
31No portion of this publication may be reproduced without written consent.

Data Downloads to Excel Made Simple with SAP’s Desktop Office Integration

Data Downloads to Excel Made
Simple with SAP’s Desktop
Office Integration (DOI) —
A Programmer’s Guide
Philip Bremner

Philip Bremner is a

Microsoft Certified

Professional holding nine

Microsoft certifications

including two Visual Basic™

certifications. Currently he

is a senior programming

analyst with Aera Energy

LLC in Bakersfield,

California, where he is

acting as an Information

Technology Lead in their

Enterprise Architecture

Implementation project.

Downloading data from SAP is usually done by displaying the data in

the Data Browser and using SAP’s list-saving functionality to transfer

the displayed data to a file on the client computer. Unfortunately, the

SAP Data Browser display is limited to 255 characters.1 This width

limitation often boxes users into a corner, forcing them to be very

selective as to which columns and/or how many columns of data they

choose for display. It should also be noted that data downloads are

limited strictly to the selected columns. But you can circumvent these

restrictions by combining the Data Browser functionality with SAP’s

Desktop Office Integration (DOI) data transfer functionality.

The process is quite simple. First, you emulate SAP’s Data Browser

table selection and data querying functionality. Then, with the help

of DOI, transfer all the selected data to a properly formatted Excel

document on the client PC. Transaction SE16 provides the necessary

table value search and selection help (F4) for a selection query.2 By

calling the underlying RFCs associated with transaction SE16, all

the data browsing functionality users have become accustomed to is

provided in your custom application. The user-selected data is captured

in an internal table, then transferred from the SAP server to Excel using

DOI functionality. DOI is used to create the Excel instance from the

SAP server. In the created Excel object, the transferred data is loaded

and the spreadsheet is formatted using Microsoft Visual Basic for

Applications (VBA).

(complete bio appears on page 46)

1 In SAP Release 4.5B, with hot pack 35, the maximum display width is increased to 1,023

characters. The help documentation has not been updated and states the maximum display

width is 255 characters.

2 Single value, range value, and selection operator specification support is provided.

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.32

This article provides a hands-on example of DOI

programming for readers who are interested in DOI,

have ABAP programming knowledge, and have at

least an understanding of Microsoft’s Visual Basic

for Applications (VBA).3 In it, I will show you

step by step how to:

1. Provide users with SAP Data Browser func-

tionality to select all the data that they need

through the RS_TABLE_LIST_CREATE func-

tion call.

2. Dynamically create an internal table definition

and load the internal table with user-selected data.

3. Transport the data from the server to an Excel

instance on the client computer via the DOI

table collection.

4. Create the Microsoft Visual Basic code required

to support data downloads.

Before delving into the details of these steps, let’s

take a glance at what this functionality looks like

from the end user’s perspective.

Figure 1 Data Browser (Transaction SE16) Selection Screen

3 This example, developed on an SAP Release 4.5B system, transfers

data from SAP and displays it in a formatted Microsoft Excel spread-

sheet. The installation requirements for this application are SAP GUI

Release 4.x and Microsoft Excel 97 installed on your PC. Excel has

limitations of 255 columns, 65,000 rows, and a recommended

3 MB file size limit.

33No portion of this publication may be reproduced without written consent.

Data Downloads to Excel Made Simple with SAP’s Desktop Office Integration

The Process at a Glance

Suppose a user — let’s call him Bernd — wants to

extract some purchase order data. He runs transaction

SE16 and enters “AUFK” (order master data) in the

initial “Table Name” screen. Bernd is then presented

with a data selection screen (Figure 1), which is

where the data to be returned by SAP is defined.

He then populates the selection fields, such as

“AUFNR” and “AUART,” with selection criterion,

as shown in Figure 1. The report width and the maxi-

mum number of records to return can also be config-

ured here.

On program execution, the selected data is dis-

played in the form of an ABAP report (Figure 2).

Usually, if Bernd wants to manipulate the data for

further analysis, he has to download the data to his

local PC through SAP’s list-saving support — i.e.,

System → List → Save → Local file. The download

supports a number of file formats, but regardless of

which format is selected, only the data displayed in

the report will be downloaded. The example in Fig-

ure 2 alerts us that only 25 of 92 fields are displayed.

If Bernd wants all 92 columns displayed, he has to

perform about four separate downloads and then

merge the data back together. This process not only

Figure 2 Data Display Report — 25 of 92 Fields Are Displayed

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.34

is time-consuming, but also is error-prone because

merging data can be tricky. It is not uncommon to

misalign the separate uploads of data and conse-

quently to have an upload with bad records.

Using our DOI-supported program, Bernd can use

the exact same process and selection screen, and he

can have all the selected table data transferred to a

formatted Excel spreadsheet, as shown in Figure 3.

There is no need for performing or merging multiple

downloads of data. Bernd doesn’t need to search for

the download file on his PC, or upload the data into

Excel, or format the document. He can simply start

using the data in his preferred editor.

So, how does this DOI program work?

The program architecture is shown in Figure 4.

The program can be broken up into three main

areas:

1. Data Browser support is captured by using

the same RFC function calls as those called

in transaction SE16. The needed function

modules are located in SAP’s function group

SETB and can be accessed through the Reposi-

tory Browser, transaction SE80. Simply call the

RS_TABLE_LIST_CREATE function module

and let it call whatever other functions (e.g.,

RS_TABLE_REPORT_GENERATE) are needed

to support Data Browser functionality — this is

done automatically as part of the function

module’s built-in logic.

Figure 3 Data Display in Excel — All Fields Are Present

35No portion of this publication may be reproduced without written consent.

Data Downloads to Excel Made Simple with SAP’s Desktop Office Integration

2. The Data Browser hands off the selected data to

DOI support through SAP’s Control Enabling

Technology for transfer to the client PC. DOI

functionality creates the Excel instance on the

user’s local PC and hands off the data to Excel.

3. Excel VBA code examines the local DOI-popu-

lated objects and presents the data to the user.

Let’s take a closer look at the steps involved in

creating this DOI-supported program to enable your

end users, like Bernd, to select and download all the

data they need and easily display it in Excel.

Step 1: Enabling Users to Select

All the Data They Need

SAP’s Data Browser, transaction SE16, supports

runtime table selection and user-defined selection

options. This is accomplished by generating an

on-the-fly data-displaying program that captures the

user’s data selections. Generated programs are stored

for reuse. This functionality is encapsulated in func-

tion group SETB. The two core functions that pro-

vide the majority of the SE16 functionality are:

• RS_TABLE_LIST_CREATE

• RS_TABLE_REPORT_GENERATE

RS_TABLE_LIST_CREATE is the function that

provides the user with dynamic table querying sup-

port. The user can select table fields to use in query-

ing the database. F4 field-level search help is defined

in the table definition, along with criterion selection

operators (<>, <, >, etc.), to aid in limiting the

returned data. Together, search help and criterion-

limiting operators allow the user to define table-

specific data selection queries. This is how, in the

previous example, Bernd was able to get his order

master data.

An ABAP program is generated that includes

the user-defined selection fields. To generate a new

program, the RS_TABLE_LIST_CREATE function

calls the RS_TABLE_REPORT_GENERATE func-

tion. If the user changes the selection fields, the

program is regenerated automatically; otherwise,

the currently stored program runs.

As far as Bernd is concerned, he can change the

fields on which he is setting data selection restrictions

whenever he wants on any table he specifies. As

programmers, we simply want to pick up on this

dynamic selection functionality, which we do by

letting the Data Browser associated function

modules generate the “on-the-fly” programs

whenever new programs are needed. Programmers

can think of function group SETB as a Data

Figure 4 The Program Architecture

������������	
����
�
	���
�������������

����������
���������������������
�������������������������
� ��!"���#���

#$�$���$��	����%����%
���������	
������

�����$&��$'&������

�������
��
�����
����������

�������(��
����&
������
�$�$���$��	��
�����������

����
��
��	��

�� !"��#$%&
�
������
�������'��������
�(��)�*��������� ����+,���
�����
�������
����
������
��-��������
���

����'���+��,
����
���)������-���

)
��$&��$�
�	��
���&
$�
������������
�%���$�$�*����+�$��
	��,$����%���-���

���
�����	

�����
��	����

�����
�

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.36

Browser object that supplies them with the user-

selected data.

The RS_TABLE_LIST_CREATE function

provides us with the ability to transfer the selected

data to Excel through its data_exit parameter,

as shown in Listing 1 (the full code listing of

ZBTABLELISTGENERATION, the example

program, is available at www.SAPpro.com, with

line numbers added for your reference). The

data_exit parameter is an importing parameter

that specifies a function to call from within the

RS_TABLE_LIST_CREATE function. We

can access all the data structures of the SETB
function group through the data_exit parameter-

specified custom function. Our custom function

ZSE16GETDATA, shown in Listing 2 (also available

at www.SAPpro.com), exports the selected table

data (which is stored in a structure called DATA)

to memory.

All that function ZSE16GETDATA does is place

the user-selected data in memory for later retrieval.

The newly created RFC function, ZSE16GETDATA,

is called from function RS_TABLE_LIST_CREATE.

The data is copied to a memory location identified

by MEM_ID.

Our custom Data Browser functionality

is implemented in the example program

Listing 1: Calling a Custom Function to Transfer Data

35 CALL FUNCTION 'RS_TABLE_LIST_CREATE'
36 EXPORTING
37 TABLE_NAME = DATABROWSE-TABLENAME
38 DATA_EXIT = 'ZSE16GETDATA'
39 EXCEPTIONS

Listing 2: Custom Function ZSE16GETDATA

FUNCTION ZSE16GETDATA.
*"---
""Local interface:
*" IMPORTING
*" VALUE(TABNAME) TYPE ANY
*" TABLES
*" DATA TYPE TABLE
*" EXCEPTIONS
*" GENERAL_FAIL
*" TABLE_IS_EMPTY
*"---
DATA: MEM_ID(16),
 S_NAME LIKE SY-UNAME.

* Output data to memory for pickup by calling program.
 CONCATENATE SY-UNAME 'DOI' INTO MEM_ID.
 EXPORT DATA TO MEMORY ID MEM_ID.

ENDFUNCTION.

37No portion of this publication may be reproduced without written consent.

Data Downloads to Excel Made Simple with SAP’s Desktop Office Integration

ZBTABLELISTGENERATION. A copy of table

selection screen 230 — “Enter table name” —

is made from function group SETB. In screen

230’s PAI USER_COMMAND module, we plug

in the Data Browser functionality by calling the

RS_TABLE_LIST_CREATE function. Since we

defined the data_exit parameter (Listing 1), the

custom function is run and selected data is exported

to memory. Basically, all the functionality that is

included in transaction SE16 is captured. Field selec-

tion, configuration support, user authority verifica-

tion, table structure validation, support for table

views, transparent tables, pooled tables, and cluster

tables is provided. The ABAP report is not displayed

because the data_exit parameter is filled.

✓✓✓✓✓ Tip

You can simplify the program by skipping screen

230 and associated modules. Use a parameters

statement, such as:

p_tblnme like databrowse-tablename.

All you will miss is the initial feel of SE16’s table

selection screen, the user parameters settings,

and online manual help.

✓✓✓✓✓ Tip

Create the custom function module through trans-

action SE37.

Step 2: Dynamic Internal Table

Definition — Creating a Program

Dynamically

With the data in memory, we now need to load an

internal table with the data that is to be transported

via DOI to Excel. The problem is that SAP doesn’t

support runtime table structure definition, and the

user is selecting the table that is to be queried at

runtime! We need to dynamically define an internal

table into which the selected data can be loaded, and

then transfer that table to our Excel instance.

Using ABAP dynamic subroutine pool creation

commands, we can change the internal table defini-

tion to runtime and then call the required DOI-related

functionality, passing in the newly defined and loaded

internal table. For the sake of clarity and discussion,

the example code in Listing 3 is slightly different

Listing 3: Defining a Dynamically Generated Program

 1 data: i_code(72) occurs 10,
 2 msg(120), lin(3), wrd(10), off(3), s_buff(72).
 3
 4 append 'PROGRAM SUBPOOL.' to i_code.
 5 concatenate 'DATA I_TAB like' databorwse-tablename 'OCCURS 0'
 6 Into s_buff separated by space.
 7 append s_buff to i_code.
 8 append 'INCLUDE ZIOIEXCEL.' to i_code.
 9 append 'FORM DYN1.' to i_code.
10 write 'IMPORT DATA TO I_TAB FROM MEMORY ID ''01'' ' to s_buff.
11 append s_buff to i_code.
12 append 'DATA h_oiexcel type ref to coiexcel.' to i_code.
13 append 'CREATE OBJECT h_oiexcel.' to i_code.
14 append 'CALL METHOD h_oiexcel->launchse16.' to i_code.
15 append 'ENDFORM.' to i_code.

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.38

from the actual program code.4 Appending ABAP

code into an internal table structure is intrinsically

messy, mostly due to the complication of adding

constants inside the ABAP command line. Look on

line 10 of Listing 3 — we enclose the constant 01 in

double apostrophes and use a write statement to load

a temporary character buffer, s_buff, with our

ABAP command before we append the line to

i_code.

An internal table i_code is declared on line 1 in

Listing 3. The program to be generated is loaded into

the internal table as lines of program code. On line 4,

we load the dynamic subroutine pool creation com-

mand into i_code. The structure to load the user-

selected data is defined on lines 5-7 by using a data

declaration “like” the user-selected table. By placing

the user-selected data type internal table definition

in a dynamically created form, we have essentially

dynamically declared the internal table. All our DOI-

required functionality is encapsulated in a class struc-

ture and kept in include file ZIOIEXCEL. Line 8

brings in this include. On line 9, we declare the form

that will be called to start the DOI-supported data

transfer. The data that was placed in memory through

function ZSE16GETDATA is retrieved on line 10.

A reference to our DOI encapsulating class,

COIEXCEL, is defined on line 12. An instance of

class COIEXCEL is created on line 13. With line 14,

the DOI-supported functionality is started. In the

actual code, the internal table loaded with user-

selected data and a file path to a specific Excel file

is exported to the LAUNCHSE16 method of the

COIEXCEL class. These parameters of method

LAUNCHSE16 are not shown here to keep the

explanation simple.

We dynamically create the subroutine pool by

calling the code shown in Listing 4 and passing in the

program code in the internal table i_code.5 The

generated pool is held in memory, providing us

access to our dynamically created form, FORM DYN1,

which was declared on line 9 of Listing 3. Note that

SAP has tagged the GENERATE SUBROUTINE
POOL command for internal use.

✓✓✓✓✓ Tip

Concatenating a constant into a character

string requires the following syntax:

write 'XXX ''YY'' ' to s_buff

✓✓✓✓✓ Tip

Classes, as shown by class COIEXCEL,

comprise the framework for object-oriented

programming (OOP). A few of the larger

principals supported by OOP are data

encapsulation, modularization, and

code reuse.

Listing 4: Dynamic Program Generation

164 GENERATE SUBROUTINE POOL I_CODE NAME 'DOI_SE16'
165 MESSAGE msg
166 LINE lin
167 WORD wrd
168 OFFSET off.

5 This code is also excerpted from the ZBTABLELISTGENERATION
program, available at www.SAPpro.com.

4 The actual code is listed in the ZBTABLELISTGENERATION
program (available at www.SAPpro.com) in lines 137-172.

39No portion of this publication may be reproduced without written consent.

Data Downloads to Excel Made Simple with SAP’s Desktop Office Integration

Step 3: Transport the Data from

the Server to an Excel Instance

Now that the data is loaded, we need to transport it

to the Excel instance via DOI methods. SAP DOI

methods are implemented as ABAP object-oriented

interfaces and classes. The method calls are transmit-

ted via Remote Function Call (RFC) to the client PC

using the SAP Control Framework. The Control

Framework provides the infrastructure for communi-

cation between the ABAP program running on the

SAP application server and the OCX6 controls run-

ning on the client PC. On the client PC, DOI is repre-

sented as a set of OCX files that are installed with the

SAP GUI.

Figure 5 shows an overview of the relationship

between the DOI interfaces, the Control Enabling

Technology, and SAP’s Component Object Model

(COM) compliant controls. The DOI interfaces use

the Control Enabling Technology to create an SAP

Document Container Control that acts as a client

hosting Microsoft’s OLE Automation Server, Excel.

After DOI has instantiated the Control Framework

and the Container Control on the client PC, the

data selected by our friend Bernd is passed through

the framework to Excel using the SAP Data

Provider OCX.

This article examines just one small part of the

Desktop Office Integration functionality.7 We are

simply creating an external instance of Excel from

SAP and transferring an internal table of selected data

to the Excel instance. To do this, we need a reference

to one of the DOI starter interfaces, a reference to the

DOI table collection interface, and a reference to the

DOI Excel document server interface.

To use Desktop Office Integration, you must

start with one of the two globally available

Figure 5 SAP Desktop Office Integration Architecture

6 OCX is a Microsoft OLE Custom Control. It is a software module

that’s based on OLE and COM technologies.

7 For more information on SAP Desktop Office Integration, see

Rainer Ehre’s article, “SAP Desktop Office Integration (SAP

DOI) — An Easier Way for ABAP Programmers to Integrate

Desktop Applications with R/3,” in the March/April 2000 issue

of the SAP Professional Journal.

�� ��./��((���
����
���)��

�����#���#�(�&��,�����&$��
��������0��!�����0����(
���
�%����0���'.������1
���"��0�� ��21��0�������
�����$��	����$�$
&�$����
��
�����$&
�$'&������

�� !"��#$%&

����#��,��������$
���

����$����
���%�����
�&
����'.��%�����"��0�
 ��21

����&�$&��$'&���'/��

��&�$����0
�%�����

�������
��
�����
����������

�� ��
�

 ��)�*��
,$��%$&���%�
�$�$�����%�
&
������
���	��,
��
�$�$���(��1
�
����	��,
����12���3

�����������$&
�$'&��
����4�55666

����'���+��,
����
���)������-���

)
��$&��$�
�	��
���&
$�
����$��
�����%�
&�$&��$'&���'/���
���
$�)�1��	
�����'/��

���
�����	

�����
��	����

�����
�

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.40

starter classes, C_OI_CONTROL_CREATOR
or C_OI_FACTORY_CREATOR. For in-place

Excel activation, you would use the first class —

C_OI_CONTROL_CREATOR. Our focus is on exter-

nal Excel activation, so we use the globally available

static call C_OI_FACTORY_CREATOR=>GET_
CONTAINER_CONTROL to return a reference into

the I_OI_FACTORY_DOCUMENT reference variable

h_factory,8 as shown in Listing 5.9

Through the h_factory reference, we can

access other DOI interfaces as needed. In SAP

Release 4.6C, the two starter classes and interfaces

are combined.10

A call to start_factory, the factory’s

interface method, creates (instantiates) the DOI

container object (see Listing 6). The table

collection object and its associated interface,

i_oi_table_collection, is used to transfer

data between SAP and the client PC in the form of

an internal table.

At the client PC, the SAP Table Factory OCX

provides access to the data through the DOI automa-

tion model data component. Parts of the model that

are relevant to this example are listed in Figure 6.

The code at the bottom of the figure details the SAP

DOI Automation hand-off to Excel via VBA.

A call to the get_table_collection
method of the factory interface, as shown in

Listing 7, returns a reference to the interface

i_oi_table_collection. The internal table

is transported to the client PC through the table col-

lection interface using the add_table method, as

shown in Listing 8.

Figure 6 SAP DOI Automation Model — Table Collection

8 In-place activation means hosting the server application, Excel,

within the SAP GUI framework. With external activation, Excel

will be launched in its own window.

9 The code in this listing, and the following listings in this section

(except Listing 9), is excerpted from the ZIOIEXCEL include file

available at www.SAPpro.com.

10 In SAP Release 4.6A, starter classes C_OI_CONTROL_CREATOR
and C_OI_FACTORY_CREATOR are combined into the single

interface i_oi_container_control.

������78

��3�

�9��

��������

����3�� ����������

�������:�

#���78 #���*�;<+

���������

)����=�&�>?
�%
�:��@'��@6����$
���6�$'&��7�$'&��$,�86�$'&�
�=�&�$���6)$&���A��%
�:��@'��@6����$
���6�$'&��7�$'&��$,�86�$'&�6#$�$

41No portion of this publication may be reproduced without written consent.

Data Downloads to Excel Made Simple with SAP’s Desktop Office Integration

Listing 5: Starting Point — Retrieving a Control Framework Handle

40 H_FACTORY TYPE REF TO I_OI_DOCUMENT_FACTORY,

63 call method c_oi_factory_creator=>get_document_factory
64 exporting factory_type = 'OLE'
65 IMPORTING FACTORY = H_FACTORY
66 RETCODE = S_RETCODE.

Listing 6: DOI Container Object Creation

69 CALL METHOD H_FACTORY->START_FACTORY
70 EXPORTING R3_APPLICATION_NAME = 'SAP-Excel DOI'
71 REGISTER_ON_CLOSE_EVENT = 'X'
72 IMPORTING RETCODE = S_RETCODE.

Listing 7: Navigating to the Table Collection Interface

 41 DATA: H_TABLES TYPE REF TO I_OI_TABLE_COLLECTION,

156 CALL METHOD H_FACTORY->GET_TABLE_COLLECTION
157 IMPORTING TABLE_COLLECTION = H_TABLES
158 RETCODE = S_RETCODE.

Listing 8: Transferring Data from the Server to the Client

162 *transfer data to presentation server
163 CALL METHOD H_TABLES->ADD_TABLE
164 EXPORTING TABLE_NAME = 'ITAB'
165 TABLE_TYPE = H_TABLES->TABLE_TYPE_OUTPUT
166 DDIC_NAME = S_TABLENAME
167 DESCRIPTION = 'Block Data'
168 IMPORTING
169 RETCODE = S_RETCODE
170 CHANGING DATA_TABLE = I_TAB.

The table collection class uses the SAP Control

Framework and specifically the SAP Data Provider

OCX to move the data from the server to the client PC.

Parameter table_name is assigned ITAB and we

use the name when loading the table object inside the

Excel document. Transferring data from SAP controls,

on the client PC, to Excel is done through VBA coding.

Parameter ddic_name contains the passed table

Data Dictionary name. The add_table method

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.42

loads the table object’s associated recordset “fields”

collection with table column specifications such as

field name, size, precision, type, and numeric scale

using the ddic_name specification. Inside Excel,

we query this recordset and configure the spreadsheet

columns accordingly. Parameter data_table
passes the table query data.

Another and more explicit way to transfer

internal tables from the SAP application server to

a client PC is to call SAP’s Data Provider function

DP_CREATE_URL_FROM_TABLE. The internal

table is transported to the client PC. Access to the

transferred data is provided in the returned URL

variable. The Data Provider object controls data

conversion and maps the data to standard window

data types. A unique URL name that takes the form

of “SAPR3://<GUID>” is returned. The data is added

to the table collection with a call to the table collec-

tion method add_table_by_url (see Listing 9).

To create an instance of Excel, we need a

reference to the DOI OLE2 automation server

object. The reference is returned by querying our

container interface h_factory (Listing 10). The

DOCUMENT_TYPE parameter is a Windows registry

entry stored under the HKEY_CLASSES_ROOT
directory. It represents the program ID of a valid

ActiveX document server application.

To keep things simple, we are going to open an

existing Excel document that already has the required

Visual Basic code attached in the Excel startup macro

Module1.LoadR3Data (Listing 11).11

The document proxy interface open_document
method accepts a DOCUMENT_URL parameter that

represents the address of the document to open — in

this case, “FILE://C:\Temp\TestRs.xls”. The docu-

ment URL can point to an HTTP server, an FTP

server, a UNIX directory, or a local PC. Parameter

STARTUP_MACRO specifies a macro to be run when

the Excel document is opened. The R/3-to-Excel data

transfer is controlled by the startup macro.

Class COIEXCEL, defined in include file

ZIOIEXCEL, encapsulates our required DOI

functionality to provide tighter code modularization

and reuse. The class is designed to simplify and

extend our use of DOI. Our overall plan is to let the

constructor/destroy methods of the class take care

of Control Framework support. Simplified methods

wrap the DOI table creation, loading, and transfer

support. Methods for adding a table to the table

collection, transferring a table to the client PC, and

opening an Excel document are defined. SAP

DOI-associated includes and required function

pool definitions are defined in the class. Note

that in SAP Release 4.0 through 4.5, the DOI

interface and class definitions are defined in the

OFFICEINTEGRATIONINCLUDE file. In

Release 4.6, the definitions are defined globally,

so the OFFICEINTEGRATIONINCLUDE file is

not required.

To review, user-selected data was exported to

memory through ZSE16GETDATA, our custom

function. We placed the class object instantiation

of COIEXCEL in the dynamic program implemen-

tation section (Listing 3), thus creating the DOI

control object. Class COIEXCEL wraps the DOI

required calls for ease of use and reuse. The

control framework used by DOI is created in class

COIEXCEL’s constructor. A call to class COIEXCEL
method LAUNCHSE16 kicks off the rest of the DOI

process by implementing DOI-required calls. A

table object named ITAB loaded with the user-

selected data is transferred to the client PC. The

SAP side of this process ends by opening a specified

Excel document and calling an Excel startup macro,

Module1.LoadR3Data (Listing 11).

✓✓✓✓✓ Tip

Class COIEXCEL’s constructor creates the

Control Framework and sets the reference to

the document proxy.

Memory cleanup is performed in class

COIEXCEL’s destroy method.11 A sample Excel document, TestRs.xls, is available for download at

www.SAPpro.com.

43No portion of this publication may be reproduced without written consent.

Data Downloads to Excel Made Simple with SAP’s Desktop Office Integration

Listing 9: Transferring Data Through a URL Specification

call function 'DP_CREATE_URL_FROM_TABLE'
exporting tabname = ''
tables data = i_tab

changing url = s_docurl

call method h_tables->add_table_by_url
exporting url = s_url

 i_tab = i_tab
importing retcode = s_retcode

Listing 10: Creating and Retrieving a Reference to a Document Proxy

42 DATA: H_DOCUMENT TYPE REF TO I_OI_DOCUMENT_PROXY,

74 CALL METHOD H_FACTORY->GET_DOCUMENT_PROXY
75 EXPORTING DOCUMENT_TYPE = 'EXCEL.SHEET.8'
76 IMPORTING DOCUMENT_PROXY = H_DOCUMENT
77 RETCODE = S_RETCODE.

Listing 11: Opening an Existing Document at a Specified URL

139 CALL METHOD H_DOCUMENT->OPEN_DOCUMENT
140 EXPORTING
141 DOCUMENT_URL = S_FILEURL
142 OPEN_INPLACE = ' '
143 STARTUP_MACRO = 'Module1.LoadR3Data'
144 IMPORTING RETCODE = S_RETCODE.

Step 4: Create the Visual Basic

Code to Support Data Downloads

Now that the data is transported to the Excel instance,

we next need to create the VB code to support the

data downloads. Visual Basic Desktop Office

Integration support is defined in the LoadR3Data
subroutine. LoadR3Data formats the Excel spread-

sheet and does a block transfer of data from the DOI

table data object into a defined Excel range object.

Most of the code listed in this section is taken from

the LoadR3Data subroutine, which is available as

part of the sample Excel file TestRs.xls.

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.44

The DOI recordset object is used to define

the column names. We can get a reference to the

recordset object by assigning it to a generic VBA

object, as follows:

Dim RS As Object
Set RS = ThisWorkbook.Container.
 Tables("ITAB").Recordset

Alternatively, we can assign the reference to

a typed Microsoft ADODB12 recordset object. By

assigning the reference to a typed object, we get

improved performance, type checking, and

Microsoft’s automatic object methods and parameter

help associated with the object. Before we can

declare an ADODB typed object, we need to add a

reference to the ADODB library in the VBA project.

In the Visual Basic editor, with our project open,

we select Tools → References, and then select

“Microsoft ActiveX Data Objects 2.x Library,”

as shown in Figure 7.

Then we declare the object and assign the

reference:

Private rsADO As ADODB.Recordset
Set rsADO = ThisWorkbook.Container.
 Tables("ITAB").Recordset

Figure 7 Excel VBA — Setting a Reference to the ActiveX Data Objects Library

12 Microsoft’s ActiveX Data Objects for accessing OLE DB data

sources.

45No portion of this publication may be reproduced without written consent.

Data Downloads to Excel Made Simple with SAP’s Desktop Office Integration

The recordset object contains all the DOI table

object information, but in a model that is Microsoft-

compliant. In the LoadR3Data subroutine, we

simply extract the field names and width to use in

formatting the spreadsheet columns. Data type con-

versions and formatting are handled automatically for

us by the SAP Data Provider OCX and by Microsoft

Excel. The recordset object does provide us with all

the information necessary to explicitly handle grid

column typing ourselves.

To load Excel with the internal table data, we first

declare an ExcelRange object and assign the proper

Excel sheet cells defining the range of cells that make

up our block. Then we perform a block data transfer:

Dim ExcelRange As Excel.Range
Set ExcelRange = Sheet1.
 Range(Sheet1.Cells(iStartRow,…
Set ExcelRange.Value = ThisWorkbook.
 Container.Tables("ITAB").Data

✓✓✓✓✓ Tip

If you write some VBA code, there will

probably come a time when you will want

to turn on the VBA debugger and step into

the code. The VBA debugger can be enabled

by adding a MsgBox call at the line you

want to start debugging, and entering

<CTRL-BREAK> when the message prompt

appears. Another procedure is to rerun the

startup macro. From Excel, go to Tools →
Macro → Macros. Select the subroutine

and the “Step Into” option.

✓✓✓✓✓ Tip

The ADODB recordset object contains a

collection of field objects and is an iterator

over the downloaded data. It supports

extensive functionality and is a central

component of Microsoft’s programming

architecture.

Conclusion

SAP Desktop Office Integration offers an

extensible option for integrating SAP R/3 with

various office applications. The assortment of

target applications includes all OLE2-compliant

servers such as Microsoft Word 97, Microsoft

Excel 97, and others. The document proxy interface,

i_oi_document_proxy, only works with

ActiveX document servers, limiting extensibility to

ActiveX document server applications. Of course,

this does include custom-developed Visual C++ and

Visual Basic ActiveX document server applications

that can wrap most anything.

The versatility of the Desktop Office Integration

interfaces is demonstrated by the ease with which the

example discussed here can be ported to another

ActiveX document server. Simply changing the

h_factory->get_document_proxy
DOCUMENT_TYPE parameter from

'EXCEL.SHEET.8' to 'WORD.DOCUMENT.8'
switches the target application from Excel to Word.

We then need to point the h_document->
open_document DOCUMENT_URL to the docu-

ment we want to open. Of course, the document’s

associated VB code would need to be modified.

Combining SAP Desktop Office Integration with

popular office application functionality like Microsoft

Word and Microsoft Excel is a common user request.

DOI launches the application locally on the user’s

PC, giving the user all the office application function-

ality he or she is accustomed to. This includes print-

ing on Windows system printers, saving files locally

or to mapped drives, and sending documents through

Microsoft Exchange. Users are able to step into a

different environment with a document that was

formatted for them.

SAP Release 4.6 introduced the SAP List Viewer

(ALV) Grid Control, which offers an alternative

method for transferring data from the SAP application

server to an Excel instance on the client PC. The

ALV Grid Control, and the DOI interfaces, are built

around SAP’s Control Framework technology. DOI

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.46

this article (see the resources mentioned in the sidebar

above for further information).

Philip Bremner holds a B.S. in Industrial

Engineering from the State University of New

York at Buffalo, and a B.S. in Computer Science

from California State University, Bakersfield.

He is a Microsoft Certified Professional holding

nine Microsoft certifications, including two

Visual Basic certifications. Currently he is

a senior programming analyst with Aera

Energy LLC in Bakersfield, California, where

he is acting as an information technology lead

in the company’s Enterprise Architecture

Implementation project. Phil can be reached

at pbremner@aeraenergy.com.

The views expressed in this article are those of

the author and not of Aera Energy LLC.

For More Information…

The premier articles on SAP Desktop Office Integration are those written by Rainer Ehre, the

development manager of ABAP component integration at SAP. “SAP Desktop Office Integration Using

ABAP Objects” in the SAP Technical Journal gives a high-level view of the Desktop Office Integration

classes and focuses on a sample program provided by SAP. This journal has been discontinued, but

the article is archived on the Intelligent ERP Web site at www.intelligenterp.com/feature/archive/

ehre.shtml. A second article, “SAP Desktop Office Integration (SAP DOI) — An Easier Way for ABAP

Programmers to Integrate Desktop Applications with R/3,” appears in the March/April 2000 issue of the

SAP Professional Journal. This article provides an excellent explanation of DOI architecture and how to

use it in an SAP 4.x environment.

Desktop Office Integration source code and a number of sample programs are available for viewing in

the repository browser by displaying development class SOFFICEINTEGRATION. DOI R/3 4.x online

help is located at Help → SAP Library → Basis Components → Component Integration → Desktop

Office Integration.

SAP Web-based help can be found at http://help.sap.com. From this Web site, drill down to the DOI

online help by following the same path as above. To go directly to the DOI Web help pages, use the

following URL:

http://help.sap.com/saphelp_45b/helpdata/en/e9/0bee9f408e11d1893b0000e8323c4f/frameset.htm

is targeted toward integrating office applications

with SAP, while ALV tries to extend the SAP GUI

by providing a richer set of desktop controls.

ALV offers ABAP programming extensions

through the global classes g_container and

g_grid, along with a number of control containers

such as CL_GUI_CUSTOM_CONTAINER and

CL_GUI_DOCKING_CONTAINER. The ALV

Grid Control is not offered in the SAP Release 4.6C

Data Browser, but through VBA code we could

emulate the ALV functionality in our external

Excel instance.

Desktop Office Integration offers much more

power than what was demonstrated in the example

presented in this article. The office application can

be launched inside the SAP presentation server frame

— SAP terminology calls this in-place activation,

while Microsoft calls it in-situ activation. Through

in-place activation, the office user interface becomes

part of the SAP GUI. DOI provides support for

events and bidirectional data transfers in the table

collection interface. There are a number of DOI

interfaces available that have not been mentioned in

