
3No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

Ready to Build Your First
MiniApp? It’s Quick and Easy
with the ABAP Workbench!
Alfred Barzewski

Alfred Barzewski joined SAP

in 1997 as a member of the

ABAP Workbench product

management group, where he

was responsible for online

documentation on Remote

Communication, non-SAP

access to BAPIs, RFC

programming in ABAP, and

ABAP development tools.

He currently works on

documentation for SAP’s

Web Development platforms,

focusing on implementation

of reusable demo components

for ABAP developers.

I know that many SAP customers already have installed Workplace

clients in pockets of their organizations and that many more intend to

do the same in the months ahead. The allure of this product is that it

offers users browser-based access to information, applications, and

services, across SAP and non-SAP systems alike, in a way that befits

each user’s unique role within the company. MiniApps are instrumental

in this process.

MiniApps are “smart,” stateless, role-specific Web applications

that are fully integrated in the mySAP Workplace. Take a look at

Figure 1, which shows an example of the home page that is presented

to a user whose mySAP Workplace has been configured with the

“Line Manager” role. In the “LaunchPad” on the left, the user can

click on the application and have it launched in the “WorkSpace” pane

on the right. In this screen shot, you can see the “Cost Center Alerts”

and the “Orders: Budget Consumption” MiniApps, which are assigned

to the Line Manager role.

SAP delivers a variety of MiniApps such as these, which offer

access to various SAP component systems. SAP also provides ample

opportunity for developers to create their own MiniApps and integrate

them with the Workplace. You can use HTML, DHTM, JavaScript,

Active Server Pages, and Java to do this. And, as of Release 4.6C, you

can now create MiniApps with the ABAP Workbench.

With Basis Release 4.6C, SAP introduced the Web Application

Builder, a new platform for developing ITS-based1 Web applications

1 The ITS (Internet Transaction Server) is an SAP product that acts as a gateway between the

Web server and the SAP application server (for Release 4.0B and up).

(complete bio appears on page 24)

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.4

within the comfort of the ABAP Workbench

environment.2

MiniApps do not have to be ITS-based, nor

do they have to be built with the Web Application

Builder, so why do I favor this approach and this new

development tool? What do you need to know about

the architecture of the Workplace before you can

attempt to build an ITS-based MiniApp? What devel-

opment objects will you need to implement? What

utilities are available to help you develop those

objects? And what steps must you take in order to

build that MiniApp from start to finish? These are

the questions I will answer in this article.

Why Build ITS-Based MiniApps?

The Web Application Builder supports both the

“inside-out” and “outside-in” programming models:

• Inside-out applications are based on existing

R/3 transactions, which can be called from the

Web browser using the HTTP protocol. The

Figure 1 mySAP Workplace Home Page Configured with the “Line Manager” Role

2 The Web Application Builder is an alternative to the PC-based

development tool SAP@Web Studio. This new development tool

allows you to develop ITS-based applications outside the SAP system.

5No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

HTMLBusiness and Flow Logic:

The Keys to ITS Programming

HTMLBusiness is an SAP-specific macro

language designed specifically for the

ITS. When building MiniApps, HTMLBusiness

allows you to merge data from the SAP

system into HTML templates dynamically.

HTMLBusiness contains keywords,

expressions, loop and condition

statements, and many predefined layout

functions. To use the HTMLBusiness Library,

simply add an include statement at the start

of an HTML template.

Flow logic defines the dialog flow of

Web applications (such as ITS-based

MiniApps) that use the ITS as their runtime

environment. Flow logic uses a small

subset of XML (eXtensible Markup

Language) elements to make the dialog

logic relatively simple. A typical flow

consists of a set of states and events.

States generally contain module calls (BAPI

or RFC calls) for communicating with the

backend, while events define the transitions

possible between states and trigger the

processing of the state. You can create the

flow logic for each HTML template in the

ABAP Workbench’s Web Application

Builder, and then edit it using the Flow

Editor or Flow Builder.

transaction is completely executed within the

SAP system and the application state is main-

tained within the SAP application server.

• Outside-in applications use BAPIs and function

modules for business logic. The presentation

logic runs completely on the ITS and is imple-

mented using HTMLBusiness and flow logic (see

sidebar). This is the programming model we will

employ when building ITS-based MiniApps. An

ITS-based MiniApp uses the flow logic and runs

on the ITS.

As an ABAP developer, I favor the outside-in

development approach for three reasons:

• ITS MiniApps support reuse very well. All

appropriate function modules and BAPIs from

Release 4.0B onward can be used for this kind

of MiniApp.

• The Web Application Builder is a tool designed

specifically for developing ITS-based Web appli-

cations, and yet it is fully integrated into the

ABAP Workbench, which means it confers all

the benefits of the ABAP Workbench, including:

✓✓✓✓✓ Connections to the Transport Organizer

✓✓✓✓✓ Use of the standard Workbench navigation

functions

✓✓✓✓✓ The ability to administer language resources

✓✓✓✓✓ Version management

• This approach does not require an ABAP devel-

oper to surmount a large learning curve. The

ABAP Workbench is a familiar environment, so

mastering the Web Application Builder will not

take long at all. That should buy you extra time

to focus on your application’s visual and interac-

tive design (the importance of which, in this day

and age, cannot be overstated) and on implement-

ing function modules and BAPIs within the con-

text of a Web application.

The mySAP Workplace

Architecture —

What You Need to Know

ITS-based MiniApps do not run as standalone appli-

cations. They are always integrated in the Workplace

infrastructure as a part of a role definition. It is there-

fore critical that you understand how these elements

work together.

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.6

Figure 2 displays the three layers of the mySAP

Workplace architecture:

• Frontend: To display the mySAP Workplace,

users need a Web browser (Internet Explorer 4.0

or 5.0) on their frontend. The browser uses

HTTP to communicate with the Web server

(part of the Workplace Middleware layer).

• Workplace Middleware: The Workplace

Middleware links the frontend to the target com-

ponent system. Between each MiniApp and the

target component it is designed to access, there

is one Web server and one instance of an ITS

server. So what is that “Portal Builder” you see

in Figure 2? This is a special ITS instance that

communicates directly with the Workplace

server. The Portal Builder is used to generate a

specific mySAP Workplace for each user. The

Portal Builder gets information about the current

user’s roles from the Workplace server and cre-

ates the Workplace structure (LaunchPad and

WorkSpace).

• Component Systems: The Workplace server is

an SAP Basis system providing special mySAP

Workplace functions, like central user administra-

tion, role management, RFC management, and

URL generation. SAP component systems or

non-SAP systems (not shown in Figure 2) are

connected to the Workplace server by RFC

(Remote Function Call) connections. Any SAP

system from Release 4.0B onward can be consid-

ered a valid SAP component system. The compo-

nent systems actually trigger the MiniApps. They

call BAPIs or function modules, then pass the

resulting output data to the appropriate instance

of the ITS server. The formatted HTML page

is then passed to the browser via the associated

Web server.

Figure 2 The Three Layers of the mySAP Workplace Architecture

��������

���
�������

���	
�����
����
����	
�����

����	��������������
����	����������
���	����������
���	����������
���

���	
��
������������ ���
�������������

���	
�����

���	
�����

... ...

���
�����	��

����

���
�����	��

����

����
����	��

!�����	�"�����

�"������	�������

 !	���
�����	
#����

� !�	$	%"������	���"��

�"������	�������

 !	���
�����	
#����

� !�	$	%"������	���"��

...

7No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

Steps and Tools for Developing

an ITS-Based MiniApp

There are five steps to building an ITS-based MiniApp:

1. Pick the appropriate BAPI or function

module. In this step, you specify the underlying

business logic and data collection mechanism for

your MiniApp. ITS-based MiniApps perform

data retrieval by calling a function module or a

BAPI, so you need to identify the appropriate

one(s). In most cases, you can use an existing

function module or BAPI. MiniApps will support

any function module or BAPI from Release 4.0B

onward.3 For example, in the next section, where

we build a MiniApp to perform currency conver-

sion, we will utilize the GetList BAPI for the

Currency object.

2. Design the interface. In this step, you specify

the look-and-feel of your MiniApp’s user inter-

face. The interfaces and functions of a MiniApp

are much less complicated than those of a full-

fledged application. Take advantage of this. A

typical interaction between the user and the sys-

tem takes place on just a single screen. Make

your design simple, uniform, and task-oriented.4

3. Implement the Internet service. This step con-

stitutes the bulk of the development effort. At the

heart of every ITS-based MiniApp is an Internet

service. A typical Internet service includes:

- A service definition

- HTML templates

- Language resources

- MIME objects (where applicable)

- A theme

Figure 3 Elements of an Internet Service

3 You can implement the development of cross-release MiniApps using

an encapsulation module, which you create in a development system

(Release 4.6C or higher). This encapsulation module acts as a cross-

release interface between the development system and the different

releases of component systems (4.0B, 4.5B, and 4.6B) in which

MiniApps will access data.

4 Valuable tips on visual and interactive features, along with many

examples and ideas for your MiniApps, can be found at the MiniApp

Community home page (www.sap.com/MiniApps).

Service definition

The service definition contains parameters that
describe the type of the service and how it is to
be executed on the ITS.

HTML templates

HTML templates form the user interface for an
Internet service. They contain the HTML tags
and formatting information used to display R/3
data to the Internet customer. The templates
are built using presentation logic (HTMLBusiness)
for the user interface, and flow logic for looping
through the R/3 data to be filled into the
template.

Language resources

Language resources enable you to make your
application multilingual (e.g., when users start
the service, the text appears in their native
language). The Internet service’s language-
specific elements are defined as “variables” in
the service’s template. The service then has a
language resource defined for each available
language, in which the value of each variable
in the template is defined (e.g., English,
German, etc.).

MIME objects

MIME objects enable you to identify the icons,
graphics, Java applets, and sound or video
components to be inserted into the service
to enhance the user interface for the Web
environment.

Theme

The theme specifies the appearance of a user
interface. Each theme has its own set of
HTML templates, language resources, and
MIME objects, and gives a user interface a
particular appearance. Customers can use the
delivered default theme (99), or they can copy
it and then make modifications. For instance,
you can exchange icons, buttons, or colors.
(An Internet service can contain several
themes.)

Figure 3 provides an overview of these elements.

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.8

Figure 4 Tools for Developing an ITS-Based MiniApp

HTML Editor Used to edit the source code in the HTML templates for Web applications.

Source code generally includes HTML elements, keywords, expressions,

statements, and HTMLBusiness functions. You can also define your own

JavaScript functions.

Patterns and Wizards To ensure that the source code you are editing is free of errors, you may use

patterns and wizards for HTMLBusiness functions.

Patterns allow you to insert source code for HTMLBusiness functions to an HTML

template more easily. You can use wizards to create more complex elements,

such as tabs, group boxes, or buttons that trigger events.

Flow Editor Used to implement the interaction design of an HTML template using flow logic

statements. You have to edit the necessary language elements of the flow logic

manually.

When using the Flow Editor, you must be familiar with the exact syntax of the

flow logic. The Flow Editor does not carry out a syntax check.

Flow Builder Used to create flow logic step by step, even if you don’t know the exact syntax.

The correct flow syntax is generated automatically.

The Flow Builder supports you by providing the input help and navigation

functions you need.

You can also use the check function to check the dialog logic for inner

consistency. Using the check function, you can guarantee that the flow logic

is internally consistent and semantically correct.

MiniApp Maintenance In Basis Release 4.6D,5 MiniApp maintenance will be incorporated in the Web

Application Builder, so that all the functions needed to create and edit MiniApps

are available in one tool, including:

• Assigning the MiniApp definition to an Internet service or to a URL

• Editing the attributes the system needs to connect the application to the

MiniApp framework

• Defining parameters for transferring values between the MiniApp definition

and the service assigned to it

5 Basis Release 4.6C already contains the basic functions you need to create and edit MiniApps. However, in 4.6C, you have to perform

these functions directly on the relevant table; they are not available in one maintenance tool.

Your job is to build the HTML templates, specify

the parameters of the service definition, specify a

theme, and identify which textual elements need

to be earmarked as “language resources” so that

they can be isolated from the logic of your appli-

cation and dealt with in a way that facilitates

multilingual support of your MiniApp. The Web

Application Builder provides you with the tools

you need to do all this (see Figure 4), and, as

you will soon see when we build our Currency

Converter MiniApp, prompts and guides you

every step of the way.

9No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

4. Publish the Internet service on the ITS.

After you have developed an Internet service in

the Web Application Builder, you publish it

on the ITS. Publishing is the process by which

you transfer, or copy, all the components of

your Internet service from the SAP Repository

to the ITS file system.

5. Integrate the MiniApp in the Workplace.

The last step is to create a MiniApp definition

development object in the Web Application

Builder. This object contains the adminis-

trative information that the system needs to

be able to integrate an Internet service in the

Workplace and to use the generic functions of

the MiniApp framework. This MiniApp defini-

tion can be assigned to one Internet service,

or to any URL, and is used as part of a role

definition.

Figure 5 shows how all these objects work

together, and how the development objects in the

Web Application Builder are represented on the ITS

after they are published.

Figure 5 Relationships Between Each SAP Component System and the ITS

�������
������������

����	��%������� ����	&

����

	&����

	��%�������

��������	�������

�������

�"������	�����

'���

���

� !�	$	%"������	���"��

������	��%�������	$	
���������

�(���	$	����"���	����"����

���)	��*���

���
����	���	%���	�����

���)	%���

����"���
����"���	%���

������	%���

+���	���
���� ����	%���

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.10

Building a Simple

“Currency Converter” MiniApp

So much for the theory. Let’s dive into an example

and build a MiniApp for converting local currencies

to a variety of foreign currencies — in some cases,

using a rate from a previous date rather than today’s

date. All the relevant conversion data is stored in

tables in an SAP database.6

Step 1: Implementing Business Logic
and Data Collection

First, the MiniApp needs a complete list of the

relevant currencies, which can be obtained by calling

the standard BAPI GetList from the Currency
business object. The CURRENCY_LIST output table

contains the fields with the currency codes and their

associated long texts that we can use in our template.

We will be using a function module of our own

design, CURRENCY_CONVERSION_MINIAP,

implemented specifically for this MiniApp, since at

present there is no BAPI for currency conversion.

Figure 6 Our MiniApp’s User Interface

6 Don’t confuse this MiniApp with the “Currency Converter” that ships

with the mySAP Workplace. The MiniApp I am describing here is

quite different! I’ve optimized this for teaching purposes, not for

actual currency conversion.

The system passes values for each currency unit along

with the conversion date to this function module. The

function module returns the converted rate for the

foreign currency.

Step 2: Specifying the User Interface

There are several ways to design the user interface,

even for such a simple application. Figure 6 shows

my design of a template for the MiniApp. The avail-

able currencies are displayed in two dropdown boxes.

One input field prompts the user for the initial amount

to be converted. The other allows the user to enter a

conversion date. This date field is optional; the cur-

rent system date is fetched by default. When users

trigger the conversion by clicking on the “Convert”

button (which should be in a contrasting color or

highlighted in some other way), the system returns

the two amounts in the appropriate two “Results”

fields. There is no screen change at any point.

Step 3: Implementing the Internet Service

To implement the Internet service for this MiniApp,

we proceed as follows:

1. Start the Object Navigator (transaction SE80).

2. From the object list, choose “Internet service”

and enter the name for the service we want to

11No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

create. We will enter “CURR_SERVICE” — the

technical name for our example Internet service.

3. We confirm our entry.

4. In the dialog box that appears next, we choose

“Web application” and enter the name of the first

template, “INITIAL”. This template will be

used as the initial template to start the service

on the ITS.

5. We have now created the service. Save it and

assign a development class to the service.

The service we have created is displayed in the

object list tree structure shown in Figure 7. By

default, “Theme 99” is automatically assigned to the

service. In addition, three of the service definition

parameters, along with their values, were automati-

cally generated for the service:

• ~INITIALTEMPLATE, which contains the

name of the HTML template that is used to start

the MiniApp.

• ~WEBTRANSACTIONTYPE, which defines

the type of the created service.

• ~XGATEWAY, which contains the name

of the X gateway for communication with

the ITS.

These parameters specify the type of Internet

service and the way the ITS will execute it.

What we have just done is create a service

definition in the Web Appli-cation Builder.

“CURR_SERVICE” is a Web application of

type “MINIAPP,” which is started with the

“INITIAL” template using the X gateway

“sapxginet.”

Now we are ready to create an HTML template.

We select “CURR_SERVICE,” the service we have

Figure 7 Creating an Internet Service for Our Sample MiniApp

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.12

just created, from the object list tree and choose

Create → Template from the context menu. In the

“Create template” dialog box, we have the choice

to assign a new theme or keep the default theme

(Theme 99) that was automatically assigned. We

keep the default theme, and enter a name for the

✓✓✓✓✓ Tip

When you create an Internet service for

a MiniApp, it is recommended that you

add the service parameters ~LOGIN and

~PASSWORD without values, so that later,

when the MiniApp is integrated into the

Workplace, the system can get the user data

from the single sign-on context (cookie,

digital certificate, etc.). When users log on to

the mySAP Workplace, their user information

is stored in that context; otherwise SSO could

not work for the MiniApp.

Figure 8 Creating the HTML Template

first HTML template (INITIAL) in the appropriate

fields. This name matches the value of the

~INITIALTEMPLATE parameter shown in

Figure 7.

We then save our entries and assign a develop-

ment class to the template.

The Web Application Builder inserts the template

we have created into the object list tree structure

shown in Figure 8. The pre-generated HTML

and HTMLBusiness source text is displayed in the

HTML Editor.

This initial source text contains, among

other things, the include statement that adds the

HTMLBusiness standard library to the template.

HTMLBusiness elements are enclosed in inverted

apostrophes (‘…‘), and are highlighted in blue in the

editor to distinguish them from standard HTML.

The HTMLBusiness Library includes a large number

of functions for displaying screen elements, all of

which comply with the design criteria specified

13No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

by SAP. If we start with the basic structure of the

HTML source code, it is easy to add these functions

to our template as patterns and then fill them with the

values we need. For more complex elements — like

creating a button that triggers an event — it is better

to use a wizard.

For the Currency Converter, we will use

HTMLBusiness statements and expressions to reference

fields from the SAP system, and create loops and

conditional statements for these fields in the

HTML template.

We create a basic HTML structure using an

HTML table and specify some of the formatting

entries at this point (see Listing 17). For listings of

Listing 1: Initial Structure of the HTML Source Code for the Currency Converter

<body ‘SAP_TemplateBodyAttributes()‘>

 <table>
 <colgroup>
 <col width=170>
 <col width=40>
 <col width=10>
 <col width=170>
 <col width=40>
 </colgroup>
 <tr>
 <!-- Label fields for Currency -->
 </tr>
 <tr>
 <!-- Drop down list box for "From" currency -->

 <!-- Drop down list box for "To" currency -->
 </tr>
 <tr>
 <!-- Input field for initial amount -->

 <!-- Button to perform calculation -->
 </tr>
 <tr>
 <!-- Output/Input field for Date of conversion -->
 </tr>
 <tr>
 <!-- Output fields for amount -->
 </tr>
 </table>
</body>

7 Here, and in the following listings (which are excerpted from the

code in the appendix), the HTMLBusiness elements are enclosed in

inverted apostrophes (‘…‘) and highlighted in bold to distinguish

them from standard HTML (normally they are highlighted in blue).

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.14

the presentation source code, the flow logic code,

the service parameters, and the theme parameters

of the Currency Converter MiniApp, refer to the

appendix that accompanies this article. You can

also find this information available for download at

www.SAPpro.com.

The best way to add functions for screen elements

like input fields, output fields, labels, and buttons is

by inserting a pattern in the source code.

To do this, we:

1. Set the cursor in the HTML Editor at the appro-

priate point and choose the “Business HTML

pattern” button, shown in Figure 8.

2. Select a pattern function and double-click this

function to display the description, parameters,

and documentation associated with it.

3. Confirm our choice by clicking on the “Insert ”

button.

The source code of the HTMLBusiness function

we have chosen will be inserted at the cursor

position in the HTML Editor. All optional param-

eters for that function are initially commented out.

We can then fill these parameters with values

as appropriate.

Listing 2 shows how you would define the input

field for the currency. The value that the user enters,

LocalCurrencyAmount, sets the corresponding

importing parameter for the currency conversion

function module. To specify a label, we use the

language-independent placeholder, #amount,

which we will later include as a language resource.

The other parameter values specify the width of

the input field on the screen.

A button that triggers a flow event requires other

functions along with the display function. The best

way to link these functions to the button is to use

a wizard.

We start the wizard by clicking the “Business

HTML pattern” button. Choose the wizard for but-

tons and then drag&drop it into the HTML template.

The wizard guides us through the complete process

until the element is ready for use.

We make the required entries and then choose

the “Complete” button to generate the source code.

The Web Application Builder inserts the necessary

elements into your HTML template: the source

code for the HTMLBusiness function for the pushbutton;

the JavaScript function for coupling a flow event; and

the HTML tags defining a form (Listing 3). The

system automatically assigns the action variable

to the wgateURL() function and dynamically

generates the URL for the current Web server for

that system.

When we create a dropdown box, we need

to insert functions not only for displaying it

on screen, but also for filling it with data from

the appropriate SAP system table. In our example,

this data is passed to the template using the array

CURRENCY_LIST-CURRENCY[i] after the

Currency.GetList BAPI has been called. The

long text CURRENCY_LIST-LONG_TEXT for each

available currency unit is then set as the content of

the dropdown box. Once the user chooses an entry

from LocalCurrencyUnit, the system sets the

corresponding importing parameter of the currency

conversion function module.

Listing 4 shows how easy it is to reference fields

from the SAP system. The syntax of the FOR and IF
statements will be familiar to many programmers,

since it is similar to that in common languages like

C and JavaScript.

To make the HTML template for our MiniApp

multilingual, we create language resources. To

do this, we only need to make sure that all the

language-specific texts in the template are replaced

by placeholders — for example, ‘#amount‘. We

will then assign the texts we want in the original

language to these placeholders.

15No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

Listing 2: Defining the Currency Converter Input Field

<!-- Input field for initial amount -->
‘SAP_TemplateEditableField(align="left"
 ,fieldLabel="#amount"
 ,fieldLabelWidth="90"
 ,"Amount_ID"
 <!--,inspectionText=""-->
 ,maxlength=30
 ,name="LocalCurrencyAmount"
 <!--,onchange=""-->
 <!--,required=""-->
 ,size=15
 <!--,type="SAP_WEBGUI"-->
 ,value= LocalCurrencyAmount
 <!--,width=""-->)‘

Listing 3: Elements Added to the HTML Template

<script language="JavaScript">
 function convert()
 {
 document.input_form.elements['~event'].value = 'onConvert';
 document.input_form.submit();
 }

</script>

<form name="input_form" action="‘wgateURL()‘" method="post">
<input type="hidden" name="~event" value="">

‘SAP_TemplateLargeActionButton("CalcButton_ID"
 ,buttonLabel=#convert
 ,onclick="convert()")‘

Listing 4: Referencing Fields from the SAP System

<!-- Drop down listbox for "From" currency -->
 ‘SelectionIndex1 = 1‘
‘for (i = 1 ; i <= CURRENCY_LIST-CURRENCY.dim ; i++)‘
 ‘if (LocalCurrencyUnit == CURRENCY_LIST-CURRENCY[i])‘
 ‘SelectionIndex1 = i‘
 ‘i = CURRENCY_LIST-CURRENCY.dim‘
 ‘end‘
‘end‘

(continued on next page)

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.16

‘SAP_TemplatePulldownField(<content="CURRENCY_LIST-LONG_TEXT"
 <!--,contentdim=""-->
 <!--,fieldLabel=""-->
 <!--,fieldLabelWidth=""-->
 ,"FromCurr_ID"
 <!--,inspectionText=""-->
 ,key="CURRENCY_LIST-CURRENCY"
 ,name="LocalCurrencyUnit"
 <!--,onchange=""-->
 ,selIndex=SelectionIndex1
 <!--,selKey=""-->
 <!--,size=""-->
 <!--,type="SAP_WEBGUI"-->
 ,width="220")‘

To enter language-specific texts, we double-click

a placeholder in the template. Since language

resources are created as theme parameters, the system

automatically displays the associated theme. We then

choose the “Compare parameters” function, which

compares the placeholders in the template with the

list of theme parameters and adds any new ones to the

list. Finally we enter the language-specific texts in

the original language as values for each parameter.

(If you look at the first screen in Figure 9, you will

see that I’ve entered values for each parameter in

English.)

The new theme parameters are now part of

the service. They are translation-relevant parts

of the R/3 Repository object, and as such will enter

the translation workflow when you release the

service. At runtime, the ITS recognizes the place-

holders and replaces them with texts in the

appropriate language.

To implement an interactive design, we need to

define the flow logic, which specifies:

• How the system reacts to user events

• When the system triggers module calls

(BAPIs or function modules)

✓✓✓✓✓ Tip

In general, there are three possible ways

of creating language-independent HTML

templates for MiniApps:

• Use language information already

available in the SAP system. This is

the simplest approach, but it does not

necessarily provide texts for all the

elements in the template.

• Use language-specific templates: write

a separate set of templates for each

supported language, and assign each set

to a separate theme. The disadvantage

of this approach is that any changes

made to the templates have to be

made several times.

• Use language resources for all the

templates in a service. We can then

edit the language-specific texts separately

from the template itself. We establish

a reference in the template using

placeholders. We then create texts for

the original language, which appear in

translation worklists. (This third option

is the one we are using in our example.)

(continued from previous page)

17No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

Figure 9 Specifying Theme Parameters in the HTML Template and Starting the Flow Builder

• How the system transfers data between the

template and the SAP system

We want to take advantage of the many benefits

of the Flow Builder and create a dialog logic by

defining the appropriate events, along with their

associated module calls.

To start the Flow Builder, choose the menu path

Edit → Create flow logic and select the “Flow

Builder” tab. For each new HTML template, the

Flow Builder provides an initial representation of

the flow logic with the initial state, “Start,” and

the initial event, “onLoad” (see the second screen

in Figure 9). This event will be processed when

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.18

the template is displayed for the first time. The

event “onLoad” is associated with the “Start”

state. We will now see how to define module

calls in a state.

In the initial tree structure, double-click the

“Start” state for the first module definition. We

enter the name of the BAPI or the corresponding

RFC function module, using the possible entries

help (F4). We double-click a module name and

enter the mapping parameters (and other attributes

if necessary). The RFC parameters are already

shown, either as “Target” (for mapping the

input of the importing parameters) or “Source”

(for mapping the output of the exporting

parameters).8

To create a new event, double-click the initial

event “onLoad” or choose the appropriate function

from the context menu.

Enter the name of the state in the new line, then

the name of the next state; confirm your entries. We

will now look at the result (Listing 5). We could also

display this result by switching to the Flow Editor.

However, the Flow Builder applies the correct flow

syntax to our entries. Now, let’s take a closer look at

the dialog logic.

When the template is loaded, the onLoad event

(linked to the Start state) is triggered first. Then

the system calls the Currency.GetList BAPI,

Figure 10 Mapping Variable Names to Importing Parameters

✓✓✓✓✓ Tip

Figure 10 shows how we map variable names

in the template to the appropriate importing

parameters in the conversion module. This

mapping is not strictly necessary, but it does

make the source code more readable by

allowing developers to assign meaningful

names to variables.

8 Note that there is no standard procedure available for handling

the table in its entirety between the system and the flow logic.

You need to export or import the single parameters of a table

(“TableName-parameter X,” “TableName-parameter Y,” etc.).

19No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

which reads all the available currencies from the

CURRENCY_LIST. The fields for the currency

codes and their associated long texts are set to

Persistent, since they should be available for

the entire ITS session.

The user triggers the onConvert event by

clicking a button, which launches the currency con-

version procedure in the assigned state, convert.

All the variables in the template that correspond to

importing parameters in the function module are

mapped to table fields (input mapping). Output map-

ping takes place for all the variables corresponding to

exporting parameters.

If you are wondering what happens if multiple

texts are the same for different currencies , the answer

is that the currency is always identified using the

currency code and there is a 1:1 relationship between

the currency code and text.

Listing 5: Creating a New Event

<flow>

 <state name="Start">
 <module name="Currency.GetList" type="BAPI">

 <persistent name="CURRENCY_LIST-CURRENCY"/>
 <persistent name="CURRENCY_LIST-LONG_TEXT"/>

 </module>
 </state>

 <state name="convert">
 <module name="CURRENCY_CONVERSION_MINIAPP" type="RFC">

 <inputmapping source="LocalCurrencyAmount" target="I_AMOUNT_1"/>
 <inputmapping source="LocalCurrencyUnit" target="I_CURRENCY_1"/>
 <inputmapping source="ForeignCurrencyUnit" target="I_CURRENCY_2"/>
 <inputmapping source="Date" target="I_DATE"/>

 <outputmapping source="E_AMOUNT_2" target="ForeignCurrencyAmount"/>
 <outputmapping source="E_DATE" target="InitialDate"/>

 </module>
 </state>

 <event name="onLoad" next_state="Start"/>
 <event name="onConvert" next_state="convert"/>

</flow>

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.20

Step 4: Publishing and Testing the Service

For an Internet service to be executed by the ITS,

it must be stored in the ITS file system, a process

known as publishing the service. We can choose to

publish the entire service or just parts of it. When we

publish the whole service, the corresponding Internet

service and its HTML template are placed in the file

system of the ITS server.

To publish the service, we select the service in

the object list and choose Publish → Complete

service from the context menu.

After we have published the whole service, we

can start and test it. For doing this, we choose F8.

The system starts the service, using the following

HTTP address:

http://<web_server><web_path_prefix>/

<service>/!

and displays the HTML page in the browser.

Now we execute and test the service for the

MiniApp as a standalone application (Figure 11).

Step 5: Integrating the Application
in the Workplace

Until now, we have dealt with our MiniApp service

without any reference to the mySAP Workplace.

To integrate the service in the Workplace, however,

the system needs certain administrative data — for

example, how to display the MiniApp and what

generic Workplace functions it should use.

To create the MiniApp definition9 using

“MiniApp maintenance”:

1. We call MiniApp maintenance from the Object

Navigator by clicking the development class

and choosing Create → MiniApp from the

context menu.

2. In the “Create MiniApp” dialog box, we enter

the name and a description for our MiniApp

and confirm our entries. The Web Application

Builder displays the “Attributes” of the MiniApp

(see Figure 12).

Figure 11 Execute and Test the Service As a Standalone Application

9 In Basis Release 4.6C, we created this definition directly in the

appropriate tables. In Release 4.6D, however, we do this centrally in

“MiniApp maintenance.” For more information on this procedure in

Basis Release 4.6C, see the mySAP Workplace documentation.

21No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

3. We enter a medium and short description for the

MiniApp. The description is used in the Work-

place as the frame title for the MiniApp. After

we have included the MiniApp in the Workplace,

one of these descriptions will be used as the tray

header of the MiniApp. The description used

depends on the dimensions of the MiniApp in the

Workplace frame.

4. We accept the default option “ITS service” as the

“Implementation type” and enter the name of the

service from which the MiniApp is to be called.

5. We specify the size the MiniApp will have within

the Workplace frame and save our entries.

As shown in Figure 12, we have created a

Figure 12 Attributes of the MiniApp in mySAP Workplace

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.22

MiniApp definition “CurrencyConversion” and

assigned it to the service “CURR_SERVICE.”

role in the SAP component system, we then choose

the “User” tab and enter the user’s name.10

Figure 13 shows the relevant part of the “Role

maintenance” screen (transaction PCFG). The

MiniApp definition “CURRENCYCONVERSION”

has been added to the role “Employee Self-

Service (FI).”

Since the Workplace server and the component

system are generally distributed on different SAP

systems, we need to import the role from the compo-

nent system to the Workplace server using an RFC.

To do this, we simply choose “Read from other sys-

tem by RFC” from the initial screen of the “Role

maintenance” transaction (PFCG) in the Workplace

server. Finally, we assign the user to the role in the

Workplace server.

✓✓✓✓✓ Tip

After you have defined the MiniApp in

“MiniApp maintenance” and assigned it to a

role, we advise you to refresh the MiniApp

data on the Workplace server. To do this,

start the transaction S_WP_CACHE_RELOAD

in the Workplace server, choose the

destination of the relevant component system,

and control the data transfer manually.

Otherwise, the system will automatically

trigger a data comparison at a specified time.

Launching the MiniApp

in the mySAP Workplace

Now we’re ready to launch the MiniApp. We start

the Workplace using the correct URL in the browser

— for this, we need the name of the Workplace server

and the Internet service used to start the Workplace.

10 In Basis Release 4.6C, MiniApps were added to roles using a URL.

For more information on this procedure, see the mySAP Workplace

documentation.

✓✓✓✓✓ Tip
If you specify the size of the MiniApp, make

sure that all its contents fit the Workplace

frame. The dimensions of the MiniApp do

not change dynamically when the data is

changed. If the content is too big for the

size defined, scroll bars appear. Wherever

possible, however, you should avoid having

scroll bars in MiniApps.

Until now, we could only execute the service for

the MiniApp as a standalone application. In reality,

each MiniApp is always part of a role, so we must

assign our MiniApp to a suitable role if we want to

display it in the Workplace.

To do this, we open “Role maintenance”

(transaction PFCG) in the component system and

choose a role.

We then choose the “MiniApps” tab and enter

the name of the MiniApp definition (Release 4.6D).

Next, we choose a priority, which tells the system

where in the WorkSpace to display the MiniApp

(top, middle, or bottom). To assign the user to the

✓✓✓✓✓ Tip
When we define the MiniApp we can also

specify which MiniApp framework functions

we want to use, if any. To display the

“Refresh” function in the MiniApp tray, we

must set this flag when maintaining the

MiniApp. To activate “Personalization,” we

need to assign an Internet service specifically

implemented for personalization. The

user can call this service by clicking the

“Personalization” button in the MiniApp tray

in the Workplace. We do not, however,

include this step in our example.

23No portion of this publication may be reproduced without written consent.

Ready to Build Your First MiniApp? It’s Quick and Easy with the ABAP Workbench!

Figure 13 “Role Maintenance” in the mySAP Workplace

Figure 14 Launching the MiniApp in the mySAP Workplace

We log on in the dialog box that appears. As

shown in Figure 14, the system then displays the

LaunchPad on the left side and our MiniApp in the

WorkSpace.

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.24

Conclusion

In Release 4.6C, SAP extended the ABAP Work-

bench development environment to include the Web

Application Builder, so that — for the first time ever

— developers could use the Workbench to develop

ITS-based Web applications, such as MiniApps. This

allows developers to take full advantage of the many

features of the ABAP Workbench, and to use the Web

Application Builder in ways familiar to them. With

an improved learning curve, developers can start

using the integrated tools and utilities effectively right

away, and shift their focus instead to visual and inter-

active design issues.

Alfred Barzewski received his honours degree in

physics in 1991 from the University of Heidelberg,

Germany. After working as a college teacher in

physics and mathematics, he joined SAP in 1997

as a member of the ABAP Workbench product

management group, where he was responsible for

online documentation on Remote Communication,

non-SAP access to BAPIs, RFC programming

in ABAP, and ABAP development tools. He

currently works on documentation for SAP’s

Web Development platforms, focusing on

implementation of reusable demo components

for ABAP developers. Alfred can be reached

at alfred.barzewski@sap.com.

25No portion of this publication may be reproduced without written consent.

Appendix — Source Code and Parameters of the Currency Converter MiniApp

Appendix —
Source Code and Parameters of
the Currency Converter MiniApp

(continued on next page)

This appendix accompanies the article “Ready to Build Your First MiniApp? It’s Quick and Easy with the

ABAP Workbench!” and contains the presentation source code, the flow logic code, the service parameters, and

the theme parameters of the Currency Converter MiniApp described in the article. You can also find this

information available for download at www.SAPpro.com.

Note that in the following code, the HTMLBusiness elements are enclosed in inverted apostrophes (‘…‘)

and highlighted in bold to distinguish them from standard HTML (normally they are highlighted in blue).

Presentation Source Code

‘include(~service="system", ~language="", ~theme="dm",
~name="TemplateLibraryDHTML.html");‘
<html>
 <head>
 ‘SAP_Stylesheet()‘ <!-- inserts standard SAP Stylesheet -->
 ‘SAP_TemplateJavaScript()‘<!-- inserts standard SAP JavaScript functions -->

 <script language="JavaScript">
 function convert()
 {
 document.input_form.elements['~event'].value = 'onConvert';
 document.input_form.submit();
 }

 </script>
 </head>

 <body ‘SAP_TemplateBodyAttributes()‘ onLoad ="‘SAP_TemplateOnLoadJavaScript()‘">

 <form name="input_form" action="‘wgateURL()‘" method="post">
 <input type="hidden" name="~event" value="">

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.26

(continued from previous page)

 <table>
 <colgroup>
 <col width=170>
 <col width=40>
 <col width=10>
 <col width=170>
 <col width=40>
 </colgroup>

 <tr>
 <!-- Label fields for Currency -->
 <td colspan=3>
 ‘#convertfrom‘
 </td>
 <td colspan=2>
 ‘#convertto‘
 </td>
 </tr>
 <td colspan=2>
 <!-- Drop down listbox for "From" currency -->
 ‘SelectionIndex1 = 1‘

 ‘for (i = 1 ; i <= CURRENCY_LIST-CURRENCY.dim ; i++)‘
‘if (LocalCurrencyUnit == CURRENCY_LIST-CURRENCY[i])‘

‘SelectionIndex1 = i‘
‘i = CURRENCY_LIST-CURRENCY.dim‘

‘end‘
 ‘end‘

 ‘SAP_TemplatePulldownField("FromCurr_ID"
 ,name="LocalCurrencyUnit"
 ,key="CURRENCY_LIST-CURRENCY"
 ,content="CURRENCY_LIST-LONG_TEXT"
 ,selIndex=SelectionIndex1
 ,width="220")‘
 </td>
 <td></td>
 <td colspan=2 align=right>
 <!-- Drop down list box for "To" currency -->

 ‘SelectionIndex2 = 1‘
 ‘for (i = 1 ; i <= CURRENCY_LIST-CURRENCY.dim ; i++)‘

‘if (ForeignCurrencyUnit == CURRENCY_LIST-CURRENCY[i])‘
‘SelectionIndex2 = i‘
‘i = CURRENCY_LIST-CURRENCY.dim‘

‘end‘
 ‘end‘

27No portion of this publication may be reproduced without written consent.

Appendix — Source Code and Parameters of the Currency Converter MiniApp

(continued on next page)

 ‘SAP_TemplatePulldownField("ToCurr_ID"
 ,name="ForeignCurrencyUnit"
 ,key="CURRENCY_LIST-CURRENCY"
 ,content="CURRENCY_LIST-LONG_TEXT"
 ,selIndex=SelectionIndex2
 ,width="220")‘
 </td>
 <tr>
 <!-- Separator row -->
 <td height=10 colspan=5></td>
 </tr>
 <tr>
 <td colspan=2>
 <!-- Input field for initial amount -->
 ‘SAP_TemplateEditableField("Amount_ID"
 ,fieldLabel=#amount
 ,fieldLabelWidth="90"
 ,name="LocalCurrencyAmount"
 ,value=LocalCurrencyAmount
 ,size=15
 ,maxlength=30
 ,align="left")‘
 </td>
 <td colspan=3 align=right>
 <!-- Button to perform calculation -->
 ‘SAP_TemplateLargeActionButton("CalcButton_ID"
 ,buttonLabel=#convert
 ,onclick="convert()")‘
 </td>
 </tr>

 <tr>
 <!-- Output/Inputfield for Date of conversion -->
 <td align=left colspan=5>
 <!-- Initialize the Date of conversion -->
 ‘Date = InitialDate‘

 ‘SAP_TemplateEditableField("CalcDate_ID"
 ,fieldLabel=#calcdate
 ,fieldLabelWidth="90"
 ,name="Date"
 ,value=Date
 ,size=10
 ,maxlength=10
 ,align="right")‘

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.28

(continued from previous page)

 </td>
 </td>
 </tr>

 <tr>
 <!-- Separator row -->
 <td height=7 colspan=5> </td>
 </tr>
 <tr>
 <td colspan=5>
 ‘#results‘
 </td>
 </tr>
 <tr>
 <!-- output fields for amount -->
 <td>
 ‘SAP_TemplateNonEditableField("FromAmount_ID"
 ,value=LocalCurrencyAmount
 ,size="170")‘
 </td>
 <td>
 ‘SAP_TemplateNonEditableField("FromCurrUnit_ID"
 ,value=LocalCurrencyUnit
 ,size="40")‘
 <td align=center>
 ‘SAP_TemplateLabel("LabelEquals_ID"
 ,labelText="=")‘
 </td>
 <td align=right>
 ‘SAP_TemplateNonEditableField("ToAmount_ID"
 ,value=ForeignCurrencyAmount
 ,size="170")‘
 </td>
 <td align=right>
 ‘SAP_TemplateNonEditableField("ToCurrUnit_ID"
 ,value=ForeignCurrencyUnit
 ,size="40")‘
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

29No portion of this publication may be reproduced without written consent.

Appendix — Source Code and Parameters of the Currency Converter MiniApp

Service Parameters

Parameter name Value

~INITIALTEMPLATE INITIAL

~LOGIN

~PASSWORD

~WEBTRANSACTIONTYPE MINIAPP

~XGATEWAY SAPXGINET

Flow Logic Code

<flow>

 <state name="Start">
 <module name="Currency.GetList" type="BAPI">

 <persistent name="CURRENCY_LIST-CURRENCY"/>
 <persistent name="CURRENCY_LIST-LONG_TEXT"/>

 </module>
 </state>

 <state name="convert">
 <module name="CURRENCY_CONVERSION_MINIAPP" type="RFC">

 <inputmapping source="LocalCurrencyAmount" target="I_AMOUNT_1"/>
 <inputmapping source="LocalCurrencyUnit" target="I_CURRENCY_1"/>
 <inputmapping source="ForeignCurrencyUnit" target="I_CURRENCY_2"/>
 <inputmapping source="Date” target="I_DATE"/>

 <outputmapping source="E_AMOUNT_2" target="ForeignCurrencyAmount"/>
 <outputmapping source="E_DATE" target="InitialDate"/>

 </module>
 </state>

 <event name="onLoad" next_state="Start"/>
 <event name="onConvert" next_state="convert"/>

</flow>

SAP Professional Journal May/June 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.30

Theme Parameters

Parameter name Value

AMOUNT Enter Initial Amount

CALCDATE Date of Conversion

CONVERT Convert

CONVERTFROM Convert From

CONVERTTO Convert To

RESULTS Results

