Everything a BAPI Programmer Needs to Know About the Business Object Repository

Everything a BAPI Programmer
Needs to Know About the
Business Object Repository

Thomas G. Schuessler

Thomas G. Schuessler is
the founder of ARAsoft, a
company offering products,
consulting, custom
development, and training
to customers worldwide,
specializing in integration
between SAP and non-SAP
components and applications.
Thomas is the author of
SAP’s CA925 and CA926
classes. Prior to founding
ARAsoft in 1993, he worked
with SAP AG and SAP
America for seven years.

(complete bio appears on page 32)

Trying to develop or use SAP’s Business Application Programming
Interfaces (BAPIs) without a solid understanding of what they are, how
they are defined in the Business Object Repository (BOR), and what the
difference between a BAPI and the ABAP Function Module underneath
is, leads to errors and frustration. Beginners are often confounded as to
how to approach the BAPIs. Even experienced developers do not
always appreciate all relevant details of the BOR metadata and spend
more time than necessary trying to solve a problem. This article aims to
provide a solid foundation for any BAPI-related activity. Whether you
are a manager in charge of a BAPI development project or a developer
commissioned to write new BAPIs or use existing ones, reading this
article should make your life easier.

Introducing the BAPIs

In order to make interoperability between SAP and non-SAP
components easier in general, and to specifically address the new
challenges posed by e-commerce, SAP — in release 3.1H — decided to
introduce a new set of interfaces to the SAP components (of which R/3
is one'), the BAPIs. As a first approximation, BAPIs can be described
as official, documented, upward-compatible, GUI-free interfaces. In
order to provide the maximum degree of openness the BAPIs needed

to be:

* Defined independently from any middleware technology
(DCOM, CORBA, etc.)

' R/3 is not the only SAP product that has BAPIs. They can also be found in APO, BW, etc.

No portion of this publication may be reproduced without written consent.

SAP Professional Journal January/February 2001

» Usable from non-object-oriented languages
like C and classical ABAP

* Usable from object-oriented (ABAP Objects,
C++, Java, etc.) and somewhat object-oriented
(Visual Basic before 7.0) languages

To support non-object-oriented languages, SAP
developed the BAPIs as regular Remote Function
Call (RFC)-enabled ABAP Function Modules.?

To provide object-oriented access to the BAPIs,
they had to be defined as methods of object types®.
They needed an object-oriented home, as it were.
Fortunately, this home did already exist. In 3.0A,
SAP had introduced its Business Object Repository.
The main motivation behind this development was
Business Workflow. When you model a process in
your organization you want to be able to think in
terms of:

When the purchase requisition for a PC has been
approved by the appropriate line manager, send it
to the IT department to validate the configuration.

instead of:

When field “XXXX in table “YYYY” contains
value “1234”, call function module “ZCHKCFG”
and pass value “=CHKPC” into parameter “FUNC”’.

In other words, you need an object model
with object types, attributes, events, and methods.
Underneath this clean, understandable layer, we still
have tables and reports and transactions and dialog
modules and function modules, but fortunately we
can ignore them when we model our workflows.

So when the BAPIs needed an object-oriented
repository, it was an obvious decision to reuse the
BOR (remember that one of the reasons for object-
orientation is better support for reuse).

2 Henceforth called RFMs.

3 If your background is object-oriented programming languages:

This is totally synonymous with the term “classes” for our purposes.

As a consequence, when we look at the BOR
today, we not only find the BAPIs, but lots of
workflow-related stuff, as well. This can be
confusing if you are looking at the BOR for the first
time and try to distinguish between BAPI-related and
other information. Let me be specific:

» The BOR contains object types that (currently)
have no BAPIs whatsoever.

e The BOR contains methods that are not BAPIs.

» The BOR contains metadata (like events)
that is not relevant for the BAPISs.

Accessing the BOR

SAP offers different ways of accessing the
information in the BOR. Depending on your
requirements, you will need to use one or more of
them. The information in the BOR can be accessed:

» Through the SAP Interface Repository
(http://ifr.sap.com).

* Through the Business Object Repository API
(BOR API). This consists of a set of function
modules that can be used to retrieve the metadata
via RFC. The documentation for this API is
available from www.sap.com/csp/scenarios/
validation/docs/bor_api.pdf.

* Through the Business Object Builder, Business
Object Browser, and BAPI Explorer SAPGUI
transactions (transaction codes SWO1, SWO2,
and BAPI, respectively).

Mostly, you will use the SAPGUI transactions,
but I will deal with the two other possibilities first,
because the majority of this article is devoted to
understanding the BOR metadata and learning how
to use the SAPGUI transactions.

The Interface Repository

This is an exciting new effort by SAP to provide all
relevant interfaces (BAPIs and IDoc types) on the

4 www.SAPpro.com

©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Internet. SAP has written extraction programs that
generate XML documents, which are then used to
generate HTML output that you can view in your
browser. At the time of writing, all BAPIs and IDoc
types for releases 3.11, 4.0B, 4.5B, 4.6B, and 4.6C
can be studied in the Interface Repository. Currently,
not all details required by developers are available so
we will still have to use the SAPGUI transactions if
we need the complete picture. But this effort is
definitely headed in the right direction and SAP has
plans to extend the Interface Repository in its second
release. You should check the URL given above for
news in this area once in a while.

Using the BOR API

Why would you want to access the BOR through an
API instead of simply looking at it using SAPGUI
transactions? Mostly, that is required for software
companies that want to build tools around the BAPIs,
for example:

* A BAPI browser integrated into their
development environment

* A code generator to facilitate BAPI access in a
specific programming language

* A metadata extractor in order to store the
metadata in a non-SAP repository, for example,
a case tool

* An interface tool (probably consisting of a
mapping tool and a runtime environment)
that allows users to create interfaces between
SAP and non-SAP systems without writing
any code*

To some extent, though, accessing the metadata
is also useful in slightly advanced BAPI-enabled
applications. If a BAPI parameter has to be entered
by a user within the GUI of your application, and this
parameter has a default value, it would be nice if you
showed the default in the data entry field to let the

4 See, for example, www.scribesoft.com/Uploads/Intg_4 SAP.pdf.

user know which value will be used if he enters no
data into this field.

From extensive personal experience, | can tell
you that using the BOR API is not a trivial exercise.
Although there is documentation, you still need to
spend some time experimenting with the various
function modules until you really understand what is
going on. You should know how to use the Function
Builder test environment (discussed in my article
“Need to Understand a BAPI’s Parameters? Test-
Drive the BAPI Inside SAP!” in the November/
December 2000 issue of this publication) in order to
find out what is really going on. Fortunately, some
third parties have built components that encapsulate
the BOR API for various environments.’

The SAPGUI Tools

The various transaction codes used in SAP to
explore the BOR will be discussed in the last part
of this article.

First, I want to introduce an object model that
should facilitate your task of understanding what
metadata exists and how it is related.

A BAPI-Centric Object Model
for the BOR

My belief is that once you understand the various
types of metadata in the BOR and the relationships
between them, it will be simpler to use the SAPGUI
transaction codes in order to retrieve the desired
information relevant for BAPI programming. When
teaching SAP’s BAPI training courses®, I noticed
that although I gave an overview of the concepts
employed in the BOR first, some participants
struggled in the BOR-related exercise.

5 Contact the author to find out more.

¢ CA925 and CA926, for Visual Basic and Java programmers,
respectively.

No portion of this publication may be reproduced without written consent.

SAP Professional Journal January/February 2001

Figure 1

The BOR Collections

de.arasoft.sap.bapi.objectfactory.BOTypes

de.arasoft.sap.bapi.objectfactory.BOKeyFields

+hoolean existsByObjectMame(Stting name)
+hoolean existsByObjectType(String ohjectType)
+BOType getBOTypedint index)

+BOType getBCTypeByObjectMame(String name)

+BOKeyField getBOKeyField(int index)
+BOKeyField getBOKeyField(String name)
+lterator getiterator

+BOType getBOTypeByOhjectType(String ohjectType)
&

de.arasoft.sap.bapi.objectfactory.BOMethods

+BOMethod getBOMethod{int index)

de.arasoft sap.hapi.objectfactory. BOCollecon

.1 |+BOMathod getBOMethod(String name)

+hoolean exists{String name)
+0bject getitern{int index)
+Chject getitem{String name)
+lterator getiterator

+int getSized)

& +BOParameters getBOMandatoryParametersd

de.arasoft.sap.hapi.objectfactory.BOParameters

|- —— *BOFarameters getBOExportParameters(
+BOParameters getBOlmponParametersd

il Al

de.arasoft.sap.hapi.objectfactory.BOTreeNodes

+BOParameters getBOOptionalParameters(
+BOParameter getBOParameter(int index)
+BOParameter getBOP arameter(String name)
+BOParameters getBOScalarParameters
+BOParameters getBOStructureParametersg
+BOParameters getBOTahleParameters(

+RfmParameters getRfmParameters(
4

de.arasoft.sap.bapi.objectfactory. BOExceptions

+B0TreeMode getBOTreeModedint index)

+BCException getBOExceptioniint index)
+BOException getBOException(String name)

Being able to review a graphical representation
of the various entities, their properties, and the
relationship between the entities, should facilitate the
understanding of the wealth of metadata contained in
the BOR. Therefore, I have generated UML diagrams
depicting the relevant metadata. In order to avoid the
effort required to enter all the information manually,
I have used the reengineering capabilities of the
Together Control Center product by TogetherSoft
(www.togethersoft.com) to create the diagrams
based on some Java classes that I have written.’

7 That is why you see the package name
“de.arasoft.sap.bapi.objectfactory” before each class name.

This model only deals with object types that have
BAPIs and ignores everything in the BOR that is only
relevant for Workflow.

Have Collections Everywhere

We already know that the BOR contains multiple
object types, each potentially with several BAPIs.

A BAPI has one or more parameters. Expressed
differently, we are dealing with collections a lot.

The BOR has a collection of object types, an object
type a collection of BAPIs, a BAPI a collection of
parameters. Hence it makes sense to have a common
class that deals with the base functionality of a

6 www.SAPpro.com

©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 2

The BOR Tree and the BOR Object Types

BOCallection
de.arasoft.sap.bapi.objectfactory.BOTreeNodes

+BOTreeMNode getBOTreeModedint index)

Children

de.arasoft.sap.hapi.ohjectfactory.BOTreeNode

+BOTreeModes childrend
+hoolean getallows Children()
+BOType getBOType()
+BOTreeMode getChildAtint index
+int getChildCountd

+5tring getDescription()

+int getindex(BOTreeMode treeMode)
+5tring getMame()

+BOTreeMode getParent)
+hoolean isBOType()

+hoolean isLeaf()

de.arasoft.sap.bapi.objectfactory.BOTypes

+hoolean existsByOhjecthlame(Sting name)
+hoolean existsByObjectType(String objectType)
+BCOType getBOTypelnt index)

+B0Type getBOTypeByOhjectName(Sting name)
+BOType getBOTypeByObjectType(Siring objectType)

BOCollection
de.arasoft.sap.hapi.objectfactory.BOKeyFields

+BOkeyField getBOKeyField{int index)
+BOKeyField getBOKeyFieldiString name)
+lterator getlteratord)

de.arasoft.sap.bapi.objectfactory.BOType

+BlOKeyFields getBOKeyFields()

+BOMethods getBOMethods ()
+5tring getDelegationObjectType(

Parent

+5tring getDescription()
+5trina[getDocumentationd
+int getindex)

+5tring getOhbjecthame
+5tring get0hjectTypel
+5tring getParentObjectTypel)
+5tring getReleaseChanged(
+3tring getReleaseCreated()
+5tring getReleaseObsoletel)
+5tring getReleaseReleased)
+boalean isDelegated()
+hoolean isObsoleted
+boolean isReleased)

de.arasoft.sap.bapi.objectfactory.BOKeyfield

+5tring getConversionExit()
+3tring getDataTypeABAP()
+5tring getDataTypeDDO
+3tring getDescription(
+5tring[getDocumentationd)
+Field getField()

+5tring getFieldMamed
+int getindexd

+int getinternalLength
+int getLength()

+5tring getMame(

+int getOutputlengthd)

+Structure getStructured)
+5tring getStructureNamed)
+honlean isMixedCaseSupported()

collection for BOR metadata. In Figure 1, you see
the BOCollection class, which is used as the superclass
of BOTreeNodes, BOTypes, BOKeyFields, BOMethods,
BOParameters, and BOExceptions. BOCollection offers the
basic behavior required by any collection in the BOR,
the ability to:

* Check for the existence of an item (exists())
* Find out how many items there are (getSize())
* Access items by their name or index (getltem(...))

* Get an iterator (sometimes also called an
enumerator) that allows access to each item in
succession without specifying an explicit index

Note that BOCollection does not define any method
to remove an item because I wanted to represent the

static view of the BOR relevant for writing BAPI
client applications. Of course, the SAP system offers
the ability to add object types, BAPIs, etc.

The BOR Tree

The object types in the BOR are organized according
to the SAP application hierarchy, i.e., they are part of
atree. Classes BOTreeNodes and BOTreeNode in the
object model (see Figure 2) describe the relevant
relationships. Each branch (or folder) in the tree is
represented by BOTreeNodes, a collection of zero or
more BOTreeNode objects. A tree node is either an
object type (a leaf) or another branch with zero or
more child nodes. As for any tree, this one also has a
root (the top level of the hierarchy). Any node in the
tree has a parent, with the exception of the root.

No portion of this publication may be reproduced without written consent.

SAP Professional Journal January/February 2001

The SAP application hierarchy is not cast in
stone. Each new release usually brings about some
(minor) changes. Other than making it a little harder
to find an object type that was moved, this has no
adverse consequences since the position of an object
type in the application hierarchy has no implications
for the user (or even the developer) of BAPIs. Since
not everybody is familiar with the way in which SAP
structures its applications, it is also possible to access
all object types directly. This is represented by the
BOTypes class.

The BOR Object Type

Normally, any item in a BOR collection has one name
identifying it and a description. This is not all for a
BOR object type, though. It has an internal name
(getObjectType(), e.g., “BUS0002") and an external,
official name (getObjectName(), e.g.,"“CompanyCode”).
Both these names must be unique in order for the
BAPIs to work.

All BOR metadata entities allow the developer to
store documentation. This is true not only for object
types (getDocumentation()), but also for key fields,
BAPIs, parameters, etc.

An object type can be marked as a Business
Object Type. This is not reflected in our object
model since it has no consequences whatsoever for
BAPI programming. SAP’s definition of what makes
something a Business Object Type is quite different
from what one would intuitively assume. For most
people a Business Object Type is one that is related to
a business application. In SAP, an object type is a
Business Object Type only if a data model exists for
it. While having a data model to look at may be an
added value in your study of an object type, it
is totally unrelated to the question of whether the
object type has any BAPIs that we want to call in an
application. For our purposes, we can totally ignore
this property.

Inheritance

The BOR allows you to subclass an existing object

type. This is necessary if you want to modify or
enhance an object type. Making changes directly to
an object type that was delivered by SAP is not a
good idea because of the extra effort that would be
required during an upgrade. The new object type
inherits all metadata of the superclass, including its
key fields and methods. You can now add new
BAPISs or extend existing ones.

Each object type can have a superclass
(getParentObjectType()), but does not need to have one.
You can also create new object types that do not
inherit from anything.

Delegation

In object-oriented languages, the developer decides
which object type to instantiate in his program. This
leads to a problem with customer extensions, though.
Since we should not modify an SAP object type, the
question arises of how to ensure that everybody uses
our new enhanced/modified object type. This is
important because otherwise we would have to rely
on the good will of the programmer who uses an
object type to actually use the new subclassed one.
Imagine that you have modified a BAPI of your
subclassed object type in a way that is important

for your company. The developer of the client
application could now use the new object type with
the modified BAPI, or the old one with the old
behavior. While choice is often a good thing, here
it is definitely bad. We need a mechanism that
guarantees that our new object type is used, no
matter what.

SAP has introduced delegation to solve this
issue. In a superclass you can specify which of its
subclasses it should be delegated to. Any call to the
superclass’s methods will now result in a call of the
appropriate method of the subclass.

Release Information

An object type was created first in a certain release of
SAP (getReleaseCreated()). The release in which the
last change was made (getReleaseChanged()) and when

8 www.SAPpro.com

©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 3 Obsolete Object Types in 4.6B
BUS1008 Creditor Vendor 4.6A
BUS1007 Debtor Customer 4.6A
BUS1057 InvestmentProgram Investment program 4.6A

Be careful if you invoke BAPIs through a
middleware that uses generated proxy
classes. Both SAP DCOM Connector and the
SAP Java Connector (and probably most third
party generators, as well) generate the name
of the underlying RFM that implements the
BAPI into their proxies. If you have modified
a BAPI in your subclass, the underlying
function module has a different name than
the original SAP RFM. At generation time,
the middleware generator tool should check
whether the object type is delegated and

use the names of the RFMs defined for the
subclass for any BAPI that was modified.
SAP’s tools actually do this, but when you
use any third party middleware you should
double-check with your vendor.

What happens, though, when the proxies
were generated before we defined the
delegation? If a third party sold us an
application using proxy-based middleware
with pre-generated proxies? In spite of our
delegation, the standard SAP BAPIs will be
invoked instead of our modified versions.

If you are using delegation in your SAP
system and proxy-based middleware in your
own software or a third party application, you
need to make sure that the proxy generation
takes place after the definition of the
delegation! In the case of a third party
product, that will require you to have access
to the generator in your company, which

is not a problem if standard SAP middleware
is used.

it was officially released for customer use
(getReleaseReleased()) are also available. Only
rarely does a whole object type become obsolete.
This is usually due to a major change in the
application object model. Obsoleteness is not a
Boolean attribute, instead the BOR specifies the
release in which the object type became obsolete
(getReleaseObsolete()). If you start to build a new
application it is a good idea to stay away from
obsolete object types. Figure 3 contains a list of
all object types in 4.6B that have BAPIs and are
obsolete. (See below for a discussion of the
obsoleteness of individual BAPIs.)

Key Fields

The SAP object types are an object-oriented
representation of an application using a relational
database. The persistent data of an object type is
stored in one or more tables in the database. Each
table has one or more (primary) key fields uniquely
identifying each record. There is always one base
table that contains the basic data for an entity. Data
for customers (object type Customer), for example, is
stored in multiple tables, the base table is KNA1. It
uses one key field (the customer number) to identify
a particular customer. In order for the BAPIs (and
Workflow methods) to identify an instance of an
object type (retrieve a particular record in its base
table) SAP defines key fields for each object type
(getKeyFields()). Most SAP object types have one key
field, some need multiple key fields (because the base
table has multiple fields in the primary key), some
object types of a more technical nature (helper object
types like Helpvalues) have none.

No portion of this publication may be reproduced without written consent. 9

SAP Professional Journal

January/February 2001

Figure 4

The BAPIs of an Object Type

de.arasoft.sap.bapi.objectfactory.BOType

+BOKeyFields getBOKeyFields(
+BOnethods getBOMethodsd
+5tring getDelegationOhjectTypead
+5tring getDescription
+5tring[getDocumentationd
+int getindexd

+5tring getObjectMame
+5tring getOhjectTyped

+5tring getParentOhjectTyped
+5tring getReleaseChanged(
+5tring getReleaseCreatedd
+5tring getRelease0bsaletad
+5tring getReleaseReleasedd
+hoalean isDelegated()
+hoalean isObsaleted
+hoalean isReleazed(

BOCollection
de.arasoft.sap.bapi.objectfactory.BOMethods

+BOMethod getBOMethodiint index)
+BOhethod getBOMethod{String name)

de.arasoft.sap.bapi.objectfactory.BOMethod

+5tring getAsynclDocTyped
+5tring getdsynchlessageTypel
+BOExceptions getBOExceptionsd

de.arasoft.sap.bapi.objectfactory.BOException

+5tring getDescription

+5tring[getDocumentationd

+int getindexd

+5tring gethessageClass)
+5tring gethessageNumberd
+5tring getMame

+5tring getReleaseCreatedd
+RfmException getRfmExceptiond

BOCollection

de.arasoft.sap.bapi.objectfactory.BOExceptions

+BOParametars getBOParametars()
+5tring getDescription

+5tring[getDocumentationd

+int getindexd

+5tring getMame

+5tring getReleaseCreatedd
+5tring getRelease0bsaleted

+Rfm getRfmd

+5tring getRfmMamed)

+hoalean isAsynchranousCallSupported(
+hoalean isClasshethod(

+BOException getBOException(int index)
+BOException getBOException(String name)

BOCollection
de.arasoft.sap.bapi.objectfactory.BOParameters

+BOParameters getBOExpontParametersd
+BOParametars getBOImponParametars()
+BOParameters getBOMandatoryParameters
+BOParameters getBOOptionalParameters(

+hoalean isFactorydethod(
+hoalean islnstancemMethad(
+hoalean isCObsaleted
+hoalean isReleazsed(
+hoalean isUsingDialog
+hoalean isUsingExceptionsg

+BOParameter getBOParameterint index)
+BOParameter getBOParameter{String name)
+BOParametars getBOScalarParametars()
+BOParameters getBOStructureParametersd)
+BOParameters getBOTableParameters(
+RfmParameters getRfmParameters(

Each key field has a name (getName()) and a
description (getDescription()). Each key field is

based on the associated field of the basic database
table for the object type. The name of the table

(getStructureName()) and the name of the field

(getFieldName()) can be used to look up additional

properties in the SAP Data Dictionary. All these
properties will be discussed later when we deal with
BAPI parameters (which are also based on dictionary

references).

name (getName()), a description (getDescription()), and
an underlying RFM (getRfmName()).

Instance and Class Methods

Some BAPIs do not require us to set the key
fields of their object type in order to work.
SalesOrder.GetList, for example, can be invoked

without us specifying the key of an existing sales
order. SAP calls methods like this instance-

Finally: The BAPIs

The relevant metadata for the BAPIs is depicted in
Figure 4. Each object type we are interested in has
one or more BAPIs (getBOMethods()). A BAPI has a

independent, but we will use the more common term
class method (isClassMethod()). Other BAPIs need the
key fields in order to select a particular record from
the database, SalesOrder.GetStatus, for example. It will
only work if we set the one key field that the
SalesOrder object type has to the key of an existing

10 www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

sales order record in the database. (We could use
SalesOrder.GetList to retrieve the keys of all sales
orders for a customer and then use each key in turn to
find out the status of this order.) BAPIs of this type
are called instance-dependent in SAP, we will use the
term instance method (islnstanceMethod()). Each BAPI
is either a class or an instance method.

Factory Methods

Some BAPIs create new instances (i.e., records in the
database). SalesOrder.CreateFromDatl, for example,
allows us to create a new sales order. Such BAPIs
are called instance-creating in SAP, we will use

the term factory method (isFactoryMethod()). Here

the key fields are set by the BAPI, the document
number of the newly created sales order for
SalesOrder.CreateFromDatl, for example. All factory
BAPIs up to 4.6B are class methods, but it would be
possible to have an instance method that is a factory
method as well. This would require us to set the key
fields of an existing instance before the BAPI call,
and then, after the call, the key fields would contain
the new values set by the BAPI.

Obsoleteness

If SAP needs to enhance an existing BAPI, they

try to do it in an upward-compatible fashion by
adding optional parameters. Sometimes a more
drastic change is required though in order to provide
additional functionality. In that case, a new BAPI is
created. The name of the new BAPI is usually the
same as the name of the old one plus a number.
SalesOrder.CreateFromDatl is the successor of
SalesOrder.CreateFromData (there was no more room
for the “a” in the new name, hence the “Dat1” instead
of “Datal”). The old BAPI is marked obsolete
(getReleaseObsolete()) for the release in which the
new BAPI is introduced. An obsolete BAPI is still
guaranteed to work in the release in which it became
obsolete and at least one subsequent functional

The key fields that are used by instance
and factory methods are not defined as
parameters of the BAPI, but they are defined
as parameters of the underlying RFM.

If you invoke an instance or factory BAPI
in an object-oriented way (with, e.g., SAP
DCOM Connector, SAP ActiveX Controls,
SAP Java Connector), the key fields are

set and retrieved separately (the details
vary slightly depending on the chosen
middleware). The middleware takes care

of mapping the key fields to the appropriate
parameters (import for instance methods,
export for factory methods) of the underlying
RFM. This mapping requires each key field-
related parameter of the RFM to have exactly
the same name as the key field in the object
type definition.

If you invoke a BAPI in a non-object-oriented
fashion, i.e., you invoke the RFM directly (in
classical ABAP or C, for example), you treat
the key fields as normal parameters of the
RFM because you do not deal with an object
type that has key fields defined.

Developers who are not yet very familiar
with object-orientation usually find the latter
approach much simpler, but as always, the
initial extra effort required to learn object-
oriented programming is rewarded manifold
by increased productivity and more
enjoyment of the software development
effort.

release. (SAP distinguishes between functional and
maintenance releases, 4.0A was functional, 4.0B
maintenance, and so on.) Since there is no more
than one functional release per year, this gives you
at least two years (more if you do not switch to

the next functional release the day it becomes
available, something that hardly anyone does)

in which your BAPI-enabled application will

run without any change.

No portion of this publication may be reproduced without written consent.

11

SAP Professional Journal

January/February 2001

Figure 5 contains a list of all obsolete BAPIs
of non-obsolete, released object types, up to 4.6B.
(In addition, all BAPIs of the object types listed in
Figure 3 are obsolete because the whole object type
is obsolete.)

In case you are confused by some BAPIs being
obsolete since 4.0C: Release 4.0C never existed,
this is just another way of saying 4.5A (the next
functional release after 4.0A).

Figure 5 Obsolete BAPIs in 4.6B
Object name BAPI name Description Obsolete
since

BapiService DataConversionExt2Int Convert data from external format 4.6A

into internal format
BapiService DataConversionInt2Ext Convert data from internal format 4.6A

into external format
ControllingDocument | GetDetall Use find details: 4.6A

Do not use this method any longer
CostCenter GetDetail Detailed Information About 4.6A

Cost Center For Key Date
CostCenter GetList List Of All Cost Centers 4.6A

According To Selection Criteria
Customer ChangeFromData Change 4.0C
Customer CheckExistence Check existence 4.6A
Customer CheckPassword Check password 4.6A
Customer CreateFromData Create 4.0C
Customer GetDetail Read 4.0C
Customer Search Find 4.0C
EmployeeAbsence Approve Unlock absence 4.6A
EmployeeAbsence Change Change absence 4.6A
EmployeeAbsence Create Create absence 4.6A
EmployeeAbsence Delete Delete absence 4.6A
EmployeeAbsence Request Create locked absence 4.6A
EmployeeBenefit GetEventList Determine the currently valid events 4.0C

of an employee

(continued on next page)
12 www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 5 (continued)

Object name

BAPI name

Description

Obsolete

since

EmployeeBenefit GetOffer Define benefits offer 4.0C
EmployeeBenefit GetOpenEnrollmentPeriod | Check if open enroliment period 4.0C
exists and period is indicated
FixedAsset CreateFromData Create asset 4.6A
[tCustBillingDoc CancelFromData Cancellreverse 4.6A
[tCustBillingDoc CreateFromData Create using external document 4.6A
[tCustBillingDoc IsCancelled Has the billing document been cancelled? 4.6A
[tCustBillingDoc Simulate Simulate using external document 4.6A
Kanban GetListForSupplier Provide Kanban data for vendors 4.0A
Material GetinternalNumber Assign new internal numbers 4.6A
MaterialPhysinv Create Create Physical Inventory Document 4.6A
Promotion GetSitePlanning Read plant planning data for a promotion 4.6A
PurchaseOrder GetList List purchase orders - only up to 4.0A 4.0A
PurchaseReqltem CreateFromData Create requirement coverage request 4.0A
PurchaseReqltem GetList Read requirement coverage request 4.0A
PurchaseReqltem SingleReleaseNoDialg Release purchase requisition 4.6A
SiteLayoutModule Getltem Material data for a layout module 4.6A
USER Create Create a user 4.6A

BAPIs with Dialog, Really?

The main raison d’étre for the whole BAPI endeavor
is to enable you (and also SAP) to invoke
functionality from outside an SAP system, using your
own or no GUI. This obviously requires the BAPIs to
not use SAPGUI dialogs. But in some integration
scenarios between multiple SAP systems it makes
sense for one SAP system to invoke a BAPI in

another system and for that BAPI to have a dialog
with the SAPGUI user. Therefore, SAP introduced
BAPIs with dialog (isUsingDialog()) in 4.6A. They will
mainly be used by SAP applications, but if you want
to use them in your own (desktop) applications, that
is possible as well, as long as the user of your
application has SAPGUI installed and does not get
too confused by it popping up in the middle of your
application.

No portion of this publication may be reproduced without written consent. 13

SAP Professional Journal

January/February 2001

Figure 6 BAPIs with Dialog in 4.6B
Object name BAPI name Description
ACCDocument Display Display
AcctngServices DocumentDisplay Accounting: Display method for follow-on
document display
BusPartnerContact CreateFromDataWithDialog Create Data Container with Dialog
BusPartnerEmployee Create Create
BusPartnerEmployee Display Display
BusPartnerEmployee Edit Edit
Customer Create Create online
Customer Delete Delete customer master data online
Customer Display Display online
Customer Edit Change online
EmployeeTrip Changelnteractive Change a trip (interactively)
EmployeeTrip Createlnteractive Create trip online (receipt entry)
[tCustBillingDoc Confirm Confirm object
[tCustBillingDoc Create Create object
[tCustBillingDoc Display Display object
[tCustBillingDoc Edit Change object
Material Delete Delete

Figure 6 contains a list of all BAPIs with dialog
for non-obsolete, released object types, up to 4.6B.

Asynchronicity

Normally, we want to call BAPIs synchronously
in order to get feedback (return code, result data)

(continued on next page)

immediately. Of course, a synchronous call will
only work if the system we want to access is up

and running. When SAP started to use BAPIs for
the communication between different SAP systems,
they also wanted a mechanism to invoke a BAPI
asynchronously, so that the calling application could
proceed even if the remote system was currently
unavailable. Luckily, they already had an

14

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 6 (continued)

Object name BAPI name Description

Material Display Display object

Material Edit Change object
PayrollAccDocument Display_Acc Display_Acc
PTManagerExtTimeSpec Display Display external data in infotype
RetailMaterial Create Create material

RetailMaterial Delete Discontinue material
RetailMaterial Display Display material

RetailMaterial Edit Change material
StandardMaterial Create Create

StandardMaterial Delete Delete

StandardMaterial Display Display object

StandardMaterial Edit Change object
TravelAccDocument Display_Acc Display_Acc

USER Display Display object

Vendor Create Create online

Vendor Delete Set deletion indicator online for vendor
Vendor Display Display online

Vendor Edit Change online

asynchronous message passing mechanism

with guaranteed delivery: ALE (Application

Link Enabling). ALE uses IDocs (Intermediate
Documents) as the containers for messages. IDocs
are instances of [Doc types, which in turn are
associated with ALE Message Types. How can
you turn a BAPI into an IDoc? SAP developed

a generator that takes a BAPI and creates:

An appropriate ALE Message Type with an
associated IDoc Type. The IDoc Type has fields
for all the data in the BAPI’s import parameters.

One function module for outbound processing
with the same parameters as the original BAPIL.
It is invoked by the client ABAP code instead

of the original BAPI that would have been called

No portion of this publication may be reproduced without written consent.

15

SAP Professional Journal January/February 2001

synchronously. The generated function module
takes the parameters and puts them into an [Doc.
This IDoc is then sent to the target system by the
ALE communication layer. This may happen
immediately or much later, depending on the
availability of the target system and the ALE
configuration.

* One function module for inbound processing that
is used in the target system to call the BAPI. The
ALE inbound processing layer calls this function
module, which takes the data from the IDoc and
invokes the original BAPI with all passed
parameters.

The BOR can tell you whether asynchronous calls
are supported for a BAPI (isAsynchronousCallSupported())
and — if they are — the names of the generated
ALE Message (getAsyncMessageType()) and IDoc
(getAsynclDocType()) types.

This whole mechanism can only be used if the
calling application does not need any data back from
the BAPI. The calling application in the source
system may have completed long before the IDoc is
processed in the target system. Since no information
is returned, the calling application does not even
know whether the resulting BAPI call was successful.
So error handling must happen in the target system,
and a workflow item is created in the target system
whenever an error occurs. Also, this mechanism only
makes sense for BAPIs that update the database.
Calling a BAPI used to retrieve information
asynchronously is nonsensical since no data is
returned to the caller.

For SAP, calling BAPIs asynchronously via
[Docs was a suitable and easy-to-use (for the ABAP
developer) way of updating applications running in
different systems. Does this apply to non-SAP
applications? Not as much:

* Ifyou want to send a message asynchronously,
you have to create the IDoc yourself because you
do not have a generated function module that

takes care of that. Learning how to do this is
not trivial.

* Normally you want some feedback in your
application (success/failure of the call, key fields
of created sales order, etc.).

In most cases, it is probably simpler to try a
synchronous call, and if that fails, save the data in
your own database, and try another synchronous
call later.

Exceptions Are an Exception

ABAP function modules can define exceptions that
are “thrown” in case of an error. One of the many
rules that BAPIs should follow is that they do not use
exceptions, and have a Return parameter instead.
Unfortunately, not everybody plays by the rules. An
exception has a name (getName()), which is the string
defined by the ABAP programmer in the RFM, a
description (getDescription()), and an associated text
message from table T100 (getMessageClass() and
getMessageNumber()).

Figure 7 contains a list of all non-obsolete BAPIs
with exceptions for released object types, up to 4.6B.

O Tip

If you are using BAPIs with exceptions in
your applications, make sure that you
understand how such an exception will be
communicated by the middleware you use
and write code to handle the exception
(again, details vary depending on the
particular middleware).

BAPI Parameters

The most important metadata for a BAPI is its

16 www.SAPpro.com

©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 7

BAPIs with Exceptions in 4.6B

Object name BAPI name Description

Attendee ChangePassword Change attendee password

Attendee CheckExistence Check existence of attendee

Attendee CheckPassword Check attendee password

Attendee GetBookList Attendee Bookings

Attendee GetCompanyBookList Bookings of group attendee

Attendee GetCompanyPrebookList Group attendee’s prebookings
Attendee GetPrebookList Attendee Prebookings

Attendee GetTypelList Internet-relevant attendee types
BusinessEvent Getlnfo Business event information
BusinessEvent GetLanguage Business event languages
BusinessEvent GetSchedule Time schedule of business event
BusinessEvent Init Default values for standard parameters
BusinessEventGroup GetEventtypelList Business event types in business event group
BusinessEventGroup GetList Read Business Event Group Hierarchy
BusinessEventtype GetEventList Dates of business event type
BusinessEventtype Getinfo Information on business event type
Location GetListAll List business event locations
PurchaseOrder Release Release purchase orders
PurchaseOrder ResetRelease Cancel release of purchase orders
PurchaseReqltem Release Release purchase requisition
PurchaseReqltem ResetRelease Cancel release of purchase requisitions

No portion of this publication may be reproduced without written consent.

17

SAP Professional Journal January/February 2001

Figure 8

The Parameters of a BAPI

BOCollection
de.arasoft.sap.bapi.objectfactory.BOParameters

+BOParameters getBOExportParametars(
+BOParameters getBOImportParametars
+BOParameters getBOMandataryParametersd)
+BOParameters getBOOptionalParametersd
+BOParameter getBOParameteriint indez)
+BOParameter getBOParameter(String name)
+BOParameters getBOScalarParametars(
+BOParameters getBOStructureParameters(
+BOParameters getBOTableParameters
+RfmParameters getRfmParameters(

o +5tring gethamed)

de.arasoft.sap.bapi.objectfactory.BOParameter

+5tring getDescriptiond
+5tring[] getDocumentationd
+int getindexd

+int getinternallLengthd

+5tring getReleaseCreated)
+RfmParameter getRfmParameter()
+5tring getRfmParameterMamed
+3tring getScalarCheckTablel
+5tring getScalarConversionExitd
+5tring getScalarDataTypeABAP()
+5tring getScalarDataTypeDD{

+int getScalarDecimals) de.arasoft.sap.bapi.objectfactory.Field
+5tring getScalarDefaultDefinition(
+Field getScalarFiald

+5tring getScalarFieldNamed

+int getScalarLengthd

+int getScalarQutputlength

+5tring getCheckTahle)
+5tring getConversionExitd
+5tring getDataElementMamed)
+5tring getDataTypeABARPD
+5tring getDataTypeDD(

de.arasoft.sap.bapi.objectfactory.Structure

+5tring getBaseTahled
+5tring getDeliveryClass
+5tring getDescriptiond
+Field getField{int index)
+Field getField{String name)
+Fields getFields{

+int getlenathd

+5tring getMamed

+5tring gefTableClass)
+5tring getTexTablel
+hoolean isBufferingAllowedd
+hoolean isDatabaseTabled

+Structure getStructured

+5tring getStructureMamed

+hoolean isExpontd

+hoolean islmpontd

+hoolean isMandatoryd

+hoolean isOptianal(

+hoolean isScalard

+hoolean isScalarFixedValuesListDefined(
+hoolean isScalarHelpvaluesSupported
+hboolean isScalarMixedCaseSupported)
+hoolean isStructurad

+hoolean isTahled

+int getDecimals{

+5tring getDescriptiond

+5tring getDomainMamed
+FieldTexts getFieldTexts()

+int getindexd

+int getinternalLenathd

+int getLengthd

+5tring getMamed

+int getOffzetd

+int getoutputlenathd

+5tring getParameterldd

+5tring getReferenceField(
+5tring getReferenceTahlad
+hoolean isFixedValuesListDefined(y
de.arasoft.sap.bapi.objectfactory.Fields +hoolean isHelpvaluesSupported)

+hoolean iskeyField

+hoolean exists(String name)

+baoolean isMixedCaseSupported)
+hoolean isSearchHelpSupparted
+hoolean isSignedMumber(

+hoolean iswritingChangeDocumentsd

+Field getField(int index) o=
+Field getField{String name)
+com.sun.java.util.collections terator getlteratord
+int getSized

parameters (cf. Figure 8). Parameters can be Thirdly, parameters can be scalar (isScalar())
categorized in different ways. or structure (isStructure()) or table (isTable())
parameters.
Firstly, there are import (islmport()) and export
(isExport()) parameters. Import parameters are passed A scalar parameter is based on a field in a
to, export parameters returned from the BAPI. A dictionary structure or table (getStructureName()

parameter can be both import and export.

and getScalarFieldName()). An optional scalar
import parameter can have a default value

Secondly, parameters can be mandatory (getScalarDefaultDefinition()).
(isMandatory()) or optional (isOptional()). All parameters

that are only import are optional.

A structure parameter is based on a complete

18

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 9

A Dictionary Field

de.arasoft.sap.bapi.objectfactory.Field

+5tring getCheckTahle()
+5tring getConversionExit])
+5tring getDataElamentMamead

de.arasoft.sap.bapi.objectfactony.FieldTexts

+5tring getColumnHeading
+5tring getDescription
+5tring getlabellongf)

+String aetDataTypeABAPD
+5tring getDataTypeDD(
+int getDecimals(

+5String aetDescription
+5tring getDomainMamed
+FieldTexts getFialdTexts
+int getlndexd

+int getinternalLength(
+int getLength(

+5tring getMamed

+int getOffsetd

+int getOutputlengthd
+5tring getParameterld
+5tring getReferenceFieldd

+5tring getLabelMedium
+5tring getLabelShortd
+5tring gefTexd)

de.arasoft.sap.bapi.objectfactory. BOKeyField

+5tring getConversionExitd
+8tring getDataTypeABAP(
+5tring aetDataTypeDDO)
+5tring getDescription)
+5tring[getCocumentationd
+Fiald getField)

+5tring getFieldMamed

+5tring getReferenceTable)

+haoolean isFixedvalueslistDefined(
+hoolean isHelpvaluesSupported()
+hoolean iskeyFieldd

+haoolean isMixedCaseSupported)
+hoolean isSearchHelpSupported)
+hoolean isSignedMumberd

+baolean iswritingChangeDacumentsd

+int getindex)

+int getinternallength

+int getlengthd

+5tring gethamed

+int getCutputlenath(

+5tructure getStructured

+5tring getStructureMame
+hoolean isMixedCaseSupparted)

structure or table in the dictionary (getStructureName()).
The structure consists of one or more fields.

A table parameter is based on a complete
structure or table in the dictionary (getStructureName()).
The table consists of zero or more rows, each with the
fields defined in the dictionary structure. On the level
of the RFM, table parameters are always import and
export (they are passed by reference in RFC). On
the BOR level, a table parameter can be defined as
import, or export, or both. This allows the developer
of the BAPI to tell us whether we might want to put
data into a table parameter before the BAPI call or
whether the table is (also) used to return data to
the client program. The attribute is not always
maintained correctly in SAP, though. Some table

parameters are defined as import and export, although
the BAPIs they are used in never look at any data
submitted by us, and just use the parameter to return
data to us. The documentation usually gives us an
indication that this is the case. CompanyCode.GetList,
for example, has a table parameter called
CompanyCodeList, marked as import and export,

that in reality is only export.

Dictionary Fields

Dictionary fields (cf. Figure 9) are behind the
following entities:

* Key fields

No portion of this publication may be reproduced without written consent. 19

SAP Professional Journal January/February 2001

* Scalar parameters
* Fields in a structure parameter
* Fields in a row of a table parameter

The SAP Data Dictionary contains a plethora of
information about each field. Each field has a name
(getName()). The field name in the dictionary is not
related to the name of a key field or scalar parameter
based on the dictionary field. The key field for the
Customer object type is called “CustomerNo”. It is
based on the field “KUNNR” in dictionary table
“KNAT1”. Fields in structure or table parameters have
only their own name, though.

Each field has an ABAP (getDataTypeABAP()) and
a dictionary (getDataTypeDD()) data type. Three
different length values are defined:

* The internal length (getinternalLength()) is the
number of bytes used in memory.

* The length (getLength()) is the number of
positions required on a GUI to display the
largest possible content of a field without
extra formatting.

* The output length (getOutputLength()) is the
number of positions required on a GUI to
display the largest possible content of a field
with extra formatting.

Let me give you an example: A packed (or as
some say, Binary-Coded Decimal) number with an
internal length of 6 bytes, would have a length of 11
positions and an output length of 16. Internally, each
byte of the packed number contains two digits (with
the exception of the last half-byte that represents
the sign).

The largest number of digits supported is 6
times 2 minus 1 equals 11. A packed number can
have decimals and a minus sign. If we assume

that we use all digits and that our number has
one decimal (getDecimals()) and is negative, a
nicely formatted version might look like
“-1,234,567,890.1”.

Each field has a maximum of five texts
(getFieldTexts()) associated with it:

* A description (getDescription())

* A column heading for reports
(getColumnHeading())

* A long screen label (getLabelLong())
* A medium-sized screen label (getLabelMedium())

* A short screen label (getLabelShort())

Not all of these texts are necessarily maintained
in all languages.

Fields can be based on a check table
(getCheckTable()) or a fixed values list
(isFixedValuesListDefined()). Under certain conditions
(see my article “Enabling Point-and-Click Data Entry
Assistance for Your BAPI Applications” in the
September/October 2000 issue of this publication)
additional data can be retrieved for a field using the
Helpvalues.GetList BAPI (isHelpvaluesSupported()). In
SAPGUI, all fields based on check tables or fixed
values lists (and in some other special cases) offer
search help (isSearchHelpSupported()).

Some fields use conversion exists
(getConversionExit()). In that case, there is an internal
value (used in the database) and an external value
(used on a GUI). The conversion BAPIs of the
BapiService object type can be used to convert
between the two formats.

Some character fields store only uppercase
characters, some allow mixed case
(isMixedCaseSupported()).

20 www.SAPpro.com

©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 10

A Function Module with Parameters and Exceptions

de.arasoft.sap.bapi.objectfactory.RfmParameter

+5tring getDescription)

+int getinternalLenath)

+5String getMamed

+5tring getScalarCheckTahled

+5tring getScalarConversionExit)

+5tring getScalarDataTypeABAPD

+5tring getScalarDataTypeDD{

+int getScalarDecimals)

+5tring getScalarDefaultDefinition
+5tring getScalarDefaultYalue)

+Field getScalarField()

+5tring petScalarFieldMamed

+int getScalarLengthd

+int getScalarOutputlength

+5tructure getStructured

+5tring getStructureMamed

+hoolean isBasedOnDictionaryReference)
+hoolean isExportd

+hoolean islmport)

+haolean isMandatary

+haolean isOptional

+haolean isScalard

+haolean isScalarFixedvaluesListDefined(
+hoolean isScalarHelpraluesSupportedd
+hoolean isScalarMixedCaseSupportedd)
+hoolean isStructured

+hoolean isTabled

de.arasoft.sap.bapi.objectfactory.Rfm

+5iring getDescription)

+5tring getGroupMamen)

+5tring gethame

+RfmException getRfmException{String name)
+RfmExceptions getRfmExceptionsd
+RimParameter getRfmParameter{String name)
+RfmParameters getRfmParameters(

BOCollection
de.arasoft.sap.bapi.objectfactory.RfmExceptions

+RimException getRfmException(int index)
+RfmException getRfmException{String name)

BOCallection
de.arasoft.sap.bapi.objectfactory.RfmParameters

+RimParameters getExporParameters()
+RfmParameters getlmporParameters(
+RfmParameters gethlandatoryParameters()
+RfrmParameters getOptionalParameters(
+RfmParameter getRfmParameter(int inde:x)
+RfmParameter getRfmParameter{String name)
+RfmParameters getScalarParameters)
+RfmParameters getStructureParameters(
+RfmParameters getTableParameters()

i

de.arasoft.sap.bapi.objectfactory.RfmException

+5tring getDescriptiond
+5tring getMamed

The Function Module’s View

We have discussed all important metadata from the
BOR’s viewpoint now. Figure 10 shows an RFM

available, it should be no big deal to actually look it

(one that implements a BAPI or one that is not part of

an object type) with its parameters and exceptions.
The similarity between an RFM’s metadata and a
BAPI’s is big. That should be no surprise because
BAPIs are implemented by RFMs. By now you
should have no problem interpreting the information

in Figure 10.

SWO1)

up in the SAP system. The following transaction
codes are commonly used to research BAPIs:

* The BAPI Explorer (transaction code BAPI)

* The Business Object Builder (transaction code

* The Business Object Browser (transaction code

SWO02)
Exploring BAPIs in SAPGUI * The Function Builder (transaction code SE37)
Now that we understand what information is * The Dictionary (transaction code SE11)

No portion of this publication may be reproduced without written consent.

21

SAP Professional Journal January/February 2001

Figure 11 The BAPI Explorer

Edit

Explorer Goto

Enviranment Help

B a H @@ SRR 50O EE

BAPI Expiorer
Gl B

ligl Detail k [l Cocumentation k dFe Tools k 4= Project

Ohject
Ohject name Customer
Hierarchical h Alphahetical |
Short description Customer
[Cross-Application Components |E|
[Accounting - General [~]
¢ Financial Accounting 1 ; - . . .
b @ CompanyCode Ohject type KA1 IB Caution: Business objecttype i
7 &} Businessarea
[& Company Develogment class EBD Component EI-AR-AR
[& Functionalfres
b & Dentor Person responsible SAP
[& Creditor
[& GeneralLedgerfccount
B General Ledger Accaunting Created an 27.01.19498 Release 408
[Accounts Payable |
5 Accounts Receivahle Status
[» @& DebtorCreditAccount
Release status Releaszed
[& ARACcount
b i@ Custorner
[» AssetAccounting Lastchanged by CURA Changed an 16.03.1999
[» Special Purpose Ledger

[Travel Management

[» Treasury | |

[Contralling [=]

P Investment Management IE‘

d 7
The BAPI Explorer (see Figure 11) is the natural Figure 11 shows the hierarchical view of the

starting point. All other transactions can be reached BOR, with the Customer object type selected.
from it, usually with a double-click or the pressing Alternatively, you can switch to an alphabetic view.
of a button. SAPGUI has amazing navigational
capabilities. By default, the BAPI Explorer shows only

22 www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

released BAPIs. If you want to see the unreleased Figure 12 Selecting all BAPIs
ones as well, you can click on the filter icon (the one
that looks like a funnel) and select the “All” radio BAPIS to display

button (see Figure 12).

Look at the “1” icon in Figure 11. If you rest
your cursor over the text to the right of it, the
complete text is shown in a tooltip: “Caution:
Business object type is being delegated”. This is 0nly released
SAP English for “Caution: Business object type has it

. Al
been delegated”. Later you will see how we can find
out which object type it has been delegated to.

BAR|s to display:

In order to understand the icons used in the tree v X
portion of the BAPI Explorer, you can display the
legend pop-up (see Figure 13).

Figure 13 The BAPI Explorer Legend

BAP| Explarer

Symbols used

(o) Busziness object type

S Interface type

g key field

R Instance-dependent method

G Instance-independent method

[k Impart parameters

[k Export parameters

(> Import/export parameters
Cd

No portion of this publication may be reproduced without written consent. 23

SAP Professional Journal January/February 2001

Figure 14

One BAPI of an Object Type

Edit

System

Explorer Goto Environment Help

BdH QG SHE ST OO0 EE @

BAPI Expiorer
Sl ¥

li=l Detail k [l Documentation k dFe Tools k A% Project |

Method (BAPI)
hethad

Hierarchical k Alphabetical |

7 @ Customer [=]
i Customerio

@& ChangeFromOata

& ChangeFromDatal

& ChanogePasswaord

@& CheckExistence

@& CheckPassward

@& CheckPassword

[Create
[B? Return

[B? Customer

7 iml CreateFromData |

I F F 5y 55 5

Business ohject
Short description
Mewy in Release
Function madule
ALE message type

[® Instance-indepndt

CreateFrombata

Customer

Create

404

BLPT CUSTOMER CREATEFROMDATA

Does not exist

[Dialog

[Es¢ Pinddress

[E: PiCopyreference Status

[k Pecustomer
[B? Return D
[CreateFromDatal
@& CreatePassward

Release status
Caution: Method is obsolete as of Release 40C |

Released

@& Delete

& DeletePassword [+

I[«][»]

YV 5V & &

o |

After opening up an object type in the tree (or the
alphabetical list), you can see the key fields, BAPIs,
and parameters. In Figure 14, I have selected the
CreateFromData BAPI. It is a class method (instance-
independent), and also a factory method, which
the BAPI Explorer in its 4.6B incarnation does not

tell you, but the name of the BAPI is a dead
giveaway, and of course we could always read the
documentation to double-check. As you can see, this
BAPI is obsolete, and we should use its successor
(CreateFromDatal) in new projects. No asynchronous
calls are possible for this BAPI, because no ALE

24 www.SAPpro.com

©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 15 One Parameter of a BAPI

Explorer Edit Goto Enwironment System Help

& Bl H @@ SRE D000 AE a
BAPI Expliorer

Gl ¥ [E

lol Detail | [Documentation | gfs Tools | & Project

Parameters
Mame FiCopyreference
Hierarchical k Alphabetical |
Short description Reference data
() Custorner []
&* CustomerNo Mew in Release 404
[& ChangeFromData
b ChangeFramDatal
Q . Cictionary reference BAPTEMATQZ
[& ChangePassword
[& CheckExistence
b @ CheckPassword Other attributes Impart [Export
[& CheckPasswardl [Takle
2 [Create Mandatary
[B> Return
[E customer
= [ig CreateFromData

[E¢ Piaddress

[Br Pecustomer

[k Return

[CreateFromData
& CreatePazsword

& Delete

& DeletePassword [+]

[N L[]

Y Y & &

message type has been generated yet. Double-
clicking on the “Does not exist” text would take
you to a wizard that allows you to generate one.

If you select one of the parameters, you get to
a screen like the one shown in Figure 15. This

particular parameter is a mandatory import

structure parameter. You can tell that it is not a
table parameter since the appropriate check box is
unchecked. And you can deduce that it is a structure
parameter, because the “Dictionary reference” field
contains no hyphen, which means that the parameter

No portion of this publication may be reproduced without written consent. 25

SAP Professional Journal January/February 2001

Figure 16 The Dictionary Structure for a Parameter
‘ Structure Edit Goto Utilities Estras Environment System Help
& B dH @ CHE DL BEE A
Dictionary: Display Structure
4a| = | e e | gil| eS| o |2 | Hierarchy display | Append structures...
Structure BAPIKNAETOZ Active
Short text Structure for BAPIs far Business Object Custamer
Attributes Components k Entry helpfcheck k Currencyfquantity fields |
M= S|EIFEa) A srehhein || Buitkintpe | 174
| Component Component type DTyp |Length |Dec.p...|Short text
5L ESORG YEORG CHAR 4 fiSales organization E|
DISTR CHAM YTHEG CHAR 2 ODistribution channel Izl
DIVISION SPART CHAR 2 ODivision
REF CUSTHMR REFKLNNE CHAR 18 OReference customer
(]
i (=]
[l L[]
4 7
is based on the complete structure. Scalar parameters Clicking on the other available tabs allows
show up in the format “STRUCTURENAME- you to look at more information for all the fields.
FIELDNAME”. Figure 17 shows the Search Help/Helpvalues-related
information of each field.
Double-clicking on the text in the “Dictionary
reference” field takes you directly to the SAP Data To navigate to the RFM implementing a BAPI
Dictionary (Figure 16). Here you see all fields in you select the “Tools” tab in the BAPI Explorer
this structure with their data types, lengths, and (cf. Figure 18). Click on the “Display” button to
descriptions. go to the Function Builder.
26

www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 17

The Search Help View of a Structure

Structure Edit Goto Liilities Environment

SeEe DHE DDODIER @ m

Dictionary: Display Structure
G| | ‘ 2 9 0 | HAIERIESIE I EE] ‘ Hierarchy display | Append structures...
Structure BAPTKNATOZ Active
Shorttext Structure for BAPIS for Business Object Custormer
Aftributes k Components - Entry help/check k Currencyiguantity flelds |
El Search help 114
_Cnmpnnem Campaonent type D Typ|Origin of the input help Srch help D |Fareign .. |Check table Daomain
[EALESORG WKORG CHAR|Input help implemented with check table H T¥KO = TWKD VKORG E
DISTR CHAM MTWEG CHAR|Input help implemented with check table CSH TYTW (] THTW NTWEG @
DIVISION SPART GHAR|Input help implemented with check table GSH TEPA = TSPA SPART
REF CUSTHR REFKUNNR CHAR|Input help implemented with check tahle DEBL (] KnAT KLNNE
=)
|| [~]
] I[«J[+]
d7

Figure 18

Selecting the Function Builder

et Edit

Envitontment

30 H @ S HE SN as EE A

Goto

BAPFI Explorer
8 ¥

&) Detail k |Hl Documentation Jfz Tools k 4+ Project |

Tools selection

& Business Object Builder

1Ll

Hierarchical | Alphabetical | i
A ABAP Dictionary

[create BAPI List

7 {2 Customer

&} CustomeriNo

& ChangeFromData

Q ChangeFromDatai

@& ChangePassword

&%, CheckExistence

R, CheckPagsword ‘fou can edit ar check the BAPI function module in

@& CheckPassword the Function Builder

[Create ||
B> Return
B> Custorner

~ @ CreateFromData
[Es¢ Pirddress
[FiCopyreference [#p Display | & Change|@ Einzeltest
B Pecustomer
B> Return

[@®] CreateFromData1

&, CreatePassword

& Delete

Q DeletePassword

[0 I3 £ Y ol A+

| 4 7

14][¥]

IS Y SE TS

Function module BAPI_CUSTOMER_CREATEFROMD ..

L v v v
D]

4Dl

No portion of this publication may be reproduced without written consent.

27

SAP Professional Journal January/February 2001

Figure 19 The RFM Behind Customer.CreateFromData

Edit

Function module Goto Utilities Environment System Help

V] ald HIC@@ CHE Sthaxn BEE
Function Builder: Display BAPI_CUSTOMER_CREATEFROMDATA
&= | %195 EEH RIS | i@ | Pattern | | | Insert || Replace || Delete | |5
I BAPI_CUSTOMER_CREATEFROMDATA Active %
Aftributes Import | Export | Changing | Tables | Exceptions | Sourcecode | m
EERIEE
FParameter name Type...|Reference type Default value Opt..|Pa.. |Short text
FPI_ADDRESS LIKE EBAPIKNA1G1 = Customer address data E| B
PI_COPYREFEREMCE LIKE [BAPIKNA1DZ = Reference data E
O =
o= |
O = =]
(R Ad
4 2
Figure 20 Selecting the Business Object Builder

Edit Goto Enwironment

Bld H @@ DHE Do oOD FBAEea

BAPI Explorer
LIRS

f o liol Detail | [HI Documentation s Tools || g+ Praject |

Toals selection .~
W @ Business Ohject Builder

Hierarchical | Alphahetical | Funetion Builder
[k ~BAF Dictionary

o [create BaAPI List

I[e][*]

=

Accounting - General
¢ Financial Accounting
& CompanyCode
&) BusinesshArea
& Comparny

&) FunctionalAres
& Dehtor fou can change the definition ofthe business object type
@ Creditor and its methods in the Business Object Builder

& GeneralLedgerAccount
General Ledger Accounting
Accounts Payable
Accounts Receivahle

b @ DebtorCreditaceount |62{> Display || & Change |Ea Business Object Repository
[» @ ARACCount
|> = 1
b Ass
[» Special Furpose Ledger
[» Travel Management
Treasury

Cantrolling

Investment Management

Enterprise Contrallin
P g I K1/

Business ohjecttype Customer

(R R i vl v v i v v v

L v v
D]

)

28 www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 21

Selecting the Business Object Builder

Edit

Ohject type

Goto

Utilities

Environment

Setlings

term Help

& A H @@ DHEB aDan BEE A
Dispiay Object Type KNAT
%7 & g0 @ G Frograrn | Pararneters | Exceptions | BO data model
Business ohject KNA1 v Customer sl
-
G Interfaces
—HE Key fields
—E Attributes
—&] Methods
Customer . Create v @ Create online
Customer Edit v @ Change online
Customer . ExistenceCheck v @ Check existence
Customer . GetSaleshreas v @ Read customer sales areas
Customer . ChangePassword v @ Change passward
Custaomer . CheckPasswaord {Q Check password
Customer . InitPassword v @ Initialize password
Customer . CheckExistence i@ Check existence
Custaomer . CreatePassword v @ Create password
Customer . DeletePassword v @ Delete password
Customer . GetPassword v @ Read password
Customer . CreateFromData i Create
Customer . ChangeFromData g Change
Customer GetDetail i@ Read
Customer . Search g Find
Customer . GetlList v @ List with addresses
Customer. GetContactlist v @ List of customer contact persons
Customer . CreateFromDatal v @ Create
Customer . ChangeFrombatal v @ Change
Customer . GetInternalNumber v @ Provides internal customer numbers
Customer . GetDetaili v @ Read
Custaomer. Searchi v @ Find
Customer . GetHierarchyChildren v @ Sub-nodes of 5D customer hierarchy
Customer . GetHierarchyRoot v @ Read root node from S0 customer hierarchy
Customer . GetHierarchyRootlist « @ Read all root nodes from S0 customer hierarchy ™
[*]
[l [|[[¥]
| d 7

Here you can look at all relevant metadata
from the RFM’s perspective, including import
(cf. Figure 19), export, and tables parameters, as
well as exceptions and the ABAP source code.
Normally, it will suffice to study a BAPI from

the BOR perspective.

If you need more information about an object
type than is available directly in the BAPI Explorer,
you can always switch to the BOR tools. In

Figure 20, you can press the “Display” or “Change”

button to navigate to the selected object type

displayed in the Business Object Browser or Builder,

respectively. The “Business Object Repository”
button takes you to the Business Object Repository
Browser (transaction code SWO3), which shows the
same types of information as the Business Object
Browser, but has more options selected in its filter
by default. (IDocs are included in the hierarchy,

for example.)

Figure 21 shows the Customer object type
(internal name KNAT1) in the Business Object
Browser with not only BAPI- but also Workflow-

No portion of this publication may be reproduced without written consent.

29

SAP Professional Journal January/February 2001

related information. Interfaces, attributes, and events
(scroll down in Figure 21) are of no relevance for
BAPI programming.

Again, we can find out the meaning of the icons
in the legend (cf. Figure 22).

Double-clicking on the object type (“KNA1”) in
Figure 21 displays the basic data for the object type
(cf. Figure 23). If you select the “Customizing” tab,
you can see that this object type is delegated to
“ZZXNA1”, which only exists (unless you create one
yourself) in IDES systems (used for training and
demos by SAP and customers).

In order to see the subclassing required for
delegation, you can start another session and use
transaction code SWO2 to bring up the Business
Object Browser Hierarchy. Drilling down to the

Figure 23

Figure 22 The Business Object
Browser Legend

Color legend

Ohject type class
Component type
Inherited components
Local implementation recommended
Local components
= Relation attribute
@ LPI Method
B modeled
v released

i@ obsolete

The Basic Data of KNA1

tpe Edit Golo Utiities

Bla H @@ BEE a0 O0 EE e

% au & & Prograrm

Object Type KNAT: Dispiay Basic Data

Ohj type! KHA1 Customer
Object name Customer
Program RFWFENA1
Objtype status generated Saved released
General | Transpartdata | Changedata | Defaults = Customizing
Responsible WAECHTERH
Delegate
Delegation type ZZKNA1 Customer ++
[GUlspecific

30 www.SAPpro.com

©2001 Wellesley Information Services. All rights reserved.

Everything a BAPI Programmer Needs to Know About the Business Object Repository

Figure 24 The Customer Object Type in the BOR Hierarchy

Edit

thing
laH @@ CHB anan BHE A
Business Ohject Browser: Display

it B B B Sk nodes Bk Subtres

oo Uitilities

m Help

[—ta Accounts Payable
&= Accounts Receivable

CreditControlfrea
= Basic Functions

@ Credit control area

BRAccount v
CreditRepresentGroup «
CreditRepresentative
—E& Customer v

@3 Customer account

Credit management credit rep.group
Credit mnomnt credit representative
&3 Customer

= passes to

I[+][»]

Cugtomer O Cugtomer ext.: Make-to-order; new customers
Customer? v Customer ext.: Make-to-order; new customers
[contains
sestorcresiaceannt. « @| Figure 25 The Delegation Object Type for Customer Hierarchy
B Asset Accounting
—m®8 Special Purpose Ledger (ype Edit Goto Ut Settings T
= Travel fianagenent e CHE nnon HE A
Treasury - -
| @ Contralling Dispilay Object Type ZZKNAT
- éﬂ{iﬁ;ffzz 2?:255???% % & ga @& &= Pragram Parameters Exceptions
G Real Estate Management Tal
—08 Logistics - General Ohject type ZZKNA1 v Customer ext.: Make-to-order; new customers —
88 Sales and Distribution =
—GE Materials Management 8 Interfaces
—E Key fields
8 Attributes
LDl =] Methods
[Fitter ctrl+F7
Customer? . Create v @ Create online
Customer? Edit v @ Change online
Customer? . ExistenceCheck v @ Check existence
Customer? GetSalesfreas v @ Read customer sales areas
Customer?.ChangePassword v @ Change password
CustomerZ.CheckPassword @ Check password
Customer? . InitPassword v @ Initialize password
Customerz2.CheckExistence 4@ Check existence
Customer? CreatePassword v @ Create password
Customer? DeletePassword v @ Delete password
Customer? . GetPassword v @ Read password
Customer?. CreateFronData g Create
Customer2 . ChangeFrombata B Change
Customer2. GetDetail g Read
Customer2. Search g Find
Customer2 . Getlist v @ List with addresses
Customer? GetContactlist v @ List of customer contact persons
Customer? CreateFromDatal v @ Create
Customerz. ChangeFromDatal v @ Change
Customer? GetInternalNumber v @ Provides internal customer numbers
Customer2 . GetDetaill v @ Read
Customerz.Searchi v @ Find
Customer? GetHierarchyChildren « @ Sub-nodes of S0 customer hierarchy
Customer? . GetHierarchyRoot v @ Read root node from SO customer hierarchy
Customer? GetHierarchyRootlList « @ Read all root nodes from S0 customer hierarchy .
(][>][I I[<][¥]
| d4./

Customer object type shows the screen depicted in
Figure 24. Two subclasses are defined for Customer.
The second one (Customer?) is the one that Customer is

delegated to. Double-click it to bring up
Figure 25, which confirms that its object type is
“ZZKNA1”, the delegation type shown in Figure 23.

No portion of this publication may be reproduced without written consent.

31

SAP Professional Journal January/February 2001

Conclusion

By now you should have a firm understanding of the
BAPI metadata available in the BOR and how to
access it inside the SAP system. This will help you in
using BAPIs in your own applications as well as in
implementing your own BAPIs.

Thomas G. Schuessler is the founder of ARAsoft
(www.arasoft.de), a company offering products,
consulting, custom development, and training to

a worldwide base of customers. The company
specializes in integration between SAP and non-
SAP components and applications. ARAsoft offers
various products for BAPI-enabled programs on
the Windows and Java platforms. These products
facilitate the development of desktop and Internet
applications that communicate with R/3. Thomas
is the author of SAP’s CA925 “Developing BAPI-
enabled Web applications with Visual Basic”

and CA926 “Developing BAPI-enabled Web
applications with Java” classes, which he teaches
in Germany and in English-speaking countries.
His book on the same subject, “The BAPI Bible
for SAP Programmers: The Comprehensive Guide
to Integrating SAP Products with Web, Desktop,
and Mobile Applications Using Java, Visual
Basic, and ABAP”, will be published soon by the
SAP Professional Journal. Thomas is a regularly
featured speaker at SAP TechEd and SAPPHIRE
conferences. Prior to founding ARAsoft in 1993,
he worked with SAP AG and SAP America for
seven years. Thomas can be contacted at
thomas.schuessler@sap.com or at tgs@arasoft.de.

32 www.SAPpro.com ©2001 Wellesley Information Services. All rights reserved.

