
23For site licenses and volume subscriptions, call 1-781-751-8699.

File I/O with ABAP — Problems, Workarounds, and Prudent Practices

File I/O with ABAP —
Problems, Workarounds,
and Prudent Practices
Gerd Kluger

Gerd Kluger works in the

Business Programming

Languages Group at

SAP AG, where his main

responsibility is in the

development of ABAP

Objects and system

interfaces, especially with

regards to the file system.

Prior to joining SAP, Gerd

worked for a company

focused on development of

programming languages for

business applications.

File input and output (I/O) is one of the rare instances where an ABAP

programmer comes into contact with the world outside of an SAP system.

He leaves a perfect world where everything fits neatly together, and is

confronted with the harsh reality of different operating and file systems.

As experience often shows, file I/O frequently leads to problems,

such as corrupted data and mysterious program behavior. Programmers

run into these issues because they either don’t know about the

challenges they have to expect outside of an SAP system (e.g., platform-

specific peculiarities), or they aren’t entirely aware of all the implicit

processes happening behind the scenes (e.g., how datasets in ABAP are

mapped to physical files of the file system).

This article provides an overview of the different aspects involved

in working with files in ABAP, with an emphasis on typical traps and

pitfalls and how to avoid them. The first part of the article concentrates

on the file interface of releases up to and including 4.6. With Release

6.10, there are many changes and improvements that make working

with files more secure. These changes are discussed in the second

part of the article, together with the most important new features of the

file interface.

Basic File I/O

A typical SAP system has a multi-tier architecture consisting of a

database, one or more application servers, and many separate client

frontends (presentation servers). So when we talk about file I/O, it’s not

immediately clear what we mean: do we mean access to files on the

presentation server or on the application server? For the purposes of
(complete bio appears on page 38)

SAP Professional Journal November/December 2001

www.SAPpro.com ©2001 SAP Professional Journal. Reproduction prohibited. All rights reserved.24

this article, “file handling” always happens on the

application server. There is no way to manipulate

files on the presentation server directly. If you want

to access files from the client frontend, you have to

copy them by using special function modules (i.e.,

GUI_UPLOAD/GUI_DOWNLOAD1), and then

process them.

The two basic file operations are: reading the

content of a file, and transferring some sort of data to

it. In order to do so, you typically have to open the

file before you can use it and then you close it if you

don’t need it anymore.

In ABAP, the corresponding operations to these

four tasks are:

• READ DATASET dsn INTO f.

to read from a file

• TRANSFER f TO dsn.

to write to a file

• OPEN DATASET dsn.

to open a file

• CLOSE DATASET dsn.

to close a file

In all operations, dsn is the name of the file as

it is known to the particular operating system. That

is to say, it is the “physical” file name. There is no

notion of a “file handle” in ABAP to denote a file,

as in other programming languages. Rather, the

name of the file itself serves as a file handle. As a

consequence, you cannot have the same file open

multiple times at the same time in the same program.

Since dsn is the name of the file as it is known to

the operating system, you may run into problems in a

heterogeneous landscape. For example, in a UNIX

system, a file is denoted by a path where the path

consists of directories followed by the real name of

the file, all separated by the special forward slash

character “/”. So “foo/bar” is a correct file name,

meaning the file “bar” in the directory “foo”. While

in Windows you also have the notion of a path, direc-

tories and file names are separated by the special

backslash character “\”, and directories may be

related to different volumes (denoted by “drive let-

ters”). A typical file name under Windows may be

“C:\foo\bar”, meaning the file “bar” in the directory

“foo” on drive “C”. As you can see from this very

simple example, it’s not desirable to use file names

directly (though we will do so for simplicity in the

rest of this article), since if you run application serv-

ers on different platforms, a file name that is well

suited for one platform is not necessarily correct in

another. A much better practice is to use platform-

independent, logical file names, whereby you

define the mapping from logical file names to the

corresponding physical file names in transaction

FILE. Then you can use the function module

FILE_GET_NAME in your code to get the physical

name corresponding to a logical file.

Another thing to mention before going into more

detail is access rights and authority checks. From the

operating system’s point of view, all ABAP file

operations originate from the SAP kernel. They are

therefore executed under the identity of the OS user

who owns the working process — usually the OS user

under which the SAP system was installed. This has

the following consequences:

• The OS user who started the SAP system must

have OS access rights to all files and directories

involved in ABAP file operations.

• OS access permissions cannot be used to control

file access by different SAP users. Another

mechanism is needed to control file access by

different users. This is achieved by the SAP

authority check, which can be configured by

transactions SU02/SU03 and is integrated into

the kernel to guarantee that users can only gain

access to operating system resources if they are

explicitly allowed to. For example, if someone

tries to open a file without having the permission

to do so, the OPEN DATASET will result in a

runtime error.2

1 The function modules are called WS_UPLOAD/WS_DOWNLOAD
in pre-6.10 releases.

2 In order to avoid the runtime error, use the function module

AUTHORITY_CHECK_DATASET to check if the user has

access rights.

25For site licenses and volume subscriptions, call 1-781-751-8699.

File I/O with ABAP — Problems, Workarounds, and Prudent Practices

Opening a File

As noted previously, the OPEN DATASET command

is used to open a specific file. It has an abundance of

options to tell the system what you plan to do with the

file, the nature of the contents of the file, and so on.

Let’s talk first about the four different ways in

which you can access the file3:

• The FOR INPUT option: This option allows you

to read from an existing file.

• The FOR OUTPUT option: This option allows you

to write to a file, creating the file if it doesn’t

exist, or destroying its original content if it

already exists.

• The FOR APPENDING option: This option allows

you to extend an existing file (or create it if it

doesn’t exist).

• The FOR UPDATE option (as of Release 6.10):

This option allows you to change the content of

an existing file (i.e., to read from and write to an

existing file). Note that the file must exist.

In the pre-6.10 releases that you work with,

where the FOR UPDATE option does not exist, to

update a file you have to open it using FOR INPUT,

then carry out a TRANSFER, ignoring the FOR
INPUT option. Why does this work? Well, things

are a bit more lax than they should be! Even if a file

is opened for input, you are still able to write to the file.

The lack of stricter measures can lead to undesired

results, since you can overwrite your file by accident.

Hence our decision at SAP to introduce the new FOR
UPDATE option, and enforce more stringent limita-

tions on the FOR INPUT option, as I will show you

later on.

Once you have specified how to access the file,

you should specify how your data is structured:

• If the data is organized as lines, open the file

IN TEXT MODE.

• If the data is unstructured and you want to pro-

cess it byte by byte, open the file IN BINARY
MODE.

In pre-6.10 releases, the main difference between

TEXT MODE and BINARY MODE is the use of end-

of-line markers. Unfortunately data is always trans-

ferred (respectively read) in binary fashion in both

modes. This leads to unexpected results if you open a

file in text mode but some of your data contains byte

patterns identical to the end-of-line marker, which is

not unlikely if you transfer integers, for example. As

you will see in just a bit, the new 6.10 release takes

precautions against this situation.

One thing to note regarding end-of-line markers:

As you probably know, the end-of-line marker is

different on different platforms. On UNIX platforms,

it is a single “linefeed” character. Windows uses the

two-character sequence “carriage-return linefeed”.

On Windows, if you open an existing file in TEXT
MODE, the runtime system tries to guess from the

content of the file how lines are separated, and uses

that style later on. The platform-dependent style is

only used if the file doesn’t exist already. This often

confuses people, especially if a file is opened for

output, since the original content is destroyed but the

line style is retained.

!!!!! Tip

In order to avoid this situation, delete the file

before opening it for output. A file can be deleted

by the statement DELETE DATASET.

Two additional OPEN DATASET options are

worth mentioning:

• The AT POSITION pos option: To open a file

midstream (e.g., not at the beginning, but at some

specific position), use this option. Be careful

if you want to change an existing file at some

specific position! Open your file using FOR
UPDATE in that case, since FOR OUTPUT will

first delete the file and then go to the position
3 This is with Release 6.10; in former releases, there were only

the first three options.

SAP Professional Journal November/December 2001

www.SAPpro.com ©2001 SAP Professional Journal. Reproduction prohibited. All rights reserved.26

given, and that’s not really what you want to

do! Since in pre-6.10 releases there is no FOR
UPDATE addition to the OPEN DATASET, the

only way to achieve this is to open the file FOR
INPUT and take advantage of the laxness in the

access type checking.

• The FILTER f option: This filtering option was

designed to pipe the data through some external

operating system command, like “compress” or

“uncompress”. Many programmers, however,

use it to start OS commands from within ABAP.

Closing a File

If you don’t need a file anymore in terms of reading

or writing, you should close it by use of the CLOSE
DATASET statement. Although not absolutely

necessary, since a file is (eventually) closed auto-

matically by the runtime system, there are several

very good reasons why you should always close it

explicitly:

1. Closing the file frees internal resources. There

are a limited number of files that can be open at

the same time, so keeping a file open longer than

it needs to be is a waste of file handle resources

and may come at the expense of a file that does

need to be open.

2. Since all I/O is buffered, written data may not be

stored physically on disk until the file is closed, at

which time all buffers are flushed. With buffered

output, many problems are not detected until

the buffers are flushed (e.g., if there is no more

disk space). The return value of the CLOSE
DATASET may therefore be important for the

continuation of your program.

3. If you opened the file with the FILTER and FOR
OUTPUT options, the close is important because

the background filter command will only then

receive an end-of-file and will terminate on that

condition. Also, it’s the only way to check if the

filter command succeeded.

When closing a file, the meaning of the return

value of the command (SY-SUBRC) varies, depend-

ing on whether or not the filter option was specified

during the opening of the file. If it wasn’t, a return

value of zero indicates that everything went okay.

If the filter option was specified, however, the exit

status of the shell that invoked the filter command

is returned. Usually the shell exits with the exit

status of the command that was executed, and it is

good practice for a command to exit with a zero exit

status if it succeeds, but all this is highly platform-

dependent and outside of the control of the runtime

system. So numerous problems can arise if you don’t

know exactly how your (external) command behaves,

or even if the shell really knows about the command.

Note that with this scheme, it is not possible to distin-

guish an error reported by your shell (e.g., because

the command wasn’t found) from an exit status of

the command itself that has exactly the same return

value. Sounds pretty awful, doesn’t it? In practice,

it’s not so bad. You can generally assume that if

SY-SUBRC is zero, everything is all right.

If something goes wrong during file close and

there is a risk of losing data, an exception is thrown,

particularly if there is some data left in the output

buffer that cannot be transferred to disk, or if a file

was opened FOR OUTPUT with the filter option and

the filter command exits with a non-zero exit status.

Reading from a File

You read from a file by using the READ DATASET
statement, specifying the name of the file and a vari-

able into which the data should be transferred. The

variable can be of various types — e.g., a character or

numeric type. It can even be a flat structure, which is

a structure that doesn’t contain any elements that

cannot be stored in-place, such as strings, internal

tables, or data/object references.4

The return value (SY-SUBRC) indicates whether

or not data was read — e.g., a SY-SUBRC of 4 tells

4 Strings are allowed if, and only if, they are addressed explicitly as

“standalone” (not as part of a structure).

27For site licenses and volume subscriptions, call 1-781-751-8699.

File I/O with ABAP — Problems, Workarounds, and Prudent Practices

you that the end-of-file was reached and no more data

was available.

The way the file’s data is read depends on

whether the file was opened in text or binary mode.

If the file was opened in binary mode, data is read

until the variable you specified is filled.

!!!!! Tip

Be careful not to read a large binary file into an

XSTRING. Since an XSTRING has no fixed

length, this will result in the whole file being

entirely read into the string!5

If the file was opened in text mode, it is assumed

that the file consists of individual lines and each

READ DATASET reads exactly one such line.6 The

data is then transferred to the variable. If the variable

is smaller than the amount of data read, the overflow

data is discarded. If the variable is bigger, it is pad-

ded with spaces.

In order to figure out how much data is read

from the file, call READ DATASET together with the

LENGTH len option. The value returned in the

variable len gives the actual length of data read.

The value depends on the open mode of the file. If

the file was opened in binary mode, length is ren-

dered in bytes. If it was opened in text mode, it is

rendered in characters. Note that in text mode, the

line separator is not returned and does not count as an

extra character.

Writing to a File

You write to a file using the TRANSFER statement,

giving the value to write and the name of the file

where you want the data to go. As with the READ
DATASET command, you can write various types of

data. If you are using structures, however, you are

limited to “flat” data types (similar to the READ
statement). Usually the amount of data written is

determined from the data type, but you can also give

an explicit length with the LENGTH option. This is

especially useful if you want to write only part of a

larger structure (then the explicit length has to be

smaller than the size of the data structure), or if you

want to pad the data in the file (then the explicit

length has to be larger).

The way data is written again depends on the

mode specified when opening the file: in binary

mode, the memory layout of the data is just trans-

ferred to the file; in text mode, trailing spaces are not

written and the data is additionally terminated with an

end-of-line marker.

!!!!! Tip

Keep in mind that all output is buffered, so you

cannot assume that after a TRANSFER the data is

in the file. The data is physically stored on disk

only after a flush. Flushing happens, for example,

if the buffer is full, when you switch from transfer

to read, when you change the file position, or if

you close the file.

Traps and Pitfalls with File I/O

When working with files, several types of problems

tend to pop up over and over again. In the next sec-

tions, we’ll look at some of these trouble spots, including

problems induced by automatic mechanisms, different

platforms and opening modes, and networking and

multiple writer problems.

Problems with Automatic Mechanisms

In the early days of ABAP, a major design goal was

to make life easier for the application programmer

by taking care of everything that could somehow be

automated. Implicit working areas for internal tables

are a good example. Another is the renunciation of

5 In 6.10 you can limit the amount of data that gets read by using the

new MAXIMUM LENGTH option.

6 Except if the MAXIMUM LENGTH option is used.

SAP Professional Journal November/December 2001

www.SAPpro.com ©2001 SAP Professional Journal. Reproduction prohibited. All rights reserved.28

strict typing requirements, or simply the addition of

semantics like the MOVE statement, which allows you

to move (almost) any data to any variable. While

these types of automated mechanisms made program-

ming easier, they often produced insidious problems.

The dataset interface also suffers from such auto-

matic mechanisms. Take the OPEN DATASET state-

ment, for example. You need not tell the system if

you want to write to a file7 — even if you open a file

just for input, you are able to write to the file. It is

pretty obvious that this is potentially dangerous, since

the file might be accidentally destroyed.

Not so obvious is the problem related to the

automatic opening of a file using the first READ or

TRANSFER statement. In ABAP, you need not

explicitly open a file using OPEN DATASET. The

file is opened automatically by the first READ or

TRANSFER statement. However, since READ or

TRANSFER does not include options to determine the

opening mode, a default must be used. The default is

the same as with an OPEN DATASET without any

options: the file will be opened FOR INPUT and IN
BINARY MODE. This may lead to the nasty situation

illustrated in Figure 1.

Imagine that in your application a file is opened

in text mode. Data is read from that file, but instead

of appearing right after the OPEN DATASET state-

ment, the READ DATASET statement appears deep

down in some function module (path “a”). If the

OPEN DATASET accidentally doesn’t get processed

(perhaps it is part of an IF statement), the READ
DATASET command will open the file implicitly

in BINARY MODE, not in TEXT MODE as you

intended (path “b”). Since, however, the semantics

of reading/writing depends to a great extent on the

opening mode of a file, you will get completely dif-

ferent results.

The automatic opening of a file was designed to

make life easier for the programmer. He shouldn’t

have to care if a file is really open. This sentiment

was taken so far that you can call OPEN DATASET
on a file that is already open.8 But then what happens

if both OPEN DATASET statements have contradict-

ing options — e.g., one opens the file in text mode

while the other opens it in binary mode? Is the

first mode retained, or will the newer mode override

the old one?9 This is all pretty confusing, and it

is plain that automatic mechanisms don’t really

add to a clear and simple understanding of the

dataset interface. Therefore, with 6.10 SAP made

some substantial changes in that area, as I will

describe later.

Platform-Dependent Problems

Platforms are different in many aspects. One promi-

nent example is line termination by different end-

of-line markers, as noted earlier. Although SAP

accounts for these types of differences inside the sys-

tem kernel, the same cannot be said of all third-party

vendors, and you probably need to take extra care

when exchanging data with these types of solutions.

Figure 1 Consequences of
Implicit File Opening

�

�
���������	������
�����
�����������

���������	������
�����
�����

7 Actually you need not tell the system at all how you want to access

the file. If you don’t say anything, FOR INPUT is taken as the

default.

8 Actually, in pre-6.10 releases, you have to resort to this practice since

OPEN DATASET, together with the AT POSITION option, is the only

way to change file position. In 6.10 there are now extra statements

for that.

9 The answer is that the first mode is retained, except for the file

position if the AT POSITION option is used.

29For site licenses and volume subscriptions, call 1-781-751-8699.

File I/O with ABAP — Problems, Workarounds, and Prudent Practices

A more serious problem concerns discrepancies

in byte order, which describes the way multibyte

numbers are stored in memory. One way this is done

is called big endian, which stores the most significant

byte in the lower memory address. Big endian is

common among most UNIX platforms and AS/400

systems. The alternative is little endian, which stores

the most significant byte in the higher address (e.g.,

Linux on Intel processors and Microsoft Windows).

If you use a file in a mixed environment, either

because you have different application servers or for

external data exchange, I strongly advise you not to

store any numbers in binary format. It’s always

better to store the textual representation of the num-

ber instead.10

Problems Related to Opening Mode

When opening a file, what distinguishes text mode

from binary mode? Text mode employs line separa-

tors and trailing spaces are cut off. Nothing prevents

you from writing binary data in text mode. But is this

a prudent practice? No. Writing binary data in text

mode can lead to nasty situations.

Assume, for example, that your file is opened in

text mode, and you want to write some integer vari-

able “i” whose value is 487202848, which in binary is

the byte sequence 1D0A2020.

Since the last two bytes happened to have a hexa-

decimal value of 20, which is equal to the character

code of a space, they are handled as trailing spaces

and cut off. Since we are in text mode, an additional

end-of-line character (which is hexadecimal 0A on

UNIX platforms) is written to the file and we end

with the byte sequence 1D0A0A, as shown in

Figure 2.

Writing, however, is not the only activity that will

yield incorrect results. Take a look at Figure 3.

Let’s assume you managed to get the binary value

of “i” into a file, and that by chance it is even cor-

rectly terminated with an end-of-line marker. When

you read that in text mode, one line consisting of the

first two bytes will be read from the file since the

second byte is identical to the end-of-line character.

This character is then removed (remember: end-

of-line characters are never returned in text mode).

Since the target variable is not filled completely,

remaining bytes are filled with spaces. You will end

with the byte pattern 1D202020, which corresponds

to an integer value of 488644640, and this is clearly

not what you wanted.

What is shown for a single integer in Figure 3 is

of course also true if you read or write a complete

structure that contains some components of type I
or F.

Multiple Writer Problem

Sometimes more than one program must write to a

specific file. Even if this is not the case, you often

have to take extra care that files already in use aren’t

modified by someone else. Logging is a typical

example for the first case, while temporary files often

are a culprit in the second case.

Figure 2 Writing Binary Data in Text Mode

Figure 3 Reading Binary Data in Text Mode

10 See also the section on flat structures with numeric elements in

anonymous containers in Christoph Stöck and Horst Keller’s article

“Steering Clear of the Top 10 Pitfalls Associated with ABAP Funda-

mental Operations and Data Types,” which appeared in the July/

August 2001 issue of SAP Professional Journal.

�� �����

�������	
������

�� �� ���� �� �� ��

��

�������	
������

�� �� ���� �� �� �� �� �������

SAP Professional Journal November/December 2001

www.SAPpro.com ©2001 SAP Professional Journal. Reproduction prohibited. All rights reserved.30

What problems can crop up? Turn your attention

to Figure 4. You see that either two programs

running on one application server can open a local

file simultaneously, or programs on different

application servers can share a network file mounted

on both servers.

There is no integrated synchronization mecha-

nism in the dataset interface to address the potential

risk that multiple sources write to the same file. If

two programs open a file for output and both transfer

data to it at the same time, you will get mangled

results.

In order to synchronize write access to a file,

it’s best to use SAP’s locking mechanism. Define

some locking object (transaction SE11) and call

the generated function modules ENQUEUE_* and

DEQUEUE_*. Of course, all users of the file have to

follow that rule. If all you need is some local file and

you just want to make sure that no one else uses it,

you can also generate a unique file name — e.g.,

from a GUID (global unique identifier).

!!!!! Tip

One way to get a GUID is by calling the function

module GUID_CREATE.

Networking Problems

Mounted file systems can be a source of file I/O

problems. Files are often accessed via a network —

e.g., by using the NFS or LAN Manager. Directories

are mapped to drive letters, or files are accessed

directly by UNC path names.11 In all cases, the fol-

lowing symptoms can be observed:

• Files are incompletely read or written.

• You get a premature end-of-file condition.

• You get a DATASET_CANT_CLOSE error.

If you encounter such problems, the best thing

you can do is to work on the local file system and

copy the file to or from the desired location using

OS commands.

The New Release 6.10 Approach

Release 6.10 is the release of the SAP Web Applica-

tion Server. One of the prerequisites of the release is

Unicode-enabling — i.e., making ABAP work with

the Unicode character set. Unicode signifies a step

away from traditional 8-bit characters, where the

same character number can represent different

Figure 4 Multiple File Access

������������������ ������������������

������������

������������

������������

������������������������

������������

������
 �����!����

�����
 ���

�����
 ���

11 UNC is the Universal Naming Convention. UNC path names follow

the pattern “\\<host>\<share>\…”

31For site licenses and volume subscriptions, call 1-781-751-8699.

File I/O with ABAP — Problems, Workarounds, and Prudent Practices

characters in different alphabets, to a system that

assigns each character one unique number in each of

the major languages of the world.

One of our design goals at SAP was a smooth

transition to Unicode, and one key point was a com-

mon code base: all programs should work on a

Unicode (UC) system as well as on a non-Unicode

(nUC) system without any changes or special pro-

gramming. However, programmers do need to be

careful when making the transition to Unicode with

existing nUC programs. The original programmer

may have made implicit assumptions about the size

of a character or the layout of a data structure in

memory that may no longer hold true with Unicode.

To make your ABAP program work with

Unicode, you have to review the program itself to

find the places where the code must be adapted. So

since you have to inspect your program anyway, SAP

took the opportunity to introduce a cleaner and safer

dataset interface. It is not fully compatible with the

old one, but your coding can be easily adapted and

you will benefit from the additional safety of stricter

checks. This is comparable to the introduction of

ABAP Objects, which did away with old and obsolete

language elements. So Unicode-enabling offers more

than just a way to deal with the Unicode character set

— it also offers a better way to program with ABAP.

Regarding the dataset interface, this signals a move

away from error-prone automatic mechanisms

to a more explicit style of programming: “you say

what you mean,” instead of “we guess what you

probably mean.”

To make an nUC program a UC program, you

have to subscribe to some stricter rules when pro-

gramming with ABAP. This is especially true when

working with files since Unicode introduces new

demands with respect to the dataset interface, which I

will discuss in a moment. If Unicode is not of con-

cern to you, you might be concerned about your

existing code. You need not worry, though, because

as long as your program is marked as “nUC,” every-

thing will remain unchanged — and you will still be

able to take advantage of all the new language ele-

ments described in the next section. However, you

will not get the additional benefits from the stricter

checks available with Unicode. Since in an nUC

system both program types (UC and nUC) can work

together, you can adapt your programs step by step or

simply make only new programs UC-enabled.

Let’s take a closer look at what Unicode means in

an ABAP environment.

New Demands with Unicode

Unicode-enabling your system means that each char-

acter is no longer represented by one byte, but by two

or possibly four bytes.

The consequences of the change in character size

can be seen in Figure 5, which shows the memory

layout of a simple structure in an nUC system and a

UC system.

Figure 5 Non-Unicode and Unicode Systems’ Memory Layouts for a Simple Structure

���������

�	
�������

� �

	
�������

���������

� �

�	
	�
���������������
���������
�����
���������
�����
��������������

SAP Professional Journal November/December 2001

www.SAPpro.com ©2001 SAP Professional Journal. Reproduction prohibited. All rights reserved.32

When comparing nUC and UC systems, what you

notice first is that structures containing elements of

type C no longer match, since the C components

double in size (three versus six bytes). A more subtle

thing to note is that the alignment may change as

well, and that the byte order also becomes relevant

for characters.

Data in files is often just a reflection of the

memory layout, so with respect to the dataset inter-

face there are new demands with Unicode, since there

must be support for data exchange between:

• UC systems and nUC systems

• Different UC systems

• nUC systems, probably in different (traditional)

code pages12

Note that users must be able to work with data

from nUC files in a UC system and vice versa.

As I said before, a major design goal was to make

your programs work in a Unicode environment as

well as in a non-Unicode environment without explic-

itly differentiating between UC and nUC systems in

the application coding.

Text Format Extensions

When opening a file in text mode, simply the knowl-

edge that it’s a text file is no longer sufficient. In

addition, you have to specify the encoding of the file.

As of this writing, three different encoding options

are currently supported:

• ENCODING UTF-8
The corresponding file is read and written in

UTF-8, a character format that is fully compatible

with ASCII as long as only 7-bit ASCII is used.

(Only characters beyond character code 127

require two or more bytes for storage.) This is

the most popular Unicode format in external

storage because of its transparency to 7-bit

ASCII.

• ENCODING NON-UNICODE
The corresponding file is read and written in the

code page defined by the current language. This

enables you to exchange data on a UC system

with an nUC system.

• ENCODING DEFAULT
The corresponding file is read or written accord-

ing to the system the program currently runs on

— UTF-8 in a UC system, and non-Unicode on

an nUC system.

Listing 1 shows an example of a text file written

with default encoding. Default encoding will be your

choice if you don’t want to make any assumptions

about the platform (UC versus nUC) or the dataset

format — e.g., because the file will only be used

inside of your system. Of course, this will not be

adequate if the file is for data exchange with a third-

party product that requires some specific encoding.

Extended Checks in UC Programs

One very positive side-effect of Unicode-enabling is

that it makes programming with datasets less error-

prone. So whenever the Unicode flag is set for a

program, the following restrictions apply inside of

the program:

• A file must be opened explicitly by OPEN
DATASET before you can read from or write to

the file. The OPEN statement will fail if the file

is already open.

• When you open the file you have to tell exactly

for which kind of access the file shall be opened

(INPUT, OUTPUT, UPDATE, or APPENDING)

and in which mode (BINARY or TEXT).

• If you open the file in TEXT MODE, the

ENCODING option is mandatory.

12 For more information on code pages, see Michael Redford’s article

“Globalizing Applications Part 1: Pre-Unicode Solutions” in the

September/October 2001 issue of SAP Professional Journal.

33For site licenses and volume subscriptions, call 1-781-751-8699.

File I/O with ABAP — Problems, Workarounds, and Prudent Practices

Listing 1: Writing Mixed Structures in Text Files with Default Encoding

DATA: BEGIN OF mixed_struc,
 last_name(30) TYPE C,
 first_name(30) TYPE C,
 age TYPE I,
 END OF mixed_struc.
DATA: BEGIN OF stored_struc,
 last_name(30) TYPE C,
 first_name(30) TYPE C,
 age(3) TYPE N,
 END OF stored_struc.

OPEN DATASET dsn FOR OUTPUT IN TEXT MODE ENCODING DEFAULT.
MOVE CORRESPONDING mixed_struc TO stored_struc.
TRANSFER stored_struc TO dsn.
CLOSE DATASET dsn.

• If you open the file FOR INPUT, you can only

read from the file. If you open the file FOR
APPENDING, you can only append data to the

file. In order to both read and overwrite, you

must open it FOR UPDATE.

• If a file is opened in TEXT MODE, only

character-like data can be read from or trans-

ferred to the file. Character-like data means

data of type C, N, D, T, and STRING as well

as structures containing only components of

the types C, N, D, and T.

• If a file is opened in BINARY MODE, only

binary-like data may be read or transferred.

Binary-like means data of type X or XSTRING.

The latter two restrictions are clearly the most

drastic. You will find, however, that they are

extremely useful for avoiding the errors described

earlier in this article, like the ones described in

Figures 2 and 3.

What are the consequences for mixed structures

in a UC program that contains character-like data

and non-character-like data (e.g., integers) at the

same time? Well, you should decide which mode

is appropriate. If the file is used for archiving or

data exchange with other software, probably on dif-

ferent platforms, it’s always better to use a text for-

mat, since it doesn’t depend on memory layout or

platform-specific properties like byte order. If, how-

ever, you want to store data temporarily and need

not worry about different platforms, you may want

to use binary format because storage and retrieval

is much quicker.

If you have mixed structures and want to store

them in a text file, you have to convert them to

character-like structures, as shown in the example

in Listing 1.

If you decided to write your mixed structure to a

binary file, you need not convert explicitly to type X
or XSTRING, instead you can look at the data

SAP Professional Journal November/December 2001

www.SAPpro.com ©2001 SAP Professional Journal. Reproduction prohibited. All rights reserved.34

through a binary typed field symbol, as you can see in

the example in Listing 2.

Compatibility and Conversion Issues

As we saw above, the semantics of TEXT MODE and

BINARY MODE changed substantially in 6.10. So

what do you do when you need to read pre-6.10

formatted data, or when you want to store data in

the pre-6.10 format so that it can be exchanged

with Release 4.6 systems or older? To make things

even more complicated, you might want to change

to Unicode someday and still be able to process

old files.

Two new modes will support all these activities

in 6.10: the LEGACY TEXT MODE and LEGACY
BINARY MODE. They will give you the same seman-

tics as the TEXT and BINARY mode in pre-6.10

releases, but in addition allow you to read and write

nUC structures in UC programs. If run on a UC

system, textual data will automatically be translated

to and from the code page defined by the current

language, and structures will be converted between

UC and nUC appropriately, which is necessary

because of different alignment demands, as I

described earlier (see Figure 5).

In the pre-6.10 world, conversion between

different code pages and byte orders is done with

the statements:

TRANSLATE … FROM / TO CODE PAGE …
TRANSLATE … FROM / TO NUMBER FORMAT …

Both perform the conversion in-place, so after a

conversion you are supposed to refrain from using the

data further within your program (at least not without

converting it back again). Not following this practice

has been the source of many problems! The use of

the TRANSLATE statement in a UC program is there-

fore now forbidden. Instead, the conversion function-

ality has been integrated directly into the LEGACY
modes, so conversion takes place automatically when

data crosses the border between external (i.e., file)

representation and internal representation.

Automatic conversion when using the LEGACY
modes is enabled via two new options of the OPEN
DATASET statement:

• The CODE PAGE cp option: Textual data in the

file is interpreted as being of code page cp.

• The LITTLE ENDIAN/BIG ENDIAN option:

Byte-order-dependent data in the file is inter-

preted as being of little or big endian type.

The example in Listing 3 shows how to write a

mixed structure in a binary file that is compatible

with Release 4.6 or earlier, where textual data will

be stored as EBCDIC,13 and numerical data in big

endian format.

Listing 2: Writing Mixed Structures in Binary Files

DATA: BEGIN OF mixed_struc,
 last_name(30) TYPE C,
 first_name(30) TYPE C,
 age TYPE I,
 END OF mixed_struc.

FIELD-SYMBOLS: <x> TYPE X.

OPEN DATASET dsn FOR OUTPUT IN BINARY MODE.
ASSIGN mixed_struc TO <x> CASTING.
TRANSFER <x> TO dsn.
CLOSE DATASET dsn.

13 IBM’s Extended Binary Coded Decimal Interchange Code.

35For site licenses and volume subscriptions, call 1-781-751-8699.

File I/O with ABAP — Problems, Workarounds, and Prudent Practices

For the conversion demands beyond what we

have just discussed, there are ABAP system classes

that follow a stream-based approach — that is, they

read from or write to a binary stream, represented by

some XSTRING, and convert the data appropriately.

The following classes are available:

• CL_ABAP_CONV_IN_CE: This class is used to

read data from some external representation.

• CL_ABAP_CONV_OUT_CE: This class is used to

write data in some specific format.

• CL_ABAP_CONV_X2X_CE: This class is used to

convert between external formats.

• CL_ABAP_CHAR_UTILITIES: This class

defines miscellaneous things like special charac-

ters, end-of-line markers, etc.

When converting textual data, there is always the

risk that some character cannot be represented in a

given code page. Since conversion is now automatic

with the dataset interface, we need some error han-

dling for these types of situations. So now, in the

OPEN DATASET command, you can specify what

will happen in that situation for a specific file. Being

able to define this separately for each file makes error

handling a property of a file. This is important, since

for some files conversion errors might be critical,

while for others they are harmless.

Conversion errors can be dealt with in two

respects:

• You can specify a replacement character to

use when some specific character is not available

in a given code page. The default replacement

character is the hash sign (“#”). Other replace-

ment characters can be specified by the option

REPLACEMENT CHARACTER rc of the OPEN
DATASET command.

• You can specify to ignore conversion errors and

use the replacement character for substitution

with the IGNORING CONVERSION ERRORS
option of the OPEN DATASET command. When

not using this option, an exception is thrown

every time a conversion error pops up. This

exception can then be caught and processed.

Typically you want to ignore conversion errors

when reading data from a file just for display pur-

poses. Even if some of the characters cannot be

displayed, you will usually prefer to show the user

mangled strings instead of telling her that they won’t

be displayed at all. On the other hand, when chang-

ing existing data or writing data permanently to stor-

age, you want the correct data, so you will most likely

prefer an exception when a conversion error occurs

instead of silently replacing unknown characters with

a replacement character.

Other Features New

with Release 6.10

In addition to the new capabilities described so far,

there are some other new features in the dataset

Listing 3: Writing a File in Legacy Mode

DATA: BEGIN OF struc,
 c(3) TYPE C,
 i TYPE I,
 END OF struc.

OPEN DATASET dsn FOR OUTPUT IN LEGACY BINARY MODE
 CODE PAGE '0120' BIG ENDIAN.
TRANSFER struc TO dsn.
CLOSE DATASET dsn.

SAP Professional Journal November/December 2001

www.SAPpro.com ©2001 SAP Professional Journal. Reproduction prohibited. All rights reserved.36

interface that address frequent customer requests,

such as support for very large files, support for file

names containing spaces, and features that simply

make programming with datasets much easier, such

as easier ways to position the file pointer, and to

determine and change attributes of open files.

Large File Support

One highly sought-after feature has been support for

files larger than two gigabytes. Although there are

patches available for older releases to read and write

progressively, it was not possible to position explic-

itly beyond the two gigabyte file position.

Release 6.10 closes that gap in functionality and

you can now position the file pointer anywhere inside

files of any size. Note, however, that offsets larger

than two gigabytes cannot be stored in a variable of

type I, so use variables of type P, F, or N instead if

you expect to work with files that large.

Positioning the File Pointer

Before you can position the file pointer to some spe-

cific location, the question arises, “How do I deter-

mine that position?” In pre-6.10 releases, there is no

way to determine the current offset of the file pointer

relative to the beginning of the file. You have to

count all the bytes written so far. That’s not an easy

task, especially in TEXT MODE, where you have to

remember that trailing spaces are cut off and end-of-

line markers are appended automatically. The fact

that end-of-file markers vary in length on different

platforms only serves to make matters more compli-

cated. With Unicode, counting bytes becomes almost

impossible. You can’t know in advance how many

bytes will be needed for a string, since in UTF-8 the

number of bytes needed for a character depends on

the character itself.

There is a new 6.10 instruction that solves this

problem:

GET DATASET dsn POSITION pos.

This instruction gives you the position of the file

pointer in file dsn and stores it in variable pos.

The counterpart to this instruction is:

SET DATASET dsn POSITION pos.

This instruction changes the position of the file

pointer within the file. Note that you no longer need

to call OPEN DATASET with the AT POSITION pos
option just to change the file position. The fact of the

matter is that you are not even allowed to do so if

your program is a UC program, since this would be

inconsistent with the stricter rules for opening a file.

With the above instructions, positioning in files

becomes an easy task, as shown in the example in

Listing 4, which works with files of any size if vari-

able pos is of the appropriate type.

Determining and Changing
File Attributes of Open Files

With 6.10, we say goodbye to the laxness in the

dataset interface. It therefore becomes important to

know about the properties of a file — e.g., the open-

ing mode, the access type, error handling, and so on.

Until now you always had to remember such things

separately from the file, but now you can just query

the file for these properties. Even better, you can

change some of the settings at runtime and in so

doing change the way the file is dealt with, but with-

out the need to close and reopen the file again.

You can use the GET DATASET dsn and SET
DATASET dsn instructions to review and set a file’s

characteristics, respectively. Above, I showed you

how to determine one specific property of a file —

the position of the file pointer — by using the

POSITION pos option together with the GET
DATASET command. To get all the other properties

there is the option ATTRIBUTES attr, where attr
must be a variable of type dset_attributes (a

structure that is defined in the type pool dset) where

the attributes are stored respectively. The structure is

divided into two parts:

37For site licenses and volume subscriptions, call 1-781-751-8699.

File I/O with ABAP — Problems, Workarounds, and Prudent Practices

• Fixed attributes: These are attributes that cannot

be changed for an open file. The open mode,

access type, encoding (if the file is a text file),

and filter option belong to this category.

• Changeable attributes: These are attributes that

might be changed without closing the file. Typi-

cal properties are the code page or the endian

type (if the file is a legacy file), and the replace-

ment character or error handling (if the file is a

text or legacy file).

Both categories have an indicator structure that

determines which attributes are valid for the specific

file. If you want to change some of the changeable

settings, don’t forget to set the corresponding flags in

the indicator structure in order to tell which settings

you want to change.

The example in Listing 5 shows how the struc-

ture is to be used: After getting the file attributes, we

check if the file is opened in text mode, and if this is

the case we change the replacement character to “*”

Listing 4: Positioning the File Pointer

DATA: pos TYPE P.

OPEN DATASET dsn FOR OUTPUT IN TEXT MODE ENCODING DEFAULT.
... " transfer as many data to the file as you like
GET DATASET dsn POSITION pos.
... " more transfers
CLOSE DATASET dsn.
...
OPEN DATASET dsn FOR INPUT IN TEXT MODE ENCODING DEFAULT.
... " read some data from the file
SET DATASET dsn POSITION pos.
... " read data from the file at position pos

Listing 5: Changing File Attributes at Runtime

TYPE-POOLS: dset.
DATA: attr TYPE dset_attributes.

OPEN DATASET dsn ...
...
GET DATASET dsn ATTRIBUTES attr.
IF attr-fixed-mode = dset_text_mode OR
 attr-fixed-mode = dset_legacy_text_mode.
 CLEAR attr-changeable.
 attr-changeable-indicator-repl_char = dset_significant.
 attr-changeable-indicator-conv_errors = dset_significant.
 attr-changeable-repl_char = '*'.
 attr-changeable-conv_errors = dset_ignore_conv_errors.
 SET DATASET dsn ATTRIBUTES attr-changeable.
ENDIF.
...

SAP Professional Journal November/December 2001

www.SAPpro.com ©2001 SAP Professional Journal. Reproduction prohibited. All rights reserved.38

and tell the runtime system to ignore conversion

errors.

File Names Containing Spaces

Up to Release 4.6, file names containing spaces were

not supported. If your file name contained any

spaces, the name was cut off at the first space. The

lack of support for spaces in file names was not prob-

lematic in the days of UNIX, but with Microsoft

Windows it’s no longer acceptable, since on Win-

dows it’s quite normal to use spaces in file names.

With 6.10, spaces in file names are supported, how-

ever only in UC programs for backward compatibility

reasons.

Conclusion

As you saw, working with files in ABAP is not as

easy as you might have expected at first glance.

There are many problems waiting to be “discovered”

— even for the experienced programmer.

You can attribute the greater part of these

problems to the proximity of the file interface to the

operating system layer. Platform-specific peculiari-

ties become visible and make programming more

difficult. However there are also problems based

on the way the file interface was defined before

Release 6.10.

Platform-specific peculiarities are a fact of life

every programmer has to live with. Drawing a

programmer’s attention to all sources of danger

waiting for him is the best way to prevent problems,

and I hope this article has provided you with a guide

to avoiding the most insidious traps.

We have also learned within the ABAP develop-

ment group at SAP about the pitfalls regarding the

homegrown problems of the file interface. As a

consequence, the file interfaces were revised com-

pletely with Release 6.10, and now most of the

stumbling blocks are removed. Admittedly this

means that your coding becomes more extensive,

but avoiding hard-to-find bugs makes it worth any

extra time.

Gerd Kluger studied computer science at the

University of Kaiserslautern, Germany. After

receiving his degree, he worked for a company

whose main focus was the development of

programming languages for business applications.

He was responsible for the development of the

compiler and programming environment for the

object-oriented programming language Eiffel.

Gerd joined SAP AG in 1998 and since then

has been working in the Business Programming

Languages Group. His main responsibility is in

the development of ABAP Objects and the further

development of system interfaces, especially with

regards to the file system.

He can be reached at gerd.kluger@sap.com.

