
51No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

Building Your Own BAPIs —
A Step-by-Step Guide

Ralph Melone

Ralph Melone joined SAP

in March 1998 in the

Curriculum Development

Area, where he is responsible

for the integration technol-

ogy curriculum for BAPI,

RFC, Internet, and object-

oriented technologies. Prior

to joining SAP, Ralph was a

Microsoft Certified Instructor,

Engineer, and Solution

Developer. He had his own

consulting firm, and has held

management and IT positions

with AT&T and ADP.

(complete bio appears on page 72)

1 Prerequisites for this article are a basic understanding of the ABAP function modules, and some

familiarity with the R/3 Function Builder interface of the ABAP Workbench. No Visual Basic,

Java, or C++ knowledge is needed.

If you are surprised to learn that BAPIs are precisely defined interfaces

that provide access to R/3 processes and data, that they are methods of

SAP Business Object types, and that these object types and their BAPIs

are described and stored in the Business Object Repository, read no

further — this article is not for you. If, on the other hand, you have

some experience with crafting applications that utilize BAPIs and want

to know how to actually create and implement a BAPI in R/3 in the

event that an appropriate BAPI does not exist, stick around. I’ll show

you how.1

Before I delve into the details of how to build a BAPI, let’s examine

when you might want to do so.

Let’s say that you have been charged with developing a Web-

enabled application that provides sales people with a list and details

about customer inquiries. Your company IT guidelines require the use

of COM, Visual Basic, and, of course, R/3 to develop this application,

and further specify that anyone with authorization needs to be able to

access the customer inquiry information via Internet Explorer. It’s clear

to you that the application needs to employ the CustomerInquiry object

type. After a quick search through the Business Object Repository

(BOR), you discover that for this object type, the necessary BAPIs —

GetList and GetDetail — do not exist. You now set out to build these

BAPIs.

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.52

Figure 1 A View of the BOR Using the Business Object Repository Display Transaction

2 The BOR was introduced in R/3 Release 3.0, at the same time as SAP

Business Objects and SAP Business Workflow. The introduction of

BAPIs followed in Release 3.1.

Assuming you have searched through the BOR

and identified the suitable object types for your appli-

cation, and made certain that the BAPIs needed by

your application don’t exist, how do you build the

BAPIs you want? What do you do? How do you

get started?

After offering a brief overview of the infra-

structure in which BAPIs operate, I will show you,

step by step, how to build a GetList BAPI for the

FlightCustomer Business Object type. In so doing, I

hope to demonstrate to you that building a BAPI is a

simple and straightforward process. Please note that

all instructions and screen shots used in this article

are from R/3 Release 4.6B.

The BAPI Infrastructure

All SAP Business Object types and their methods are

defined and described in the Business Object Reposi-

tory (BOR),2 the object-oriented repository in the R/3

system. Figure 1 shows the BOR hierarchy, which

maps to the application hierarchy of R/3. Our focus

will be on the FlightCustomer Business Object type.

With regard to SAP Business Objects and BAPIs,

the BOR provides the following essential functions:

• It provides an object-oriented view of the R/3

system data and processes. R/3 application func-

tions are accessed using methods (BAPIs) of SAP

Business Object types. R/3’s functionality is

simply exposed as a set of Business Objects.

The implementation details of these objects are

hidden. Only the methods defined as BAPIs

can be accessed from the outside.

• It arranges the SAP Business Object types

53No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

according to the component hierarchy of the SAP

R/3 system. It also provides a search mechanism

within this hierarchy for finding and returning

Business Object types.

• It defines and describes SAP Business Object

types, their key fields, and their methods,

including the BAPIs.3

• It manages the SAP Business Object types and

their associated BAPIs in release upgrades.

• It ensures interface stability.

Once you build your own BAPI, it is added to the

BOR. (The specifics about how that gets done will be

presented later.) Once your BAPI is added to the

BOR, just like the other BAPIs with which you are

familiar, it can be used by a variety of applications

and components across your R/3 landscape. (This

concept is illustrated in Figure 2.) All that is exposed

is the interface specified by you, the BAPI developer.

Our Model Scenario

To build a GetList BAPI for the FlightCustomer4

object that returns a list of FlightCustomers, we do

the following:

1. Identify all the requirements for the retrieval

of R/3 data for our application. In general,

an SAP Business Object type, whether it be

the CustomerInquiry, SalesOrder, or the

FlightCustomer object, has a key. This key,

which is defined in the BOR, can consist of

R/3
BOR
and

BAPIs

R/3 Components

Business
Component

Business
Component

Business
Component

Internet/intranet

Visual Basic /Java/...
R/3 Satellite Systems/
Distributed Scenarios
(ALE)

Customers’ and Partners’
Own Developments

SAP Business Workflow

Figure 2 Once Built, Your BAPI Can Be Used by a Variety of Applications and Components

3 SAP Business Object types can have methods that are not

BAPIs. These methods are used for SAP Business

Workflow.

4 The FlightCustomer object type was built specifically for SAP

training systems. This object type is available in R/3 systems

that have an IDES client installed.

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.54

several key fields. It is the contents of the

key fields that uniquely identify an individual

instance of an SAP Business Object type.

2. Define a structure that our BAPI can use to store

the returned key fields. In our case, we will be

defining a structure to store two parameters:

Customer ID and Customer Name.

3. Use the Function Builder to write our ABAP

code.

4. Use the BOR/BAPI Wizard to create the BAPI

and attach it to the FlightCustomer object.

5. Document our BAPI.

✔ Tip — Let the Standardized BAPIs

Be Your Guide

Don’t attempt to build a BAPI without first con-

sulting the “BAPI Programming Guide,” which

can be found on the Open BAPI Network Web

site at http://www.sap.com/bapi. This reference

provides SAP-prescribed guidelines for BAPI

structure and behavior. This is an invaluable

reference! The very first things you should famil-

iarize yourself with are the standardized BAPIs.

Three of the most popular standardized BAPIs are:

• GetList — With this standardized BAPI type

you can select a range of object key values,

such as company codes or material numbers.

• GetDetail — This standardized BAPI type

uses a key field (e.g., company code or

material number) to retrieve details about

a specific occurrence of a Business Object.

The data is returned to the calling program.

• GetStatus — This standardized BAPI type

can be used to query the status of an SAP

Business Object, for example, the processing

status of a sales order.

Step 1:

Identify the BAPI’s Interface

Parameters

Clearly, different business scenarios will require

different SAP Business Object types and key

fields. In our simple scenario, we’re using just

the FlightCustomer object type. Your real-world

applications will most likely require multiple object

types.5

Once you identify which object types are required

by your application, you must identify the relevant

import and export parameters for the BAPI. You do

this on an object-by-object basis. Why? Well, if the

BAPI is going to export parameters, as it is in our

simple example, that data has to have a place to go.

We will be establishing a structure for this purpose in

the next step.

And if key fields are passed to the BAPI by a

calling program, the key fields must be set as import

parameters in the function module of the BAPI. In

this way, a specific instance of an SAP Business

Object can be identified. If we were to take our

model scenario a step further and create a GetDetail

BAPI for our FlightCustomer object type, we would

set the CustomerNumber as an import parameter

into the GetDetail BAPI’s function module, because

the CustomerNumber is the key field for the

FlightCustomer. For BAPIs that create or generate

instances of SAP Business Object types (e.g., Create

or CreateFromData), the key fields of the Business

Object type must be set as export parameters in the

BAPI function module.

In our model scenario, where we are simply

building the GetList BAPI for the FlightCustomer

object, a key field is not required as an import param-

eter. This BAPI merely returns two key fields:

Customer ID and Customer Name.

5 If, for example, you were building a BAPI for retrieving personal

information about employees, you would expect to use the

EmployeeAbstract, EmployeePrivAddress, and EmployeePersonalData

objects.

55No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

Step 2:

Define a Structure for

the BAPI

Now it’s time to define a structure that the BAPI can

use to store the two returned key fields (Customer ID

and Customer Name). This structure parameter con-

tains the values that will be transferred in the ABAP

function module. How we name parameters is very

important, because these names become the names

associated with the method (BAPI) parameters in the

Business Object Repository. They are the names

exposed to the application programmers outside

of R/3.

So, be sure to keep the following guidelines in

mind when naming the parameters:

• Names must be in English.

• Avoid abbreviations.

• Names can be up to 30 characters long

(20 characters for R/3 Release 4.0 and

earlier).

• Parameters that are unique to a BAPI

(e.g., those associated with only a Purchase

Requisition BAPI) should have names

that make sense to developers who work

outside the R/3 system. Parameters that are

common across all BAPIs (e.g., “standardized

parameters” such as “Address” and “Return”)

should follow the prescribed nomenclature,

a practice that is the key to consistent error

processing.

The structure we will create is called

ZBAPICUST. It is based upon the SCUSTOM table,

the customer table used in the sample flight reserva-

tion training application we are using in our model

scenario. (SCUSTOM contains all the relevant fields

about a customer, such as client, customer number,

customer name, and so on.) We will name our fields

“ID” and “NAME.”

✔ Tip

It is important to keep the names of the BAPI

parameters that are in the BOR and the names of

the parameters in the associated function module

identical. As a BAPI developer, you need to

empathize with the user — e.g., the Visual

Basic or Java programmer. Users of the BAPIs

are very dependent upon the names and

documentation of the parameters to ensure

a successful BAPI call.

The data formats for the ID field will be

based upon the data element S_CUSTOMER,

which is a data type of NUMC length 8. The

NAME field will be based upon the data element

S_CUSTNAME, which is a data type of CHAR

length 25.

✔ Tip

Define data formats in a “neutral” way.

Standard codes (e.g., ISO codes) should be used

wherever possible. For fields that contain date

information, use ABAP data type D, which

uses the YYYYMMDD format, where YYYY

is the year, MM is the two-digit month, and

DD is the two-digit day.

After we have specified the names, types, and

contents of the required parameters, we need to iden-

tify and define the required data objects in the Data

Dictionary.

Here are the steps you need to take:

1. Go to the Data Dictionary and define a

structure for the BAPI. Follow the menu

path Tools → ABAP Workbench →
Development and then select the “ABAP

Dictionary” or use transaction SE11 to

display the Data Dictionary.

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.56

2. In the Database table field, enter “ZBAPICUST”,

as shown in Figure 3. Click on the Create

button to display the detail structure screen.

3. In the Short text field, enter “Table for

FlightCustomer GetList Bapi” (see Figure 4).

4. Go to the Attributes tab and enter “A” (for

Application Table) in the Delivery class field.

5. Go to the Fields tab and complete the entries for

the two fields in the structure as follows:

- For the field name, enter “ID” under Fields.

- Check the Key field checkbox. This

indicates that the field is a key field for

the table.

- Check the Init. checkbox. This indicates that

Not Null is forced for this field.

- For Field type, enter “S_CUSTOMER”.

- Press the Enter key, and the remaining entries

for ID will be filled in from the

S_CUSTOMER definition automatically.6

- For the next field name, enter “NAME”.

- Check the Key field checkbox.

- Check the Init. checkbox.

- For Field type, enter “S_CUSTNAME”.

- Press the Enter key, and the remaining entries

for Name will be filled in from the

S_CUSTNAME definition automatically.

6. Save and activate the structure.

Step 3:

Write the ABAP Code

Let’s recap what we have done up to this point. We

have identified a scenario for our BAPI, which is to

Figure 3 The Initial Screen of the Data Dictionary

6 S_CUSTOMER is a data element that already exists. It represents the

customer number for the sample flight reservation training application.

57No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

provide a list of FlightCustomers that will display

both the ID number and the name of the customer.

We then identified ZBAPICUST as the structure

we will need to accomplish this. There are two

fields within ZBAPICUST — the ID field and

the NAME field. We used the Data Dictionary to

define this new structure (which will be used in

one of our BAPI parameters) and its fields.

We are now ready to write our ABAP

code. We will use the Function Builder

to write our function module, which will

become our GetList BAPI for the FlightCustomer

object type. We will also use the Function

Builder to define global data that can be accessed

by our function module and any other function

modules that we might create later on to

support this BAPI scenario — e.g., a GetDetail

BAPI for the FlightCustomer object. We

will also create a form routine to handle

messaging.

To write the function module, we perform the

following steps:

1. Go to the Function Builder and create a function

group. Use the menu path Tools → ABAP Work-

bench → Development → Function Builder.

2. Go to the “Goto” menu and select Function

Groups → Create Group.

3. Name the function group “ZSBAPI” (see

Figure 5 for the Create Function Group dialog).

Figure 4 Building the Structure “ZBAPICUST” for the FlightCustomer GetList BAPI

Figure 5 Building the Function Group “ZSBAPI”

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.58

Figure 6 Building the Remote Function Module for the FlightCustomer GetList BAPI

4. Create a function module and name it

“Z_BAPI_GET_CUSTOMER_LIST”. This

is shown in Figure 6.

5. Once you have selected the Create button, the

Create Function Module dialog will display.

This is shown in Figure 7. Assign the function

module to the function group “ZSBAPI” and

provide a short text description of the function

module.

6. Define the interface for your function

module. On the Attributes tab (shown in

Figure 8):

- Enter the Short text. This text can be

anything you like. You can see that I opted

to enter “Flight Customer BAPI”.

- Under Processing type select “Remote-

enabled module”. Without this option,

the function module cannot be invoked via

RFC and cannot be used as a BAPI.

7. On the Import tab, you don’t need to make any

entries.

8. On the Export tab, enter “RETURN” for the

Parameter name and “BAPIRET2” for the

Reference type (see Figure 9). Press Enter

and the Type spec. and Short text fields are

automatically filled in for you by the system.

Figure 7 The “Create Function Module” Dialog

59No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

Figure 8 Defining the Interface for the Remote Function Module

Figure 9 Setting the Export Parameters for the Remote Function Module

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.60

Figure 10 Setting the Table Parameters for the Remote Function Module

The Type spec. field indicates the type assign-

ment for the reference type. “Return” is a stan-

dardized parameter name. We use BAPIRET2

for the structure name because it is also used as a

reference structure in many other BAPIs.

9. On the Changing tab, you do not need to make

any entries either. Please note that changing

parameter types are not supported in BAPI

development.

10. On the Tables tab, enter “SCUSTLIST” for the

Parameter name, and enter “ZBAPICUST” for

the Reference type, as shown in Figure 10. As

before, the Type spec. and Short text field are

filled in automatically — in this case a “LIKE”

type assignment is filled in by the system. The

parameter name SCUSTLIST is unique to our

GetList BAPI for the FlightCustomer object.

11. Do not make any entries on the Exceptions tab.

Exceptions are not recommended for BAPIs.

12. In the Function Builder, you will find a Function

module documentation button. Use this

button to enter documentation for the function

module. A documentation window provides a

text editor with several predefined sections for

you to fill in (see Figure 11). The Functionality

section can provide documentation about

what the function module does, as shown in

Figure 11, as well as the data elements that are

used, and information about the parameters

that may help the user of the function module.

The Example section may contain illustrative

examples of using the function module, and

the Hints section can be valuable for document-

ing any tricky and subtle functionality that

might help the developer. The Further Sources

61No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

Figure 11 The Documentation Window for the Remote Function Module

7 A pool is a group of functions that have related tasks or functionality.

of Inf section is provided for references to other

documentation in the system relevant to the func-

tion module. (More on documentation toward the

end of the article.)

The Global Data

We now need to add global data for the function

group — specifically declarations for the SCUSTOM

table, data for a messages structure, and data for the

internal table. The internal table will contain the

application data that the GetList BAPI returns to the

client program. We are creating global data so that

additional BAPIs we create in this function pool7 will

be able to share it. We are only creating one BAPI in

our particular example, but you could take this a bit

further on your own and create a GetDetail BAPI. In

this case, the GetDetail BAPI would be able to access

the global data we have created here, and you would

not need to repeat these declarations.

We are creating global data so that
additional BAPIs we create in this
function pool will be able to share it.
We are only creating one BAPI in our
particular example, but if you created
an additional BAPI, it would be able to
access the global data we have created
here, and you would not need to repeat
these declarations.

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.62

To add the global data, we follow these steps:

1. While in the ABAP Editor for the function mod-

ule, go to the menu path GoTo → Global Data to

access the global data area from the Source code

tab, as shown in Figure 12.

2. Code the function module. The “SELECT”

statement is shown in Figure 13. This statement

moves all FlightCustomer data from the database

to the ID and NAME fields of the structure we

created in the Export tab of the Function Builder

interface.

In the function module code (Figure 13) you

see the use of a messaging routine named

SET_RETURN_MESSAGE. In this routine, we

see some strange code: “IF 1 = 2”. Why include

a line of code that will never evaluate to “True”?

The code in the message routine is designed to

leverage the “Where Used” list utility. Allow me

to explain…. This line of code, which obviously

will not evaluate to “True,” eliminates the possi-

bility of ever executing the ABAP “MESSAGE”

statement, which is crucial since BAPIs are not

supposed to directly communicate with the end

user. On the other hand, the same table (T100)

that is used to store online user messages also

contains the BAPI error message that will be

returned to the client in the Return parameter.

Using the MESSAGE statement in an ABAP

program, even one that is never executed, auto-

matically creates a reference so that you can find

out where a particular message is being used. In

short, to benefit from this Where Used capability

in a BAPI, we include a MESSAGE statement,

but never execute it. Comparing 1 to 2 for equal-

ity does the trick!

3. We will need to create a form routine that handles

messages for the function module. To access the

form routine (subroutine) area in the ABAP Edi-

tor, double-click on the name of the form routine

being called in the function module code — i.e.,

SET_RETURN_MESSAGE in Figure 13. The

SET_RETURN_MESSAGE form routine is

shown in Figure 14. This is a standard routine

Figure 12 Global Data ABAP Program Code in the ABAP Editor

63No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

Figure 13 The ABAP Function Module Program Code for the FlightCustomer GetList BAPI

Figure 14 The ABAP Form Routine Program Code for the FlightCustomer GetList BAPI

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.64

Figure 15 Business Object Builder Initial Screen

for BAPIs that handles the messaging structure

for the BAPIRET2 structure that we defined

earlier. This structure is one of several structures

used in BAPIs to inform the external program —

the program that calls the BAPI — on whether or

not the BAPI was successful. Please note that we

are creating this form routine for illustrative

purposes only. There are standard functions we

can use to accomplish this messaging functionality.

Step 4:

Create the API Method Using

the BAPI Wizard

In order to expose the remote function module as an

API method (a.k.a. a BAPI), we need to use the BAPI

Wizard. This tool will generate some additional code

that is required so that our function module is a valid

method of a Business Object type in the BOR. This

code allows our BAPI to be called as a Workflow

method within R/3 in addition to being able to be

invoked by an outside client program. The steps to

use the BAPI Wizard are outlined below:

1. Go to the Business Object Builder — you can use

the main menu path:

Tools → ABAP Workbench →
Development → Business Object Builder

2. In the Business Object Builder initial screen

(shown in Figure 15), enter “SCUSTOMER” as

the object type. Then select the Change com-

mand button. This will launch the Change Object

Type screen (Figure 16). In our example, we

use SCUSTOMER as the external object type

identification, and FlightCustomer as the “offi-

cial” object type name. SAP Objects can be

identified by both an object type and an object

name. SCUSTOMER is the object type for

the object named FlightCustomer. The

SCUSTOMER object type serves as a unique

internal R/3 object identifier. The object name

serves as an alias that developers can use to iden-

tify an object through some meaningful name.

Figure 17 shows the General tab of the object

type SCUSTOMER. Note that the object name is

FlightCustomer.

3. Once we have displayed the Change Object Type

screen by selecting the Change command button,

follow the menu path:

 Utilities → API methods → Add method

This will display the Create API Method Proper-

ties dialog, where you enter the function module

name you created in the previous steps — e.g.,

65No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

Figure 16 Change Object Type Screen

Figure 17 General Tab of Object Type “SCUSTOMER”

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.66

Figure 20 The “Create API Method Features”
 Dialog After the Name Change

Z_BAPI_GET_CUSTOMER_LIST. You can see

this in Figure 18. Select the checkmark button

(✔) at the lower left of the dialog. This will

invoke the BAPI Wizard and begin to walk you

through the process of generating the BAPI in the

Business Object Repository. You can see the first

step of the BAPI Wizard, which takes us to the

Create API Method Features dialog, in Figure 19.

4. Enter the method name, using the name

“GetList”, as shown in Figure 20. In the text

boxes, enter an appropriate name and description

for documentation purposes. In the Characteris-

tics section, make sure the Synchronous and

Instance-independent checkboxes are checked.

An instance-independent BAPI means that R/3

does not expect a key field to be passed to it for

instantiating a specific object instance.

5. Select the middle button (!) at the lower left of

the dialog. This will take us to the next step in

the BOR/BAPI Wizard, the Create Parameters

dialog, shown in Figure 21.

In the Create Parameters dialog, a list of

parameters and default names is displayed,

which we need to edit as required. We

will modify the parameter names as

follows:

- Each new word in the parameter name must

start with a capital letter — for example,

“Scustlist”.

- The end result of the BAPI Wizard is a

program that is shown in Figure 22.

The program starts with the statement

“BEGIN_METHOD GETLIST”. The BAPI

Wizard generated this code for us. The

program associates our GetList method with

our object.

- Specify whether the individual table

parameters are used for data import or

data export. Our Return parameter

should be export-only. Table parameters

such as Scustlist can serve as both an

Import and Export parameter. Table

parameters are marked with a check in

column “MLine” (multiple lines).

Select the next button (!) at the lower

left of the dialog to bring us to the next

Figure 19 The “Create API Method Features”
 Dialog Before the Name Change

Figure 18 The “Create API Method
 Properties” Dialog

67No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

Figure 21 The BAPI Wizard’s “Create Parameters” Dialog

Figure 22 Program “SAPBC_BOR_SCUSTOMER”

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.68

Figure 24 The FlightCustomer Object (SCUSTOMER) with the GetList BAPI Now Displayed

step in the BOR/BAPI wizard, the Extend

Program step, shown in Figure 23.

6. The Extend Program dialog warns us that the

BAPI is not yet implemented. Select “Yes” to

generate the template that will add the BAPI as a

method of the SCUSTOMER object type. This

step adds “wrapper object-oriented” code to our

function module, converting it to a method of an

SAP Business Object.

7. The next step is to generate the BAPI entry.

The BAPI Wizard has returned us to the

Change Object Type screen. Select the

plus (+) sign next to Methods to expand and

display all the methods of SCUSTOMER.

Our BAPI should now be listed with a green

circle icon (green light). Select the BAPI

once, and then select the Generate icon in the

toolbar (fourth icon from the left). This is

illustrated in Figure 24.

8. Test the BAPI by selecting your BAPI and then

selecting the test tool in the toolbar (the sixth icon

from the left), or you can press the F8 key. You

will reach the screen shown in Figure 25. The

results of the test are shown in Figure 26.

Figure 23 The BAPI Wizard’s Extend
Program Step

69No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

Figure 25 Testing the FlightCustomer GetList BAPI

Figure 26 FlightCustomer GetList BAPI Test Results

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.70

Step 5:

Document Your BAPI

The documentation on the BAPI and the interface

parameters are created in the Function Builder for

the function module that the BAPI is based upon.

Among the components that must be documented

are:

• The function module

• The parameters of the function module

• The fields of the parameters

• The key fields

The purpose of this documentation is to describe

exactly what the BAPI can do and how external

programs can use the BAPI. For example, for a

GetDetail type BAPI, we would document what key

fields must be passed as import parameters from an

external program. We would also specify the exact

detail that our BAPI sends back (exports) to the call-

ing application, and if there are special authorizations

required to use the BAPI. Other special areas should

also be documented, for example, if the BAPI uses a

COMMIT WORK or if there are any important limi-

tations (functionality that the BAPI does not support).

The documentation on Return parameters must

describe all possible return values and messages.

The documentation on the BAPI and the
interface parameters are created in the
Function Builder for the function module
that the BAPI is based upon. Among the
components that must be documented
are the function module, the parameters
of the function module, the fields of
the parameters, and the key fields.
The purpose of this documentation is
to describe exactly what the BAPI can
do and how external programs can
use the BAPI.

Helpful Hints

In order to maintain consistent access to R/3 data

and processes, you must be sure to follow certain

guidelines:

✔ BAPIs must not contain certain commands.

These commands are CALL TRANSACTION,

SUBMIT REPORT, and SUBMIT REPORT AND

RETURN. The call of a BAPI must not trigger

further Logical Units of Work (LUWs) that are

independent of the BAPI. This is the reason

these ABAP keywords are not permitted.

✔ BAPIs must not invoke a COMMIT WORK.

In Release 4.0, those BAPIs that cause database

changes must not use the COMMIT WORK

statement. Instead, a special BAPI —

TransactionCommit — of the BAPIService object

type is used. This BAPI executes the COMMIT

WORK. The program flow in this case would be

the following:

Call BAPI to change data →
Call BAPI Service.TransactionCommit

✔ BAPI structures must not use Include

structures. Enhancements to the Include structures

generally lead to incompatible changes to the BAPI

structure.

✔ There should be no functional dependencies

between two BAPIs. A BAPI call must not be

adversely impacted by an earlier call to a BAPI. A

follow-up call must not assume an earlier call. For

this reason, avoid using Set or Get parameters in the

BAPI or global memory. A repeated call of one

BAPI must produce the same result.

✔ BAPIs must perform their own authorization

checks.

✔ BAPIs must not be dialog dependent. While

Release 4.6 does away with this restriction, it’s still a

good idea not to allow your BAPIs to have dialogs.

71No portion of this publication may be reproduced without written consent.

Building Your Own BAPIs — A Step-by-Step Guide

They must not produce any screen output, including

any function modules that the BAPI might call.

An external program — for example, a Java applet —

calling a BAPI would halt execution if the BAPI

called a dialog box. The Java program would stop

execution and wait for some response back from R/3,

which in turn is waiting for some action to be taken

on the dialog.

✔ BAPIs must not cause the program to

abort or terminate. Relevant messages must be

communicated through the Return parameter.

In this way, a standard for external developers is

established. They can always check the Return

parameters of BAPIs to determine success or failure

of the BAPI.

✔ For BAPIs that read large amounts of

data — e.g., GetList BAPIs — a method of

providing selection criteria or a limit on the

amount of returned data should be specified,

and a message should be sent to the calling

program. This message can notify the caller that

a large amount of data is being sent. Some mecha-

nism is needed for handling massive amounts of

data. If a Java or Visual Basic program calls a

BAPI that returns a large amount of data, all the

data will be sent from the application server to

the client.

✔ Make the key of a modified record very

specific. This will minimize the locking of the record

by different BAPIs. If a key is less specific (partial),

then the chances of locking by multiple BAPIs are

increased.

✔ Define the processes and situations in which

the BAPI will be used. Before you begin building

your BAPI, consider issues such as how the process

will flow.

In our scenario, using the FlightCustomer object, for

example, a request for a list of FlightCustomers is

processed. Once the calling program receives the list,

the flow could involve a request for details about a

specific customer. By applying this concept and

creating a complete model scenario, you can ensure

that the BAPIs involved in your application will

complement each other.

✔ A BAPI should provide its functionality

exclusively to one SAP Business Object. It’s

a good idea to design your BAPIs to function

independently of one another. This is one of the

fundamental principles of good object-oriented

program design. In this way, a GetDetail BAPI

is not dependent upon the invocation of a

GetList BAPI.

In our simple example, a GetDetail BAPI

could be used independently of retrieving a list

of FlightCustomers, since the user may already

know which FlightCustomer they want

details on.

A BAPI should provide its functionality
exclusively to one SAP Business Object.
It’s a good idea to design your BAPIs
to function independently of one
another. This is one of the fundamental
principles of good object-oriented
program design. In this way, a
GetDetail BAPI is not dependent upon
the invocation of a GetList BAPI. In our
simple example, a GetDetail BAPI could
be used independently of retrieving
a list of FlightCustomers.

Conclusion

BAPIs are one of the primary technologies for inter-

facing with R/3. Creating BAPIs requires a great

deal of ABAP knowledge, a good working knowl-

edge of the application area, and some knowledge of

what external developers need to interface with R/3.

At the heart of the last requirement is documentation.

Poor documentation can make the best and most

efficient BAPI unusable. Good and thorough

SAP Professional Journal May/June 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.72

documentation can make the BAPI a very valuable

component.

Documenting the BAPI should be considered a

major step in the BAPI development cycle. It is the

responsibility of the BAPI developer to provide docu-

mentation on all aspects of the BAPI. Application

developers access the technical metadata and docu-

mentation of BAPIs from the Business Object Reposi-

tory. Readers of BAPI documentation are often not

R/3 experts or business application experts.

The best way to learn to create BAPIs and

become good at it is, of course, to develop some.

Try it, and hopefully you will find creating your

own BAPIs challenging and rewarding.

Ralph Melone received a B.A. in Liberal Arts and

an M.S. in Information Sciences from Villanova

University. He also holds an M.B.A. in Marketing

from Temple University. He joined SAP in March

1998 in the Curriculum Development Area.

There, he is responsible for the integration

technology curriculum, which includes BAPI,

RFC, Internet, and object-oriented technologies.

Ralph is also a Microsoft Certified Instructor,

Engineer, and Solution Developer. Prior to

joining SAP, he also had his own consulting firm,

and has held management and IT positions with

AT&T and ADP. Ralph can be reached at

ralph.melone@sap.com.

