server,

and you must have SAP GUI 6.10. You can order a 6.10 development

system via the SAP Service Marketplace at http://service.sap.com.

���������	
���

����������

�������

�����

�����	
������
��

�������
������
�
��

�������
������
�
��

�������
������
�
��

�������
������
�
��

33For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

Web AS vs. Internet Transaction Server

For many years, the Internet Transaction Server (ITS) has served as SAP’s strategic platform for web

application development. In addition to allowing customers (and SAP!) to build simplified, web-based

R/3 transactions (known as Easy Web Transactions), ITS enables instant access to nearly all standard

R/3 transactions and reports via its unrivaled SAP GUI for HTML component. For this reason, ITS is the

platform on which all current SAP Internet solutions (e.g., ESS, BBP, CRM, Workplace) are built.

A key design goal of ITS from its very beginning was to allow web-enablement of almost any SAP

transaction or report without significant reprogramming. Thus, by necessity, ITS was tailored to the

traditional programming model of R/3, and excels in situations where dialogs to traditional R/3

transactions are required. On the other hand, for purely web-based applications to be developed

from scratch, the more flexible BSP approach of the Web AS excels and is preferable as the more

appropriate programming model that can easily address the technical challenges of stateless web

protocols.

The Web AS and Java/J2EE

Having recognized the growing popularity and benefits of Java technologies, SAP has embraced Java

as a strategic platform for web-enablement. SAP has joined several major consortiums and committees

in an attempt to participate in the future direction of this powerful technology.

Internally, SAP has launched several serious projects utilizing Java, and has identified Borland’s

JBuilder as its IDE of choice. Externally, SAP’s commitment to supporting Java is evidenced by the

rich Java support planned for the upcoming 6.20 release of the Web AS. Boasting a fully functional,

integrated J2EE server (InQMy), the Web AS promises developers groundbreaking options for building

portable, scalable applications. Access to mySAP.com component systems is provided via the new

Java Connector (JCo), now available for free from SAP at http://service.sap.com/connectors.

With the Web AS’s Java support, developers can build powerful applications integrating data from

mySAP.com component systems, SQL databases, and legacy systems. The range of options available

with the Web AS brings developers closer than ever to the elusive vision of “any language, any

development tool, any runtime platform.”

Future releases of the Web AS will allow integration

between Business Server Pages and Java components.

Data will be freely available, and it will be possible to

perform processing across heterogeneous components,

regardless of whether they run on the ABAP, JavaScript,

or Java technology stack. Developers will be able to

choose the technology most appropriate for the task at

hand and their experience.

So how do you select a platform that best serves your needs? The table on the next page provides a

comparison between the features of ITS and the Web AS to help you tailor your solution to your own

unique environment.

(continued on next page)

!!!!! Tip

It is perhaps little known that since 4.6C

you can connect to external SQL databases

from ABAP using the EXEC SQL statements

in ABAP. You only have to issue an EXEC

SQL statement with a suitable CONNECT

string.

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.34

Feature

Platforms

Programming
languages

Program model

Session
management

Programming style

SAP screen
rendering

Customer branding

Development tool

UI abstraction

Source management

Interfacing with
mySAP.com
components

Syntax check

Debugging

SQL database
integration

Summary

Internet Transaction
Server

Windows/Linux

ABAP, HTML Business

Traditional ABAP with
HTML templates

Stateful (IACs);
stateless (WebRFC/
Flow Logic)

Inside-out (IACs);
outside-in (MiniApps)

Built-in HTML GUI

Themes, CSS (style
sheets)

Web Studio or Web
Application Builder

HTML Business

File-based, repository

BAPIs, RFMs, SAP
screens, reports

Compile time

Supported

No

Strong inside-out
access to mySAP.com;
integrated WebGUI and
web reporting

SAP Web Application Server (Web AS)

Business Server Pages

Windows/Linux

ABAP, JavaScript

ABAP scripting

Almost stateless; stateful
is supported

Outside-in

No

Themes, CSS (style
sheets)

Web Application Builder
and any WebDAV-
compliant tool

Tag libraries (contain
custom tags that offer
more powerful elements
and their own HTML
renderers)

Repository

BAPIs, direct (if
mySAP.com component is
based on 6.10)

Compile time

Supported

Yes

Strong outside-in
platform for ABAP
community; more
flexible programming
model

Integrated J2EE Server

Windows/Linux

Java

Servlet/JSP

Stateless

Outside-in

No

CSS (style sheets)

JBuilder and add-ons

Tag libraries (contain
custom tags that offer
more powerful elements
and their own HTML
renderers)

File-based

BAPIs

Compile time

Supported

Yes

Strong outside-in
platform for Java
community; access to
SQL databases via
JDBC

(continued from previous page)

35For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

will display a list of flights from the well-known

flight model used in SAP training courses. The

records to be shown are contained in table SFLIGHT.

Step 1: Define a New BSP Application

To begin, we define a BSP application and a simple

flight list display page as follows:

1. Log on to the SAP Web AS via the SAP GUI.

2. When the SAP Easy Access menu is displayed,

launch transaction SE80 as you would with tradi-

tional development.

3. As shown in Figure 3, select “BSP Application”

in the object type dropdown at the upper left of

the screen and enter the name of your new BSP

application (“Flightdemo1”).

4. Press the “Display” button (). The system

will warn you that the application doesn’t

exist and ask if you’d like to create it. Choose

“Yes.”

5. In the subsequent dialog, also shown in Figure 3,

provide a description of your BSP application

(“Flight demo web application”) and press the

“Enter” key. The system refreshes the left frame,

displaying the root node “Flightdemo1” of your

BSP application.

6. Double-click the “Flightdemo1” node in the left

navigation frame. The properties of your BSP

application will appear to the right.

7. To create the first page of your BSP application,

right-click on the “Flightdemo1” node and select

Create → Page.

Figure 3 Select the Type and Name of the BSP Application and Provide a Description

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.36

Figure 4 Name the Business Server Page

8. As shown in Figure 4, a pop-up asks you for the

name of your BSP. Type in “display.htm” and

provide a suitable page description for the page,

such as “Display.”

9. The system opens the page in the editor frame of

the “Layout” tab with some default HTML code

(see Figure 5).

Figure 5 Default HTML Code for the Business Server Page

Step 2: Add Parameters to the Page

You have created your first Business Server Page, but

it does not yet render, or output, any HTML on the

screen. We could now start to add script code, but

keep in mind that dynamic web pages may be reused

later on, so to make the page as flexible as possible,

let’s first add parameters to the page. Page param-

eters can serve multiple purposes. If you want to

share data in the page layout and the corresponding

event handlers, or pass data from one page to another,

page parameters are essential. Think of them like

“method parameters.” The page parameters become

parameters of the underlying method of the generated

local ABAP class. Due to the stateless nature of

BSP applications, the parameter values are always

37For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

initialized if a page is requested. Therefore, you can-

not use the page parameters to keep a session context.

Add parameters to your “display.htm” page

as follows:

1. Select the “Page Attributes” tab in the editor

frame.

2. Type in a new parameter named “flights.” You

must provide an ABAP data type for this param-

eter, so enter “FLIGHTTAB” as the data type.

As with the standard ABAP Editor, the data type

field is linked to the ABAP Dictionary — double-

clicking on this field causes the system to navi-

gate to the ABAP Dictionary. You can see in the

dictionary that “FLIGHTTAB” is simply a table

of records having the structure “SFLIGHT.”

Thus the “FLIGHTTAB” parameter will be used

to store a list of flights retrieved from table

“SFLIGHT” at runtime.

3. Next, add a second parameter named “flight.”

You need this second parameter to iterate over

the records of your internal table. Each record

will be rendered dynamically. Enter “SFLIGHT”

as the data type name for this parameter.

4. When finished, your entries should match those

shown in Figure 6.

Figure 6 Parameters for the Business Server Page

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.38

Step 3: Mark Up Your Page with HTML

Next, we are ready to provide the layout scripting

code. Since our flights will be contained in the inter-

nal table FLIGHTS, we need to loop through it and

render the HTML record by record. We use standard

HTML tags for rendering.

If, for example, we want to display three columns

of the FLIGHTS table, we need the following HTML

skeleton:

<table>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 </tr>
</table>

Coding this and other HTML constructs by

hand requires a lot of tedious typing and a mental

library of HTML tags and attributes. Fortunately,

the Web Application Builder includes a Tag Library

browser to help. The Tag Library browser, shown in

Figure 7, enables easy insertion of HTML tags

through drag and drop.

The HTML code just inserted by hand could

have been inserted using the Tag Library browser

as follows:

1. Open the Tag Library browser by pressing the

corresponding toolbar button. This loads the

browser into the navigation frame.

2. Expand the “HTML 3.2” branch to display the list

of valid HTML tags.

3. Drag and drop the “<table>,” “<td>,” and “<tr>”

tags into the editor frame of the “Layout” tab.

The corresponding closing tags are inserted

automatically.

4. To quickly code HTML fragments, highlight the

“<td>” tag in the editor frame and copy it by

holding down the control key.

Step 4: Embed Data Placeholders and Code
Within the Page

Next, we use special scripting syntax to insert and

format data at runtime. Close inspection of the first

line within our auto-generated “display.htm” page

reveals that the system suggests using ABAP for

scripting:

<%@page language="abap"%>

Those of you who prefer to use JavaScript can

express this preference by changing abap to

javascript in the line of code above.

Lest you think the Tag Library browser is

only useful for coding HTML tags, it also contains

a library of script tags as well! Begin adding code

to your page using the Tag Library browser as

follows:

1. Open the Tag Library browser, if it is not

already open, and expand the branch “BSP

directives.”

2. Drag and drop the code tag “<% … %>” just after

the <table> tag in our page.

3. Highlight the code tag and copy it just before the

closing </table> tag.

4. In the first code tag, type:

 Loop at flights into flight.

5. In the second code tag, type:

 Endloop.

6. Drag and drop the field evaluation tag

“<%= %>” between the <td> and </td>
tags.

7. Type in flight-carrid, flight-connid,

and flight-fldate right after the equals

sign (=).

39For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

Figure 7 The Tag Library Browser

8. Save your work.

For those used to WYSIWYG editors such

as Microsoft FrontPage, you might be thinking

at this point that coding HTML this way is rather

time-consuming. Remember that the Web

Application Builder was designed to comply with

WebDAV, a standard supported by many popular

tools for the exchange of web application objects

(e.g., HTML pages). Through WebDAV, pages

designed in the editor of your choice (assuming it too

is WebDAV-compliant) can easily be imported into

the Web Application Builder. More on this later.

Step 5: Add Event Handlers

We have not yet implemented the code to retrieve

flight information from table SFLIGHT. This will be

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.40

done using the Initialization event handler, as illus-

trated in Figure 8:

1. Select the “Event Handler” tab.

2. Select the “OnInitialization” event handler in the

dropdown listbox.

3. Add the following code:

select * from sflight into
 corresponding fields of table
 flights up to 100 rows.

4. Save your work.

Your page is now ready to be compiled:

1. Activate your page from the toolbar by pressing

the button. The page will be tested for syntac-

tic and semantic correctness, and a local ABAP

class will be generated containing methods that

correspond to your event handlers and layout

specifications.

2. Select the “Properties” tab to see the URL that

will load the page.

3. Press “F8” and the system loads the URL by

launching the web browser.

4. A logon prompt appears, and after successfully

logging in, our result page (“display.htm”) is

displayed. Obviously, the data displayed on

your page will depend on the contents of table

Figure 8 Implement Database Access with the Initialization Event Handler

41For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

Figure 9 The Resulting Display Page

Listing 1: Add Column Headers to the Business Server Page

<table>
 <th>Carrid</th>
 <th>Connid</th>
 <th>Fldate</th>
<% loop at flights into flight.%>
 <tr>
 <td><%=flight-carrid%></td>
 <td><%=flight-connid%></td>
 <td><%=flight-fldate%></td>
 </tr>
<% endloop.%>
</table>

SFLIGHT in your system. Use the Data Browser

(transaction SE16) to add rows if data is missing.

Step 6: Add the Finishing Touches

So what is missing from your first page? For read-

ability, you should add column headers. Again, you

can use the Tag Library browser or simply type in the

corresponding <th> </th> tags and supply appro-

priate column names. Your code should now look

like Listing 1, and your result page like Figure 9.

Congratulations! You’ve created your first BSP

application!

Advanced Formatting

While functional, the user interface for our demo

application is simplistic. Real-world pages tend to

have many more visual elements, often in an attempt

to “brand” the site. Standard HTML offers a rich

library of tag sets and attributes with which to imple-

ment a compelling design, but hard-coding formatting

options leads to an application that cannot be main-

tained. Especially for large applications, it would be

ideal to have some way to centrally store site design

elements (e.g., button and background colors, or type

styles) so that changes can be propagated instantly

throughout the site.

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.42

Enter Cascading Style Sheets (CSS)! CSS allows

you to define visual elements in a separate file known

as a style sheet, and refer to that style sheet in any of

your application’s HTML code. Maybe you have

already noticed a reference to a style sheet in the

header of the initially generated HTML code (refer

back to the code in Figure 7):

<link rel="stylesheet" href="../../

sap/public/bc/bsp/styles/sapbsp.css">

Whether created outside or inside the Web Appli-

cation Builder, style sheets — and all MIME objects,

such as images, for that matter — must be stored in

something called the MIME Repository. The MIME

Repository is simply a storage area reserved for

binary and other objects to be used in web applica-

tions, such as images, sounds, and style sheets.

Objects created outside of SAP can be uploaded to

the repository. More on this later.

For now, let’s improve our page’s appearance

using an existing style sheet from the repository:

1. Bring up the MIME Repository by pressing the

corresponding button in the left navigation frame.

2. Two folders are displayed, both belonging to the

SAP namespace: the “PUBLIC” folder and your

BSP application’s folder (“FLIGHTDEMO1”).

Expand the “PUBLIC” branch, and then expand

all nodes that correspond to the path name of

Figure 10 Expand the “Styles” Node to View the Style Sheets

43For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

the style sheet reference in your HTML page’s

head, as noted in the previous line of code (i.e.,

“...public → bc → bsp → styles”).

3. After expanding the “Styles” node, you will

see a listing of style sheets (see Figure 10). If

you double-click on a style sheet’s name (e.g.,

“sapbsp.css”), an editor frame opens in the lower

left containing the style sheet’s class definitions.

4. Resize the editor frame for readability and scroll

down to the very end, where you will find style

classes for table rendering.

5. Drag and drop the style names into the corre-

sponding HTML tags in the editor frame of the

“Layout” tab at the upper right. Precede each

style name with the string class=, for example:

 <table class="bspTbvStd">

6. While not directly relevant to our CSS example,

let’s take this opportunity to improve the format-

ting of our “flight date” field. Replace the

<%=flight-fldate%> string in the template

with the following:

 <% data: str type char10.
 write flight-fldate to str. %>

This code converts the internal date format to the

user’s preference for date formatting according to

the user’s master record in the database.

7. Before continuing, ensure your code now matches

that in Listing 2.

Listing 2: Modified HTML Layout Code for the Display Page

<%@page language="abap"%>
<html>

 <head>
 <link rel="stylesheet" href="../../sap/public/bc/bsp/styles/sapbsp.css">
 <title> Flight display </title>
 </head>

 <body class="bspBody1">
 <table class="bspTbvStd">
 <th class="bspTbvHdrStd">Carrid</th>
 <th class="bspTbvHdrStd">Connid</th>
 <th class="bspTbvHdrStd">Fldate</th>
 <% loop at flights into flight.%>
 <% data: str type char10.
 write flight-fldate to str. %>
 <tr>
 <td class="bspTbvCellStd"><%=flight-carrid%></td>
 <td class="bspTbvCellStd"><%=flight-connid%></td>
 <td class="bspTbvCellStd"><%=str%></td>
 </tr>
 <% endloop.%>
 </table>
 </body>
</html>

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.44

8. Activate your page and re-launch it. As you can

see in Figure 11, the tabular output will look

much better than it looked before (refer back to

Figure 9).

Processing User Input: Creating

the Second Page

So far, we have seen how to render dynamic

web pages that include SAP data. But how do we

handle user interactions such as submitting HTML

forms?

To demonstrate, let’s add a selection screen to our

demo application upon which a user can enter a car-

rier ID to sort the resulting flights list. We’ll create

an initial page called “search.htm” for our web appli-

cation and implement the OnInputProcessing event

for that page:

1. Bring up the Repository Browser by pressing

the corresponding button in the navigation

frame.

2. Open the context menu and add another page

to your BSP application, following the steps

described in the previous section.

3. Name your page “search.htm.”

4. Insert the following code in the editor frame of

the “Layout” tab, as shown in Figure 12 (again,

you can drag and drop HTML tags from the Tag

Library browser if you wish):

<form method="POST">
 Carrier
 <input name="carrid"/>
 <input value="Go" type="SUBMIT"
 name="OnInputProcessing(select)"/>
</form>

Figure 11 The Improved Display Page

45For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

This code needs a bit of explanation. First, to

submit fields to a server from a browser, you sur-

round the fields with <form> </form> tags. Here,

we have two input fields: one field serves as selection

criterion for carriers preceded by the label “Carrier,”

and the other is a submit button with the label “Go.”

When the form is submitted by pressing “Go,” control

is passed to the Web AS, which invokes the page’s

OnInputProcessing event. Note that in pages with

multiple buttons, distinct values can be substituted for

the SELECT string, allowing the code in the event

handler to determine which button was pressed.

Before implementing the OnInputProcessing

event handler for this page, let’s first modify our

original “display.htm” page to support this new capa-

bility to sort by carrier ID. To do this, we must add a

parameter to the “display.htm” page so that the carrier

Figure 12 Add Input Fields to the Search Page

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.46

ID entered by the user will be passed to the page (see

Figure 13):

1. Double-click the “display.htm” page in your

navigation frame.

2. Select the “Page Attributes” tab.

3. Add a new parameter named “carrid.”

4. Check the “Auto” flag. This ensures that when

the page is requested the parameter is filled with

a URL parameter that is set accordingly (i.e., it

contains a corresponding parameter = value
substring).

5. Enter “SFLIGHT-CARRID” as the ABAP data

type name for the new parameter.

6. Select the “Event Handler” tab and choose the

“OnInitialization” event.

7. Add where carrid = carrid to your

SELECT statement (refer back to Figure 8), so

that your code now reads as follows:

* event handler for data retrieval
select * from sflight into
 corresponding fields of table
 flights up to 100 rows
where carrid = carrid.

Figure 13 Modify the Display Page to Support Sorting by Carrier ID

47For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

!!!!! Tip

If you want to test the page independently, press

“F8.” Since the parameter is not filled, an empty

table will be shown. Add ?carrid=AA to the URL

in your browser and reload it. Only flights from

the AA airline will be shown.

To complete our flight plan scenario, we have to

program parameter passing and page navigation into

the search page:

1. Double-click on the search page (“search.htm”).

2. Select the “Event Handler” tab and choose

“OnInputProcessing.”

3. Enter the following code (see Figure 14):

data: carrid type sflight-carrid.
carrid = request->get_form_field
 (name = 'CARRID').
navigation->set_parameter(name =
 'Carrid' value = carrid).
navigation->goto_page
 ('display.htm').

Figure 14 Add Parameter Passing and Page Navigation to the Search Page

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.48

This code retrieves the content of the form field

“carrid” that is passed upon submission of the HTML

form. Then the page parameter “carrid,” which we

recently added to the parameters list of our results

page (see Figure 13), is set. Finally, via an HTTP

redirect, the “goto_page” instructs the Web AS to

begin processing “display.htm.”

!!!!! Tip

After examining the code in Figure 14, you might

be wondering how the Request and Navigation

objects come into play. Every event handler has

some automatically generated parameters whose

methods help to investigate the environment of a

specific request or prepare a subsequent action

such as navigation. Press the “Signature” button

from the toolbar for a full list of predefined

parameters, as shown below:

If you double-click a parameter, you navigate directly

into the Class Builder where you can inspect the

public methods of that parameter.

Now our demo application is fairly complete and

can be run. Figure 15 displays the results. Use the

browser’s “Back” button to work with different air-

line codes.

!!!!! Tip

When you press “F8” to request and view your

page, the URL of the page you are currently

editing is automatically requested. You can define

a different start page in the BSP application’s

“Property” tab by entering a different URL.

Testing and Debugging

Since the Web Application Builder supports the same

navigation, editing, and debugging features that the

traditional ABAP Workbench supports, ABAP pro-

grammers will find it relatively easy to develop web

applications for the Web AS. Creating pages, modi-

fying their attributes, and adding code to event han-

dlers is as easy as traditional ABAP programming.

This is not surprising, as BSP applications are just

another object type, like function groups, ABAP

programs, or ABAP classes.

When developing ITS-based applications within

the ABAP Workbench, you follow a similar proce-

dure, but there is a major difference between ITS-

based applications and BSP applications when it

comes to the runtime environment. ITS resides on a

separate server, so HTML templates designed for ITS

need to be transferred from the development reposi-

tory to this server. Since ITS is an HTML gateway,

and therefore not based on the ABAP runtime system,

ABAP programmers have less control over it using

traditional ABAP-based tools. With BSP applica-

tions, on the other hand, the development and runtime

environments are running in the same process family.

You can carry out a syntax check of the ABAP Dic-

tionary and repository at build-time, and then debug

the session immediately as you would with a tradi-

tional ABAP program. Many of the ABAP produc-

tivity tools, such as runtime analysis, can be used to

test your new web applications.

Debugging in the Web Application Builder is

a snap:

1. Set breakpoints within one or more event han-

dlers using the ABAP Editor.

2. Launch the application from a browser.

3. When a breakpoint is encountered, the Web AS

automatically launches the ABAP Debugger in

a separate SAP GUI window on the client PC.

Here, you can single step through the code, exam-

ine the call stack, set watchpoint conditions, etc.

49For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

Figure 15 Search for and Display All Carriers with the ID “AZ”

!!!!! Tip

As with ITS, you can also debug a session

in progress — every URL request can be

debugged. Just set a breakpoint anywhere

in the page (layout, event handler) and the

ABAP Debugger will pop up when the page

is requested (provided that the corresponding

event handler is reached).

The ease of debugging stems from the fact that,

as in the traditional client/server world, the SAP

Web AS is both a development and a runtime envi-

ronment. Let’s walk through the steps involved in

debugging the “search.htm” page we created for our

demo application:

1. Double-click the “search.htm” page.

2. Go to the “Event Handler” tab and select the

event handler for OnInputProcessing.

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.50

3. Set a breakpoint in the code, as shown in

Figure 16.

4. Press “F8” to request and load the search page.

5. Type “AA” in the “Carrier” field and press “Go.”

6. The ABAP Debugger window pops up (also

shown in Figure 16) and the debugger stops at

your breakpoint.

7. Step through the code. You may have noticed

that you are inside the generated method of

the corresponding generated class of your BSP

application.

8. Press the “Continue” button () in the ABAP

Debugger toolbar. The debugger pop-up will

disappear and the browser displays the results

page.

Figure 16 Set a Breakpoint at Which the Debugger Will Stop

51For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

The MIME Repository and

WebDAV Access

The MIME Repository easily stores images, icons,

style sheets, etc., and its contents are also accessible

from within PC-based, WebDAV-enabled design

tools like Microsoft FrontPage. Let’s take a closer

look at these two functions of the Web AS and how

they work together.

The MIME Repository

Perhaps the largest business benefit derived from

web-based applications is ease of use. Proper design

of an application’s user interface is critical and usu-

ally requires a specialized skillset, so on many teams

this responsibility is delegated to web designers and

illustrators, rather than to programmers. Along with

designing the user interface, these designers often

create images, style sheets, and other related files

with specialized tools. In addition, all of these items

need to be deployed and version-controlled like the

code developed by programmers.

Earlier we saw how the MIME Repository is used

to store style sheets for inclusion in your BSPs. The

MIME Repository can also meet the need for regu-

lated deployment and version control by serving as a

centralized object store. Images and styles built by

designers with external tools can be easily uploaded

and are immediately accessible to developers working

on the application’s logic. At runtime, the Web AS

serves all images referenced in BSPs from the MIME

Repository. In this way, the MIME Repository func-

tions as a content management solution.

From a development perspective, the MIME

Repository is divided into several sub-hierarchies:

the SAP namespace, and a sub-hierarchy for every

BSP application. The “PUBLIC” folder, which

we used earlier when searching for styles, contains

application-independent MIME objects. Within the

sub-hierarchy for your BSP application, you can

freely create subfolders as in a normal file system.

Managing MIME objects and referring to them in

your BSP application is easy.

!!!!! Tip

For those who have developed web applications in

the past, this approach differs from the traditional

approach of deploying MIME files directly to a

directory on the web server. Here, MIME objects

are physically stored in the Web AS database,

and are then served at runtime. To mitigate

performance concerns, at runtime the Web AS

makes image binaries available in a special

Internet communication cache to reduce database

I/O time.

!!!!! Tip

I would not recommend placing customer objects

in the “PUBLIC” folder, as the customer content

may be overwritten when upgrading to the next

release. Instead, create a dummy public customer

web application to contain these objects and refer

to them with a UNIX-like syntax, for example:

.../ZPUBLIC/IMAGES/LOGO.jpg.

For some hands-on experience with the MIME

Repository, try the following with our demo web

application:

1. Bring up the MIME Repository by pressing

the corresponding button in the navigation

frame. Only the “PUBLIC” branch and your

application-specific branch (“Flightdemo1”)

will be visible.

!!!!! Tip

If your screen does not contain the “MIME

Repository” button, you can add it. Navigate

to Environment → Settings, and switch to the

“Workbench (General)” tab. Select “MIME

Repository” from the list of tools that appears.

2. Right-click on your BSP application’s name

(“Flightdemo1”) to open the context menu.

Select “Create new folder.”

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.52

3. As shown in Figure 17, specify a folder name

(e.g., “search”) and description and press

“Save” ().

4. Right-click on your new folder and select

Import → MIME object. A file selection box

will appear.

5. Select an image file from the file system.

Press the “Enter” key, and the image is uploaded

into the MIME Repository and appears in the

folder.

6. Double-click the image name for a short preview

(see Figure 18). You can see here that I’ve

selected the image file

“sap_corporate_4c_tm.gif.”

7. If not already open, open the “search.htm” Busi-

ness Server Page we created for our demo appli-

cation in the previous section and navigate to the

editor frame of the “Layout” tab.

8. Bring up the Tag Library browser in the left

frame by pressing the corresponding button.

9. Drag the “” tag to the editor frame, below

the <body> tag but above the <form> tag.

10. Expand the “” folder and drag the “src”

attribute into the image tag. Your finished image

tag should look like this:

11. Finally, to insert the link to your image,

bring up the MIME Repository again in the

left frame and drag your image’s name between

the double quotes of the image tag’s “src”

attribute.

12. Activate and re-launch your page. As shown in

Figure 19, your image is now displayed above

the input field.

WebDAV Access

The contents of the MIME Repository constitute a

virtual file system that is visible to WebDAV clients.

Figure 17 Specify the Folder Name

53For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

Figure 18 Preview of the Selected Image

Figure 19 The Image Is Displayed on the Search Page

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.54

Windows NT Explorer is an example of a simple

WebDAV client (others include Adobe GoLive, and

Windows 98 and 2000). Let’s take a look at this

virtual file system using the Windows NT Explorer:

1. Launch the Windows NT Explorer from your

desktop.

2. Add a new web folder using the wizard located in

the folder “Web Folders.” The location of the

web folder is http://<SAP Web AS>:
<Port No>/sap/bc/bsp_dev. (If you’re

using Windows 2000, first go to Tools → Map

Network Drive, then click on the “Create a

shortcut to a Web Folder” link.)

3. Browse the virtual file system as you would any

other folder.

4. As demonstrated in Figure 20, you can open BSP

projects and other MIME Repository files directly

from within a WebDAV-enabled web design tool

like Microsoft FrontPage. Any changes made

using this or other WebDAV-enabled design tools

instantly updates the images and HTML pages in

the MIME Repository.

Figure 20 MIME Repository Files Are Accessible from Within Microsoft FrontPage

55For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

!!!!! Tip

Keep in mind that WebDAV is only an interface

to the MIME Repository, which means that page

templates are treated as binaries in Microsoft

FrontPage and need to be updated by a

programmer in the BSP application.

Theme Editor

In many situations, you’ll wish to customize the

appearance of existing SAP standard web applications

or customer web applications, or you may want to

support multiple appearances (e.g., for different

corporate divisions) for a given application. Themes

provide a simple way to accomplish this task.

Themes are simply collections of MIME

Repository objects representing different appearances

of an application. When a BSP application refers

to a theme, the Web AS subsequently serves

MIME objects stored in the repository under that

theme. Thus customer images and styles can be

used with existing BSP applications simply by

adding a theme.5

Themes are currently restricted to images, icons,

and styles only. A theme concept for BSPs is in

development, which would enable customization of

page layouts as well.

In practice, working with themes is easy. For

example, try creating a theme as follows:

1. Double-click your BSP application’s name

(“Flightdemo1”).

2. Press the “Assign Theme” button on the applica-

tion toolbar.

3. As shown in Figure 21, specify a theme name

(“THM1”) and press “Save” ().

4. In the theme editor, select the “Files” tab and

press the “Include Objects” button.

5. A pop-up displays the MIME Repository. Select

the MIME Repository object you would like to

copy and customize. Upon adding this first

Figure 21 Specify a Theme Name

5 A customer-based theme approach and corresponding customizing

procedures are in development for the 6.20 release of the Web AS.

""""" Warning!

Be careful to avoid overwriting objects of the

“PUBLIC” MIME Repository folder, as all

applications referring to the changed object will

be affected.

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.56

object, the theme’s hierarchy of included objects

is updated, as shown in Figure 22. Here, I’ve

added the image file “sap_corporate_4c_tm.gif.”

6. Right-click on the newly added image and select

“Import” from the pop-up menu. The file selec-

tion dialog appears, enabling you to upload a new

graphic or MIME object and add it to the theme.

7. Return to the “Properties” tab of your BSP appli-

cation (“Flightdemo1”) and update the “Theme”

field with your recently created theme name

(“THM1”). This will be the default theme

selected when the application is launched.

8. Re-launch your application, and the images or

MIME objects you’ve added will be displayed.

Navigation Modeler

In creating our demo web application, we learned

how to link Business Server Pages by using a Naviga-

tion object (refer back to Figure 14). This is a rather

low-level approach, as direct references to web pages

are buried into the code. If you later decide to dra-

matically change your application’s flow, it will be

difficult to locate these hard-coded references for

updating. The Navigation Modeler can help.

Figure 22 Adding a MIME Repository Object to the Theme

57For site licenses and volume subscriptions, call 1-781-751-8699.

A Developer’s Guide to Creating Powerful and Flexible Web Applications with the New Web Application Builder

The Navigation Modeler is a graphical tool that

displays the relationship between BSP pages by

means of “navigation requests.” Pages are repre-

sented as nodes, and navigation requests as connec-

tors from one page to another. Then, rather than

referring directly to static page names in your code,

you issue symbolic navigation requests. The system

determines which physical target page is associated

with a logical navigation request, and transfers con-

trol as desired.

Continuing with our demo application, let’s

employ this new technique by performing the follow-

ing steps:

1. Double-click on your BSP application’s name

(“Flightdemo1”).

2. On the “Navigation” tab, select the “search.htm”

page for the field “First Page” by pressing “F4.”

3. Select the “display.htm” page for the field

“Target Page” by pressing “F4.”

4. Specify a name for the “Navigation Request”

field (e.g., “ONSEARCH”).

5. Select the “Navigation Modeler” tab. Your

application’s logical model is displayed visually

via an embedded graphic editor (see Figure 23).

Figure 23 The Navigation Modeler Graphical Display

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.58

!!!!! Tip

You can manipulate navigation requests from

within the graphic editor of the “Navigation

Modeler” tab, and you can add new ones using

the connection tool () on the toolbar.

6. Finally, replace the hard-coded page navigation

reference in your “search.htm” page. Open the

page and modify your current navigation->
goto_page statement so that it reads:

navigation->next_page('OnSearch')

The application should function no differently

than before the change.

Conclusion

The Web Application Builder is SAP’s web applica-

tion development tool of choice for developing Busi-

ness Server Pages applications for the SAP Web

Application Server platform. ABAP programmers

will find developing with the Web Application

Builder very comfortable since it uses the same edit-

ing, navigation, and debugging facilities as ordinary

ABAP programming. Powerful tools like the BSP

Editor, the Tag Library browser, and the MIME

Repository help you quickly build applications, and

also help enable the use of third-party design and

development tools through WebDAV.

As a strategic development platform, the SAP

Web Application Server combines modern web tech-

nology and the power and integration of mySAP.com

component systems with unprecedented integration

and flexibility. The Web AS complements SAP’s

current offering, the Internet Transaction Server, in

enabling customers to develop powerful web-based

applications to simplify and streamline interaction

with both mySAP.com and non-SAP enterprise

systems.

For more information on how to obtain and

install the SAP Web Application Server, visit the

SAP Service Marketplace at http://service.sap.com/

technology.

Karl Kessler studied Computer Science at the

Technical University of Munich, Germany. He

joined SAP AG in 1992 as a member of the Basis

modeling group, where he gained experience with

SAP’s Basis technology. In 1994, he joined the

product management group of the ABAP

Development Workbench. Since 1997, Karl

has been Product Manager for SAP’s business

programming languages and frameworks. He

can be reached at karl.kessler@sap.com.

