
3No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Everything a BAPI Programmer
Needs to Know About the
Business Object Repository
Thomas G. Schuessler

Thomas G. Schuessler is

the founder of ARAsoft, a

company offering products,

consulting, custom

development, and training

to customers worldwide,

specializing in integration

between SAP and non-SAP

components and applications.

Thomas is the author of

SAP’s CA925 and CA926

classes. Prior to founding

ARAsoft in 1993, he worked

with SAP AG and SAP

America for seven years.

Trying to develop or use SAP’s Business Application Programming

Interfaces (BAPIs) without a solid understanding of what they are, how

they are defined in the Business Object Repository (BOR), and what the

difference between a BAPI and the ABAP Function Module underneath

is, leads to errors and frustration. Beginners are often confounded as to

how to approach the BAPIs. Even experienced developers do not

always appreciate all relevant details of the BOR metadata and spend

more time than necessary trying to solve a problem. This article aims to

provide a solid foundation for any BAPI-related activity. Whether you

are a manager in charge of a BAPI development project or a developer

commissioned to write new BAPIs or use existing ones, reading this

article should make your life easier.

Introducing the BAPIs

In order to make interoperability between SAP and non-SAP

components easier in general, and to specifically address the new

challenges posed by e-commerce, SAP — in release 3.1H — decided to

introduce a new set of interfaces to the SAP components (of which R/3

is one1), the BAPIs. As a first approximation, BAPIs can be described

as official, documented, upward-compatible, GUI-free interfaces. In

order to provide the maximum degree of openness the BAPIs needed

to be:

• Defined independently from any middleware technology

(DCOM, CORBA, etc.)

1 R/3 is not the only SAP product that has BAPIs. They can also be found in APO, BW, etc.

(complete bio appears on page 32)

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.4

• Usable from non-object-oriented languages

like C and classical ABAP

• Usable from object-oriented (ABAP Objects,

C++, Java, etc.) and somewhat object-oriented

(Visual Basic before 7.0) languages

To support non-object-oriented languages, SAP

developed the BAPIs as regular Remote Function

Call (RFC)-enabled ABAP Function Modules.2

To provide object-oriented access to the BAPIs,

they had to be defined as methods of object types3.

They needed an object-oriented home, as it were.

Fortunately, this home did already exist. In 3.0A,

SAP had introduced its Business Object Repository.

The main motivation behind this development was

Business Workflow. When you model a process in

your organization you want to be able to think in

terms of:

When the purchase requisition for a PC has been

approved by the appropriate line manager, send it

to the IT department to validate the configuration.

instead of:

When field “XXXX” in table “YYYY” contains

value “1234”, call function module “ZCHKCFG”

and pass value “=CHKPC” into parameter “FUNC”.

 In other words, you need an object model

with object types, attributes, events, and methods.

Underneath this clean, understandable layer, we still

have tables and reports and transactions and dialog

modules and function modules, but fortunately we

can ignore them when we model our workflows.

So when the BAPIs needed an object-oriented

repository, it was an obvious decision to reuse the

BOR (remember that one of the reasons for object-

orientation is better support for reuse).

As a consequence, when we look at the BOR

today, we not only find the BAPIs, but lots of

workflow-related stuff, as well. This can be

confusing if you are looking at the BOR for the first

time and try to distinguish between BAPI-related and

other information. Let me be specific:

• The BOR contains object types that (currently)

have no BAPIs whatsoever.

• The BOR contains methods that are not BAPIs.

• The BOR contains metadata (like events)

that is not relevant for the BAPIs.

Accessing the BOR

SAP offers different ways of accessing the

information in the BOR. Depending on your

requirements, you will need to use one or more of

them. The information in the BOR can be accessed:

• Through the SAP Interface Repository

(http://ifr.sap.com).

• Through the Business Object Repository API

(BOR API). This consists of a set of function

modules that can be used to retrieve the metadata

via RFC. The documentation for this API is

available from www.sap.com/csp/scenarios/

validation/docs/bor_api.pdf.

• Through the Business Object Builder, Business

Object Browser, and BAPI Explorer SAPGUI

transactions (transaction codes SWO1, SWO2,

and BAPI, respectively).

Mostly, you will use the SAPGUI transactions,

but I will deal with the two other possibilities first,

because the majority of this article is devoted to

understanding the BOR metadata and learning how

to use the SAPGUI transactions.

The Interface Repository

This is an exciting new effort by SAP to provide all

relevant interfaces (BAPIs and IDoc types) on the

2 Henceforth called RFMs.

3 If your background is object-oriented programming languages:

This is totally synonymous with the term “classes” for our purposes.

5No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Internet. SAP has written extraction programs that

generate XML documents, which are then used to

generate HTML output that you can view in your

browser. At the time of writing, all BAPIs and IDoc

types for releases 3.1I, 4.0B, 4.5B, 4.6B, and 4.6C

can be studied in the Interface Repository. Currently,

not all details required by developers are available so

we will still have to use the SAPGUI transactions if

we need the complete picture. But this effort is

definitely headed in the right direction and SAP has

plans to extend the Interface Repository in its second

release. You should check the URL given above for

news in this area once in a while.

Using the BOR API

Why would you want to access the BOR through an

API instead of simply looking at it using SAPGUI

transactions? Mostly, that is required for software

companies that want to build tools around the BAPIs,

for example:

• A BAPI browser integrated into their

development environment

• A code generator to facilitate BAPI access in a

specific programming language

• A metadata extractor in order to store the

metadata in a non-SAP repository, for example,

a case tool

• An interface tool (probably consisting of a

mapping tool and a runtime environment)

that allows users to create interfaces between

SAP and non-SAP systems without writing

any code4

To some extent, though, accessing the metadata

is also useful in slightly advanced BAPI-enabled

applications. If a BAPI parameter has to be entered

by a user within the GUI of your application, and this

parameter has a default value, it would be nice if you

showed the default in the data entry field to let the

user know which value will be used if he enters no

data into this field.

From extensive personal experience, I can tell

you that using the BOR API is not a trivial exercise.

Although there is documentation, you still need to

spend some time experimenting with the various

function modules until you really understand what is

going on. You should know how to use the Function

Builder test environment (discussed in my article

“Need to Understand a BAPI’s Parameters? Test-

Drive the BAPI Inside SAP!” in the November/

December 2000 issue of this publication) in order to

find out what is really going on. Fortunately, some

third parties have built components that encapsulate

the BOR API for various environments.5

The SAPGUI Tools

The various transaction codes used in SAP to

explore the BOR will be discussed in the last part

of this article.

First, I want to introduce an object model that

should facilitate your task of understanding what

metadata exists and how it is related.

A BAPI-Centric Object Model

for the BOR

My belief is that once you understand the various

types of metadata in the BOR and the relationships

between them, it will be simpler to use the SAPGUI

transaction codes in order to retrieve the desired

information relevant for BAPI programming. When

teaching SAP’s BAPI training courses6, I noticed

that although I gave an overview of the concepts

employed in the BOR first, some participants

struggled in the BOR-related exercise.

4 See, for example, www.scribesoft.com/Uploads/Intg_4_SAP.pdf.

5 Contact the author to find out more.

6 CA925 and CA926, for Visual Basic and Java programmers,

respectively.

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.6

Being able to review a graphical representation

of the various entities, their properties, and the

relationship between the entities, should facilitate the

understanding of the wealth of metadata contained in

the BOR. Therefore, I have generated UML diagrams

depicting the relevant metadata. In order to avoid the

effort required to enter all the information manually,

I have used the reengineering capabilities of the

Together Control Center product by TogetherSoft

(www.togethersoft.com) to create the diagrams

based on some Java classes that I have written.7

This model only deals with object types that have

BAPIs and ignores everything in the BOR that is only

relevant for Workflow.

Have Collections Everywhere

We already know that the BOR contains multiple

object types, each potentially with several BAPIs.

A BAPI has one or more parameters. Expressed

differently, we are dealing with collections a lot.

The BOR has a collection of object types, an object

type a collection of BAPIs, a BAPI a collection of

parameters. Hence it makes sense to have a common

class that deals with the base functionality of a

7 That is why you see the package name

“de.arasoft.sap.bapi.objectfactory” before each class name.

Figure 1 The BOR Collections

7No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 2 The BOR Tree and the BOR Object Types

collection for BOR metadata. In Figure 1, you see

the BOCollection class, which is used as the superclass

of BOTreeNodes, BOTypes, BOKeyFields, BOMethods,

BOParameters, and BOExceptions. BOCollection offers the

basic behavior required by any collection in the BOR,

the ability to:

• Check for the existence of an item (exists())

• Find out how many items there are (getSize())

• Access items by their name or index (getItem(...))

• Get an iterator (sometimes also called an

enumerator) that allows access to each item in

succession without specifying an explicit index

Note that BOCollection does not define any method

to remove an item because I wanted to represent the

static view of the BOR relevant for writing BAPI

client applications. Of course, the SAP system offers

the ability to add object types, BAPIs, etc.

The BOR Tree

The object types in the BOR are organized according

to the SAP application hierarchy, i.e., they are part of

a tree. Classes BOTreeNodes and BOTreeNode in the

object model (see Figure 2) describe the relevant

relationships. Each branch (or folder) in the tree is

represented by BOTreeNodes, a collection of zero or

more BOTreeNode objects. A tree node is either an

object type (a leaf) or another branch with zero or

more child nodes. As for any tree, this one also has a

root (the top level of the hierarchy). Any node in the

tree has a parent, with the exception of the root.

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.8

The SAP application hierarchy is not cast in

stone. Each new release usually brings about some

(minor) changes. Other than making it a little harder

to find an object type that was moved, this has no

adverse consequences since the position of an object

type in the application hierarchy has no implications

for the user (or even the developer) of BAPIs. Since

not everybody is familiar with the way in which SAP

structures its applications, it is also possible to access

all object types directly. This is represented by the

BOTypes class.

The BOR Object Type

Normally, any item in a BOR collection has one name

identifying it and a description. This is not all for a

BOR object type, though. It has an internal name

(getObjectType(), e.g., “BUS0002”) and an external,

official name (getObjectName(), e.g.,“CompanyCode”).

Both these names must be unique in order for the

BAPIs to work.

All BOR metadata entities allow the developer to

store documentation. This is true not only for object

types (getDocumentation()), but also for key fields,

BAPIs, parameters, etc.

An object type can be marked as a Business

Object Type. This is not reflected in our object

model since it has no consequences whatsoever for

BAPI programming. SAP’s definition of what makes

something a Business Object Type is quite different

from what one would intuitively assume. For most

people a Business Object Type is one that is related to

a business application. In SAP, an object type is a

Business Object Type only if a data model exists for

it. While having a data model to look at may be an

added value in your study of an object type, it

is totally unrelated to the question of whether the

object type has any BAPIs that we want to call in an

application. For our purposes, we can totally ignore

this property.

Inheritance

The BOR allows you to subclass an existing object

type. This is necessary if you want to modify or

enhance an object type. Making changes directly to

an object type that was delivered by SAP is not a

good idea because of the extra effort that would be

required during an upgrade. The new object type

inherits all metadata of the superclass, including its

key fields and methods. You can now add new

BAPIs or extend existing ones.

Each object type can have a superclass

(getParentObjectType()), but does not need to have one.

You can also create new object types that do not

inherit from anything.

Delegation

In object-oriented languages, the developer decides

which object type to instantiate in his program. This

leads to a problem with customer extensions, though.

Since we should not modify an SAP object type, the

question arises of how to ensure that everybody uses

our new enhanced/modified object type. This is

important because otherwise we would have to rely

on the good will of the programmer who uses an

object type to actually use the new subclassed one.

Imagine that you have modified a BAPI of your

subclassed object type in a way that is important

for your company. The developer of the client

application could now use the new object type with

the modified BAPI, or the old one with the old

behavior. While choice is often a good thing, here

it is definitely bad. We need a mechanism that

guarantees that our new object type is used, no

matter what.

SAP has introduced delegation to solve this

issue. In a superclass you can specify which of its

subclasses it should be delegated to. Any call to the

superclass’s methods will now result in a call of the

appropriate method of the subclass.

Release Information

An object type was created first in a certain release of

SAP (getReleaseCreated()). The release in which the

last change was made (getReleaseChanged()) and when

9No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 3 Obsolete Object Types in 4.6B

Object type Object name Description Obsolete since

BUS1008 Creditor Vendor 4.6A

BUS1007 Debtor Customer 4.6A

BUS1057 InvestmentProgram Investment program 4.6A

it was officially released for customer use

(getReleaseReleased()) are also available. Only

rarely does a whole object type become obsolete.

This is usually due to a major change in the

application object model. Obsoleteness is not a

Boolean attribute, instead the BOR specifies the

release in which the object type became obsolete

(getReleaseObsolete()). If you start to build a new

application it is a good idea to stay away from

obsolete object types. Figure 3 contains a list of

all object types in 4.6B that have BAPIs and are

obsolete. (See below for a discussion of the

obsoleteness of individual BAPIs.)

Key Fields

The SAP object types are an object-oriented

representation of an application using a relational

database. The persistent data of an object type is

stored in one or more tables in the database. Each

table has one or more (primary) key fields uniquely

identifying each record. There is always one base

table that contains the basic data for an entity. Data

for customers (object type Customer), for example, is

stored in multiple tables, the base table is KNA1. It

uses one key field (the customer number) to identify

a particular customer. In order for the BAPIs (and

Workflow methods) to identify an instance of an

object type (retrieve a particular record in its base

table) SAP defines key fields for each object type

(getKeyFields()). Most SAP object types have one key

field, some need multiple key fields (because the base

table has multiple fields in the primary key), some

object types of a more technical nature (helper object

types like Helpvalues) have none.

Be careful if you invoke BAPIs through a

middleware that uses generated proxy

classes. Both SAP DCOM Connector and the

SAP Java Connector (and probably most third

party generators, as well) generate the name

of the underlying RFM that implements the

BAPI into their proxies. If you have modified

a BAPI in your subclass, the underlying

function module has a different name than

the original SAP RFM. At generation time,

the middleware generator tool should check

whether the object type is delegated and

use the names of the RFMs defined for the

subclass for any BAPI that was modified.

SAP’s tools actually do this, but when you

use any third party middleware you should

double-check with your vendor.

What happens, though, when the proxies

were generated before we defined the

delegation? If a third party sold us an

application using proxy-based middleware

with pre-generated proxies? In spite of our

delegation, the standard SAP BAPIs will be

invoked instead of our modified versions.

If you are using delegation in your SAP

system and proxy-based middleware in your

own software or a third party application, you

need to make sure that the proxy generation

takes place after the definition of the

delegation! In the case of a third party

product, that will require you to have access

to the generator in your company, which

is not a problem if standard SAP middleware

is used.

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.10

Each key field has a name (getName()) and a

description (getDescription()). Each key field is

based on the associated field of the basic database

table for the object type. The name of the table

(getStructureName()) and the name of the field

(getFieldName()) can be used to look up additional

properties in the SAP Data Dictionary. All these

properties will be discussed later when we deal with

BAPI parameters (which are also based on dictionary

references).

Finally: The BAPIs

The relevant metadata for the BAPIs is depicted in

Figure 4. Each object type we are interested in has

one or more BAPIs (getBOMethods()). A BAPI has a

name (getName()), a description (getDescription()), and

an underlying RFM (getRfmName()).

Instance and Class Methods

Some BAPIs do not require us to set the key fields

fields of their object type in order to work.

SalesOrder.GetList, for example, can be invoked

without us specifying the key of an existing sales

order. SAP calls methods like this instance-

independent, but we will use the more common term

class method (isClassMethod()). Other BAPIs need the

key fields in order to select a particular record from

the database, SalesOrder.GetStatus, for example. It will

only work if we set the one key field that the

SalesOrder object type has to the key of an existing

Figure 4 The BAPIs of an Object Type

11No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

The key fields that are used by instance

and factory methods are not defined as

parameters of the BAPI, but they are defined

as parameters of the underlying RFM.

If you invoke an instance or factory BAPI

in an object-oriented way (with, e.g., SAP

DCOM Connector, SAP ActiveX Controls,

SAP Java Connector), the key fields are

set and retrieved separately (the details

vary slightly depending on the chosen

middleware). The middleware takes care

of mapping the key fields to the appropriate

parameters (import for instance methods,

export for factory methods) of the underlying

RFM. This mapping requires each key field-

related parameter of the RFM to have exactly

the same name as the key field in the object

type definition.

If you invoke a BAPI in a non-object-oriented

fashion, i.e., you invoke the RFM directly (in

classical ABAP or C, for example), you treat

the key fields as normal parameters of the

RFM because you do not deal with an object

type that has key fields defined.

Developers who are not yet very familiar

with object-orientation usually find the latter

approach much simpler, but as always, the

initial extra effort required to learn object-

oriented programming is rewarded manifold

by increased productivity and more

enjoyment of the software development

effort.

sales order record in the database. (We could use

SalesOrder.GetList to retrieve the keys of all sales

orders for a customer and then use each key in turn to

find out the status of this order.) BAPIs of this type

are called instance-dependent in SAP, we will use the

term instance method (isInstanceMethod()). Each BAPI

is either a class or an instance method.

Factory Methods

Some BAPIs create new instances (i.e., records in the

database). SalesOrder.CreateFromDat1, for example,

allows us to create a new sales order. Such BAPIs

are called instance-creating in SAP, we will use the

the term factory method (isFactoryMethod()). Here the

the key fields are set by the BAPI, the document

number of the newly created sales order for

SalesOrder.CreateFromDat1, for example. All factory

BAPIs up to 4.6B are class methods, but it would be

possible to have an instance method that is a factory

method as well. This would require us to set the key

fields of an existing instance before the BAPI call,

and then, after the call, the key fields would contain

the new values set by the BAPI.

Obsoleteness

If SAP needs to enhance an existing BAPI, they try to

try to do it in an upward-compatible fashion by

adding optional parameters. Sometimes a more

drastic change is required though in order to provide

additional functionality. In that case, a new BAPI is

created. The name of the new BAPI is usually the

same as the name of the old one plus a number.

SalesOrder.CreateFromDat1 is the successor of

SalesOrder.CreateFromData (there was no more room

for the “a” in the new name, hence the “Dat1” instead

of “Data1”). The old BAPI is marked obsolete

(getReleaseObsolete()) for the release in which the

new BAPI is introduced. An obsolete BAPI is still

guaranteed to work in the release in which it became

obsolete and at least one subsequent functional

release. (SAP distinguishes between functional and

maintenance releases, 4.0A was functional, 4.0B

maintenance, and so on.) Since there is no more

than one functional release per year, this gives you

at least two years (more if you do not switch to

the next functional release the day it becomes

available, something that hardly anyone does)

in which your BAPI-enabled application will

run without any change.

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.12

Figure 5 contains a list of all obsolete BAPIs

of non-obsolete, released object types, up to 4.6B.

(In addition, all BAPIs of the object types listed in

Figure 3 are obsolete because the whole object type

is obsolete.)

In case you are confused by some BAPIs being

obsolete since 4.0C: Release 4.0C never existed,

this is just another way of saying 4.5A (the next

functional release after 4.0A).

Figure 5 Obsolete BAPIs in 4.6B

Object name BAPI name Description Obsolete

since

BapiService DataConversionExt2Int Convert data from external format 4.6A

into internal format

BapiService DataConversionInt2Ext Convert data from internal format 4.6A

into external format

ControllingDocument GetDetail Use find details: 4.6A

Do not use this method any longer

CostCenter GetDetail Detailed Information About 4.6A

Cost Center For Key Date

CostCenter GetList List Of All Cost Centers 4.6A

According To Selection Criteria

Customer ChangeFromData Change 4.0C

Customer CheckExistence Check existence 4.6A

Customer CheckPassword Check password 4.6A

Customer CreateFromData Create 4.0C

Customer GetDetail Read 4.0C

Customer Search Find 4.0C

EmployeeAbsence Approve Unlock absence 4.6A

EmployeeAbsence Change Change absence 4.6A

EmployeeAbsence Create Create absence 4.6A

EmployeeAbsence Delete Delete absence 4.6A

EmployeeAbsence Request Create locked absence 4.6A

EmployeeBenefit GetEventList Determine the currently valid events 4.0C

of an employee

(continued on next page)

13No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

EmployeeBenefit GetOffer Define benefits offer 4.0C

EmployeeBenefit GetOpenEnrollmentPeriod Check if open enrollment period 4.0C

exists and period is indicated

FixedAsset CreateFromData Create asset 4.6A

ItCustBillingDoc CancelFromData Cancel/reverse 4.6A

ItCustBillingDoc CreateFromData Create using external document 4.6A

ItCustBillingDoc IsCancelled Has the billing document been cancelled? 4.6A

ItCustBillingDoc Simulate Simulate using external document 4.6A

Kanban GetListForSupplier Provide Kanban data for vendors 4.0A

Material GetInternalNumber Assign new internal numbers 4.6A

MaterialPhysInv Create Create Physical Inventory Document 4.6A

Promotion GetSitePlanning Read plant planning data for a promotion 4.6A

PurchaseOrder GetList List purchase orders - only up to 4.0A 4.0A

PurchaseReqItem CreateFromData Create requirement coverage request 4.0A

PurchaseReqItem GetList Read requirement coverage request 4.0A

PurchaseReqItem SingleReleaseNoDialg Release purchase requisition 4.6A

SiteLayoutModule GetItem Material data for a layout module 4.6A

USER Create Create a user 4.6A

BAPIs with Dialog, Really?

The main raison d’être for the whole BAPI endeavor

is to enable you (and also SAP) to invoke

functionality from outside an SAP system, using your

own or no GUI. This obviously requires the BAPIs to

not use SAPGUI dialogs. But in some integration

scenarios between multiple SAP systems it makes

sense for one SAP system to invoke a BAPI in

another system and for that BAPI to have a dialog

with the SAPGUI user. Therefore, SAP introduced

BAPIs with dialog (isUsingDialog()) in 4.6A. They will

mainly be used by SAP applications, but if you want

to use them in your own (desktop) applications, that

is possible as well, as long as the user of your

application has SAPGUI installed and does not get

too confused by it popping up in the middle of your

application.

Figure 5 (continued)

Object name BAPI name Description Obsolete

since

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.14

Figure 6 BAPIs with Dialog in 4.6B

Object name BAPI name Description

ACCDocument Display Display

AcctngServices DocumentDisplay Accounting: Display method for follow-on

document display

BusPartnerContact CreateFromDataWithDialog Create Data Container with Dialog

BusPartnerEmployee Create Create

BusPartnerEmployee Display Display

BusPartnerEmployee Edit Edit

Customer Create Create online

Customer Delete Delete customer master data online

Customer Display Display online

Customer Edit Change online

EmployeeTrip ChangeInteractive Change a trip (interactively)

EmployeeTrip CreateInteractive Create trip online (receipt entry)

ItCustBillingDoc Confirm Confirm object

ItCustBillingDoc Create Create object

ItCustBillingDoc Display Display object

ItCustBillingDoc Edit Change object

Material Delete Delete

Figure 6 contains a list of all BAPIs with dialog

for non-obsolete, released object types, up to 4.6B.

Asynchronicity

Normally, we want to call BAPIs synchronously

in order to get feedback (return code, result data)

immediately. Of course, a synchronous call will

only work if the system we want to access is up and

and running. When SAP started to use BAPIs for

the communication between different SAP systems,

they also wanted a mechanism to invoke a BAPI

asynchronously, so that the calling application could

proceed even if the remote system was currently

unavailable. Luckily, they already had an

(continued on next page)

15No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Material Display Display object

Material Edit Change object

PayrollAccDocument Display_Acc Display_Acc

PTManagerExtTimeSpec Display Display external data in infotype

RetailMaterial Create Create material

RetailMaterial Delete Discontinue material

RetailMaterial Display Display material

RetailMaterial Edit Change material

StandardMaterial Create Create

StandardMaterial Delete Delete

StandardMaterial Display Display object

StandardMaterial Edit Change object

TravelAccDocument Display_Acc Display_Acc

USER Display Display object

Vendor Create Create online

Vendor Delete Set deletion indicator online for vendor

Vendor Display Display online

Vendor Edit Change online

asynchronous message passing mechanism with with

with guaranteed delivery: ALE (Application Link

Link Enabling). ALE uses IDocs (Intermediate

Documents) as the containers for messages. IDocs

are instances of IDoc types, which in turn are

associated with ALE Message Types. How can you

you turn a BAPI into an IDoc? SAP developed a a a

a generator that takes a BAPI and creates:

• An appropriate ALE Message Type with an

associated IDoc Type. The IDoc Type has fields

for all the data in the BAPI’s import parameters.

• One function module for outbound processing

with the same parameters as the original BAPI.

It is invoked by the client ABAP code instead

of the original BAPI that would have been called

Figure 6 (continued)

Object name BAPI name Description

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.16

synchronously. The generated function module

takes the parameters and puts them into an IDoc.

This IDoc is then sent to the target system by the

ALE communication layer. This may happen

immediately or much later, depending on the

availability of the target system and the ALE

configuration.

• One function module for inbound processing that

is used in the target system to call the BAPI. The

ALE inbound processing layer calls this function

module, which takes the data from the IDoc and

invokes the original BAPI with all passed

parameters.

The BOR can tell you whether asynchronous calls

are supported for a BAPI (isAsynchronousCallSupported())
and — if they are — the names of the generated

ALE Message (getAsyncMessageType()) and IDoc

(getAsyncIDocType()) types.

This whole mechanism can only be used if the

calling application does not need any data back from

the BAPI. The calling application in the source

system may have completed long before the IDoc is

processed in the target system. Since no information

is returned, the calling application does not even

know whether the resulting BAPI call was successful.

So error handling must happen in the target system,

and a workflow item is created in the target system

whenever an error occurs. Also, this mechanism only

makes sense for BAPIs that update the database.

Calling a BAPI used to retrieve information

asynchronously is nonsensical since no data is

returned to the caller.

For SAP, calling BAPIs asynchronously via

IDocs was a suitable and easy-to-use (for the ABAP

developer) way of updating applications running in

different systems. Does this apply to non-SAP

applications? Not as much:

• If you want to send a message asynchronously,

you have to create the IDoc yourself because you

do not have a generated function module that

takes care of that. Learning how to do this is

not trivial.

• Normally you want some feedback in your

application (success/failure of the call, key fields

of created sales order, etc.).

In most cases, it is probably simpler to try a

synchronous call, and if that fails, save the data in

your own database, and try another synchronous

call later.

Exceptions Are an Exception

ABAP function modules can define exceptions that

are “thrown” in case of an error. One of the many

rules that BAPIs should follow is that they do not use

exceptions, and have a Return parameter instead.

Unfortunately, not everybody plays by the rules. An

exception has a name (getName()), which is the string

defined by the ABAP programmer in the RFM, a

description (getDescription()), and an associated text

message from table T100 (getMessageClass() and

getMessageNumber()).

Figure 7 contains a list of all non-obsolete BAPIs

with exceptions for released object types, up to 4.6B.

✔ Tip

If you are using BAPIs with exceptions in

your applications, make sure that you

understand how such an exception will be

communicated by the middleware you use

and write code to handle the exception

(again, details vary depending on the

particular middleware).

BAPI Parameters

The most important metadata for a BAPI is its

17No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 7 BAPIs with Exceptions in 4.6B

Object name BAPI name Description

Attendee ChangePassword Change attendee password

Attendee CheckExistence Check existence of attendee

Attendee CheckPassword Check attendee password

Attendee GetBookList Attendee Bookings

Attendee GetCompanyBookList Bookings of group attendee

Attendee GetCompanyPrebookList Group attendee’s prebookings

Attendee GetPrebookList Attendee Prebookings

Attendee GetTypeList Internet-relevant attendee types

BusinessEvent GetInfo Business event information

BusinessEvent GetLanguage Business event languages

BusinessEvent GetSchedule Time schedule of business event

BusinessEvent Init Default values for standard parameters

BusinessEventGroup GetEventtypeList Business event types in business event group

BusinessEventGroup GetList Read Business Event Group Hierarchy

BusinessEventtype GetEventList Dates of business event type

BusinessEventtype GetInfo Information on business event type

Location GetListAll List business event locations

PurchaseOrder Release Release purchase orders

PurchaseOrder ResetRelease Cancel release of purchase orders

PurchaseReqItem Release Release purchase requisition

PurchaseReqItem ResetRelease Cancel release of purchase requisitions

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.18

parameters (cf. Figure 8). Parameters can be

categorized in different ways.

Firstly, there are import (isImport()) and export

(isExport()) parameters. Import parameters are passed

to, export parameters returned from the BAPI. A

parameter can be both import and export.

Secondly, parameters can be mandatory

(isMandatory()) or optional (isOptional()). All parameters

that are only import are optional.

Thirdly, parameters can be scalar (isScalar())
or structure (isStructure()) or table (isTable())
parameters.

A scalar parameter is based on a field in a

dictionary structure or table (getStructureName()
and getScalarFieldName()). An optional scalar

import parameter can have a default value

(getScalarDefaultDefinition()).

A structure parameter is based on a complete

Figure 8 The Parameters of a BAPI

19No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

structure or table in the dictionary (getStructureName()).
The structure consists of one or more fields.

A table parameter is based on a complete

structure or table in the dictionary (getStructureName()).
The table consists of zero or more rows, each with the

fields defined in the dictionary structure. On the level

of the RFM, table parameters are always import and

export (they are passed by reference in RFC). On

the BOR level, a table parameter can be defined as

import, or export, or both. This allows the developer

of the BAPI to tell us whether we might want to put

data into a table parameter before the BAPI call or

whether the table is (also) used to return data to

the client program. The attribute is not always

maintained correctly in SAP, though. Some table

parameters are defined as import and export, although

the BAPIs they are used in never look at any data

submitted by us, and just use the parameter to return

data to us. The documentation usually gives us an

indication that this is the case. CompanyCode.GetList,
for example, has a table parameter called

CompanyCodeList, marked as import and export,

that in reality is only export.

Dictionary Fields

Dictionary fields (cf. Figure 9) are behind the

following entities:

• Key fields

Figure 9 A Dictionary Field

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.20

• Scalar parameters

• Fields in a structure parameter

• Fields in a row of a table parameter

The SAP Data Dictionary contains a plethora of

information about each field. Each field has a name

(getName()). The field name in the dictionary is not

related to the name of a key field or scalar parameter

based on the dictionary field. The key field for the

Customer object type is called “CustomerNo”. It is

based on the field “KUNNR” in dictionary table

“KNA1”. Fields in structure or table parameters have

only their own name, though.

Each field has an ABAP (getDataTypeABAP()) and

a dictionary (getDataTypeDD()) data type. Three

different length values are defined:

• The internal length (getInternalLength()) is the

number of bytes used in memory.

• The length (getLength()) is the number of

positions required on a GUI to display the

largest possible content of a field without

extra formatting.

• The output length (getOutputLength()) is the

number of positions required on a GUI to

display the largest possible content of a field

with extra formatting.

Let me give you an example: A packed (or as

some say, Binary-Coded Decimal) number with an

internal length of 6 bytes, would have a length of 11

positions and an output length of 16. Internally, each

byte of the packed number contains two digits (with

the exception of the last half-byte that represents

the sign).

The largest number of digits supported is 6

times 2 minus 1 equals 11. A packed number can

have decimals and a minus sign. If we assume

that we use all digits and that our number has one one

one decimal (getDecimals()) and is negative, a

nicely formatted version might look like

“-1,234,567,890.1”.

Each field has a maximum of five texts

(getFieldTexts()) associated with it:

• A description (getDescription())

• A column heading for reports

(getColumnHeading())

• A long screen label (getLabelLong())

• A medium-sized screen label (getLabelMedium())

• A short screen label (getLabelShort())

Not all of these texts are necessarily maintained

in all languages.

Fields can be based on a check table

(getCheckTable()) or a fixed values list

(isFixedValuesListDefined()). Under certain conditions

(see my article “Enabling Point-and-Click Data Entry

Assistance for Your BAPI Applications” in the

September/October 2000 issue of this publication)

additional data can be retrieved for a field using the

Helpvalues.GetList BAPI (isHelpvaluesSupported()). In
SAPGUI, all fields based on check tables or fixed

values lists (and in some other special cases) offer

search help (isSearchHelpSupported()).

Some fields use conversion exists

(getConversionExit()). In that case, there is an internal

value (used in the database) and an external value

(used on a GUI). The conversion BAPIs of the

BapiService object type can be used to convert

between the two formats.

Some character fields store only uppercase

characters, some allow mixed case

(isMixedCaseSupported()).

21No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

The Function Module’s View

We have discussed all important metadata from the

BOR’s viewpoint now. Figure 10 shows an RFM

(one that implements a BAPI or one that is not part of

an object type) with its parameters and exceptions.

The similarity between an RFM’s metadata and a

BAPI’s is big. That should be no surprise because

BAPIs are implemented by RFMs. By now you

should have no problem interpreting the information

in Figure 10.

Exploring BAPIs in SAPGUI

Now that we understand what information is

available, it should be no big deal to actually look it

up in the SAP system. The following transaction

codes are commonly used to research BAPIs:

• The BAPI Explorer (transaction code BAPI)

• The Business Object Builder (transaction code

SWO1)

• The Business Object Browser (transaction code

SWO2)

• The Function Builder (transaction code SE37)

• The Dictionary (transaction code SE11)

Figure 10 A Function Module with Parameters and Exceptions

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.22

The BAPI Explorer (see Figure 11) is the natural

starting point. All other transactions can be reached

from it, usually with a double-click or the pressing

of a button. SAPGUI has amazing navigational

capabilities.

Figure 11 The BAPI Explorer

Figure 11 shows the hierarchical view of the

BOR, with the Customer object type selected.

Alternatively, you can switch to an alphabetic view.

By default, the BAPI Explorer shows only

23No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 12 Selecting all BAPIs

Figure 13 The BAPI Explorer Legend

released BAPIs. If you want to see the unreleased

ones as well, you can click on the filter icon (the one

that looks like a funnel) and select the “All” radio

button (see Figure 12).

Look at the “i” icon in Figure 11. If you rest

your cursor over the text to the right of it, the

complete text is shown in a tooltip: “Caution:

Business object type is being delegated”. This is

SAP English for “Caution: Business object type has

been delegated”. Later you will see how we can find

out which object type it has been delegated to.

In order to understand the icons used in the tree

portion of the BAPI Explorer, you can display the

legend pop-up (see Figure 13).

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.24

After opening up an object type in the tree (or the

alphabetical list), you can see the key fields, BAPIs,

and parameters. In Figure 14, I have selected the

CreateFromData BAPI. It is a class method (instance-

independent), and also a factory method, which

the BAPI Explorer in its 4.6B incarnation does not

tell you, but the name of the BAPI is a dead

giveaway, and of course we could always read the

documentation to double-check. As you can see, this

BAPI is obsolete, and we should use its successor

(CreateFromData1) in new projects. No asynchronous

calls are possible for this BAPI, because no ALE

Figure 14 One BAPI of an Object Type

25No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

message type has been generated yet. Double-

clicking on the “Does not exist” text would take

you to a wizard that allows you to generate one.

If you select one of the parameters, you get to a a

a screen like the one shown in Figure 15. This

particular parameter is a mandatory import

structure parameter. You can tell that it is not a

table parameter since the appropriate check box is

unchecked. And you can deduce that it is a structure

parameter, because the “Dictionary reference” field

contains no hyphen, which means that the parameter

Figure 15 One Parameter of a BAPI

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.26

is based on the complete structure. Scalar parameters

show up in the format “STRUCTURENAME-

FIELDNAME”.

Double-clicking on the text in the “Dictionary

reference” field takes you directly to the SAP Data

Dictionary (Figure 16). Here you see all fields in

this structure with their data types, lengths, and

descriptions.

Clicking on the other available tabs allows

you to look at more information for all the fields.

Figure 17 shows the Search Help/Helpvalues-related

information of each field.

To navigate to the RFM implementing a BAPI

you select the “Tools” tab in the BAPI Explorer

(cf. Figure 18). Click on the “Display” button to

go to the Function Builder.

Figure 16 The Dictionary Structure for a Parameter

27No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 17 The Search Help View of a Structure

Figure 18 Selecting the Function Builder

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.28

Figure 19 The RFM Behind Customer.CreateFromData

Figure 20 Selecting the Business Object Builder

29No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Here you can look at all relevant metadata from

from the RFM’s perspective, including import (cf.

(cf. Figure 19), export, and tables parameters, as

well as exceptions and the ABAP source code.

Normally, it will suffice to study a BAPI from

the BOR perspective.

If you need more information about an object

type than is available directly in the BAPI Explorer,

you can always switch to the BOR tools. In

Figure 20, you can press the “Display” or “Change”

button to navigate to the selected object type

displayed in the Business Object Browser or Builder,

respectively. The “Business Object Repository”

button takes you to the Business Object Repository

Browser (transaction code SWO3), which shows the

same types of information as the Business Object

Browser, but has more options selected in its filter

by default. (IDocs are included in the hierarchy,

for example.)

Figure 21 shows the Customer object type

(internal name KNA1) in the Business Object

Browser with not only BAPI- but also Workflow-

Figure 21 Selecting the Business Object Builder

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.30

Figure 23 The Basic Data of KNA1

related information. Interfaces, attributes, and events

(scroll down in Figure 21) are of no relevance for

BAPI programming.

Again, we can find out the meaning of the icons

in the legend (cf. Figure 22).

Double-clicking on the object type (“KNA1”) in

Figure 21 displays the basic data for the object type

(cf. Figure 23). If you select the “Customizing” tab,

you can see that this object type is delegated to

“ZZKNA1”, which only exists (unless you create one

yourself) in IDES systems (used for training and

demos by SAP and customers).

In order to see the subclassing required for

delegation, you can start another session and use

transaction code SWO2 to bring up the Business

Object Browser Hierarchy. Drilling down to the

Figure 22 The Business Object
Browser Legend

31No portion of this publication may be reproduced without written consent.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Customer object type shows the screen depicted in

Figure 24. Two subclasses are defined for Customer.
The second one (Customer2) is the one that Customer is

delegated to. Double-click it to bring up

Figure 25, which confirms that its object type is

“ZZKNA1”, the delegation type shown in Figure 23.

Figure 24 The Customer Object Type in the BOR Hierarchy

Figure 25 The Delegation Object Type for Customer Hierarchy

SAP Professional Journal January/February 2001

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.32

Conclusion

By now you should have a firm understanding of the

BAPI metadata available in the BOR and how to

access it inside the SAP system. This will help you in

using BAPIs in your own applications as well as in

implementing your own BAPIs.

Thomas G. Schuessler is the founder of ARAsoft

(www.arasoft.de), a company offering products,

consulting, custom development, and training to

a worldwide base of customers. The company

specializes in integration between SAP and non-

SAP components and applications. ARAsoft offers

various products for BAPI-enabled programs on

the Windows and Java platforms. These products

facilitate the development of desktop and Internet

applications that communicate with R/3. Thomas

is the author of SAP’s CA925 “Developing BAPI-

enabled Web applications with Visual Basic”

and CA926 “Developing BAPI-enabled Web

applications with Java” classes, which he teaches

in Germany and in English-speaking countries.

His book on the same subject, “The BAPI Bible

for SAP Programmers: The Comprehensive Guide

to Integrating SAP Products with Web, Desktop,

and Mobile Applications Using Java, Visual

Basic, and ABAP”, will be published soon by the

SAP Professional Journal. Thomas is a regularly

featured speaker at SAP TechEd and SAPPHIRE

conferences. Prior to founding ARAsoft in 1993,

he worked with SAP AG and SAP America for

seven years. Thomas can be contacted at

thomas.schuessler@sap.com or at tgs@arasoft.de.

