Building Your Own BAPIs — A Step-by-Step Guide

Building Your Own BAPIs —
A Step-by-Step Guide

Ralph Melone

Ralph Melone joined SAP
in March 1998 in the
Curriculum Development
Area, where he is responsible
for the integration technol-
ogy curriculum for BAPI,
RFC, Internet, and object-
oriented technologies. Prior
to joining SAP, Ralph was a
Microsoft Certified Instructor,
Engineer, and Solution
Developer. He had his own
consulting firm, and has held
management and IT positions
with AT&T and ADP.

(complete bio appears on page 72)

If you are surprised to learn that BAPIs are precisely defined interfaces
that provide access to R/3 processes and data, that they are methods of
SAP Business Object types, and that these object types and their BAPIs
are described and stored in the Business Object Repository, read no
further — this article is not for you. If, on the other hand, you have
some experience with crafting applications that utilize BAPIs and want
to know how to actually create and implement a BAPI in R/3 in the
event that an appropriate BAPI does not exist, stick around. I’ll show
you how.!

Before I delve into the details of how to build a BAPI, let’s examine
when you might want to do so.

Let’s say that you have been charged with developing a Web-
enabled application that provides sales people with a list and details
about customer inquiries. Your company IT guidelines require the use
of COM, Visual Basic, and, of course, R/3 to develop this application,
and further specify that anyone with authorization needs to be able to
access the customer inquiry information via Internet Explorer. It’s clear
to you that the application needs to employ the CustomerInquiry object
type. After a quick search through the Business Object Repository
(BOR), you discover that for this object type, the necessary BAPIs —
GetList and GetDetail — do not exist. You now set out to build these
BAPIs.

! Prerequisites for this article are a basic understanding of the ABAP function modules, and some
familiarity with the R/3 Function Builder interface of the ABAP Workbench. No Visual Basic,
Java, or C++ knowledge is needed.

No portion of this publication may be reproduced without written consent. 51



SAP Professional Journal May/June 2000

Figure 1

A View of the BOR Using the Business Object Repository Display Transaction

dit Goto  Utilitie: gs em  Help

T AH e DHE ODOO BE @

Business Object Browser: Display
F H A EEZE E E G Nodes B Subtree

Application Componerts
B Cross-Application Components

———BUDOCUMENT

G BusPartnerEmployee

—CG Change

@ FlightBooking

—0a FlightConnection

0 FlightCustomer

L8 Travelfgency

8 WorklCenter

0 Document Management System
& Classification System
8 Business Framework frchitecture
8 SAP Business Partner

—08 General Application Functions
8 Iboc Interfaces for EDI

—0 Open Information Warehouse
8 Time Sheet

—@ Global Organization Customizing

Park Budget

& Change

L -t

& Work center

8 Accounting - General
@ Financial Accourting
O Treasury

8 Controlling

—ta Investment Management

Business partner employee

@ Flight booking (58P training)

@ Flight with connection data (SAF training)
Custamer (54P training)

Travel agency (S&P training)

1410]

|[«][>

ray
A

Assuming you have searched through the BOR
and identified the suitable object types for your appli-
cation, and made certain that the BAPIs needed by
your application don’t exist, how do you build the
BAPIs you want? What do you do? How do you
get started?

After offering a brief overview of the infra-
structure in which BAPIs operate, I will show you,
step by step, how to build a GetList BAPI for the
FlightCustomer Business Object type. In so doing, I
hope to demonstrate to you that building a BAPI is a
simple and straightforward process. Please note that
all instructions and screen shots used in this article
are from R/3 Release 4.6B.

The BAPI Infrastructure

All SAP Business Object types and their methods are
defined and described in the Business Object Reposi-

tory (BOR),? the object-oriented repository in the R/3
system. Figure 1 shows the BOR hierarchy, which
maps to the application hierarchy of R/3. Our focus
will be on the FlightCustomer Business Object type.

With regard to SAP Business Objects and BAPIs,
the BOR provides the following essential functions:

* It provides an object-oriented view of the R/3
system data and processes. R/3 application func-
tions are accessed using methods (BAPIs) of SAP
Business Object types. R/3’s functionality is
simply exposed as a set of Business Objects.

The implementation details of these objects are
hidden. Only the methods defined as BAPIs
can be accessed from the outside.

* It arranges the SAP Business Object types

2 The BOR was introduced in R/3 Release 3.0, at the same time as SAP
Business Objects and SAP Business Workflow. The introduction of
BAPIs followed in Release 3.1.

52 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.




Building Your Own BAPIs — A Step-by-Step Guide

Figure 2 Once Built, Your BAPI Can Be Used by a Variety of Applications and Components

SAP Business Workflow

R/3 Satellite Systems/
Distributed Scenarios
(ALE)

Visual Basic /Javal...

Customers’ and Partners’

Internet/intranet Own Developments

R/3 Components

Business
Component

Business
Component

Business
Component

according to the component hierarchy of the SAP
R/3 system. It also provides a search mechanism
within this hierarchy for finding and returning
Business Object types.

* It defines and describes SAP Business Object
types, their key fields, and their methods,
including the BAPIs.?

* It manages the SAP Business Object types and
their associated BAPIs in release upgrades.

* It ensures interface stability.

Once you build your own BAPI, it is added to the
BOR. (The specifics about how that gets done will be
presented later.) Once your BAPI is added to the
BOR, just like the other BAPIs with which you are

3 SAP Business Object types can have methods that are not
BAPIs. These methods are used for SAP Business
Workflow.

familiar, it can be used by a variety of applications
and components across your R/3 landscape. (This
concept is illustrated in Figure 2.) All that is exposed
is the interface specified by you, the BAPI developer.

Our Model Scenario

To build a GetList BAPI for the FlightCustomer*
object that returns a list of FlightCustomers, we do
the following:

1. Identify all the requirements for the retrieval
of R/3 data for our application. In general,
an SAP Business Object type, whether it be
the Customerlnquiry, SalesOrder, or the
FlightCustomer object, has a key. This key,
which is defined in the BOR, can consist of

4 The FlightCustomer object type was built specifically for SAP
training systems. This object type is available in R/3 systems
that have an IDES client installed.

No portion of this publication may be reproduced without written consent. 53



SAP Professional Journal May/June 2000

several key fields. It is the contents of the
key fields that uniquely identify an individual
instance of an SAP Business Object type.

2. Define a structure that our BAPI can use to store
the returned key fields. In our case, we will be
defining a structure to store two parameters:
Customer ID and Customer Name.

3. Use the Function Builder to write our ABAP
code.

4. Use the BOR/BAPI Wizard to create the BAPI
and attach it to the FlightCustomer object.

5. Document our BAPI.

O Tip — Let the Standardized BAPIs
Be Your Guide

Don'’t attempt to build a BAPI without first con-
sulting the “BAPI Programming Guide,” which
can be found on the Open BAPI Network Web
site at http://www.sap.com/bapi. This reference
provides SAP-prescribed guidelines for BAPI
structure and behavior. This is an invaluable
reference! The very first things you should famil-
iarize yourself with are the standardized BAPIs.
Three of the most popular standardized BAPIs are:

» GetList — With this standardized BAPI type
you can select a range of object key values,
such as company codes or material numbers.

» GetDetail — This standardized BAPI type
uses a key field (e.g., company code or
material number) to retrieve details about
a specific occurrence of a Business Object.
The data is returned to the calling program.

» GetStatus — This standardized BAPI type
can be used to query the status of an SAP
Business Object, for example, the processing
status of a sales order.

Step 1:
Identify the BAPI’s Interface
Parameters

Clearly, different business scenarios will require
different SAP Business Object types and key

fields. In our simple scenario, we’re using just

the FlightCustomer object type. Your real-world
applications will most likely require multiple object

types.’

Once you identify which object types are required
by your application, you must identify the relevant
import and export parameters for the BAPI. You do
this on an object-by-object basis. Why? Well, if the
BAPI is going to export parameters, as it is in our
simple example, that data has to have a place to go.
We will be establishing a structure for this purpose in
the next step.

And if key fields are passed to the BAPI by a
calling program, the key fields must be set as import
parameters in the function module of the BAPIL. In
this way, a specific instance of an SAP Business
Object can be identified. If we were to take our
model scenario a step further and create a GetDetail
BAPI for our FlightCustomer object type, we would
set the CustomerNumber as an import parameter
into the GetDetail BAPI’s function module, because
the CustomerNumber is the key field for the
FlightCustomer. For BAPIs that create or generate
instances of SAP Business Object types (e.g., Create
or CreateFromData), the key fields of the Business
Object type must be set as export parameters in the
BAPI function module.

In our model scenario, where we are simply
building the GetList BAPI for the FlightCustomer
object, a key field is not required as an import param-
eter. This BAPI merely returns two key fields:
Customer ID and Customer Name.

5 If, for example, you were building a BAPI for retrieving personal
information about employees, you would expect to use the
EmployeeAbstract, EmployeePrivAddress, and EmployeePersonalData
objects.

54 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.



Building Your Own BAPIs — A Step-by-Step Guide

Step 2:
Define a Structure for
the BAPI

Now it’s time to define a structure that the BAPI can
use to store the two returned key fields (Customer ID
and Customer Name). This structure parameter con-
tains the values that will be transferred in the ABAP
function module. How we name parameters is very
important, because these names become the names
associated with the method (BAPI) parameters in the
Business Object Repository. They are the names
exposed to the application programmers outside

of R/3.

So, be sure to keep the following guidelines in
mind when naming the parameters:

* Names must be in English.
* Avoid abbreviations.

* Names can be up to 30 characters long
(20 characters for R/3 Release 4.0 and
earlier).

*  Parameters that are unique to a BAPI
(e.g., those associated with only a Purchase
Requisition BAPI) should have names
that make sense to developers who work
outside the R/3 system. Parameters that are
common across all BAPIs (e.g., “standardized
parameters” such as “Address” and “Return”)
should follow the prescribed nomenclature,
a practice that is the key to consistent error
processing.

The structure we will create is called
ZBAPICUST. It is based upon the SCUSTOM table,
the customer table used in the sample flight reserva-
tion training application we are using in our model
scenario. (SCUSTOM contains all the relevant fields
about a customer, such as client, customer number,
customer name, and so on.) We will name our fields
“ID” and “NAME.”

O Tip

1t is important to keep the names of the BAPI
parameters that are in the BOR and the names of
the parameters in the associated function module
identical. As a BAPI developer, you need to
empathize with the user — e.g., the Visual

Basic or Java programmer. Users of the BAPIs
are very dependent upon the names and
documentation of the parameters to ensure

a successful BAPI call.

The data formats for the ID field will be
based upon the data element S CUSTOMER,
which is a data type of NUMC length 8. The
NAME field will be based upon the data element
S CUSTNAME, which is a data type of CHAR
length 25.

O Tip

Define data formats in a “neutral” way.
Standard codes (e.g., ISO codes) should be used
wherever possible. For fields that contain date
information, use ABAP data type D, which

uses the YYYYMMDD format, where YYYY

is the year, MM is the two-digit month, and

DD is the two-digit day.

After we have specified the names, types, and
contents of the required parameters, we need to iden-
tify and define the required data objects in the Data
Dictionary.

Here are the steps you need to take:

1. Go to the Data Dictionary and define a
structure for the BAPI. Follow the menu
path Tools -~ ABAP Workbench —
Development and then select the “ABAP
Dictionary” or use transaction SE11 to
display the Data Dictionary.

No portion of this publication may be reproduced without written consent. 55



SAP Professional Journal May/June 2000

Figure 3 The Initial Screen of the Data Dictionary

L

g|0H @@ CHE DHnun BAER @6

Dictionary: Initial Screen

[l <=3 < il i

EBAPICUST ()

&)
]
C]
)]
@
]

%

2. In the Database table field, enter “ZBAPICUST”, for ID will be filled in from the
as shown in Figure 3. Click on the Create S _CUSTOMER definition automatically.®
button to display the detail structure screen. - For the next field name, enter “NAME”.
3. In the Short text field, enter “Table for - Check the Key field checkbox.
FlightCustomer GetList Bapi” (see Figure 4). - Check the Init. checkbox.
4. Go to the Attributes tab and enter “A” (for - For Field type, enter S_CUSTNAME”.
Application Table) in the Delivery class field. - Press the Enter key, and the remaining entries
for Name will be filled in from the
5. Go to the Fields tab and complete the entries for S_CUSTNAME definition automatically.
the two fields in the structure as follows:
. 6. Save and activate the structure.
- For the field name, enter “ID” under Fields.
- Check the Key field checkbox. This Step 3:
indicates that the field is a key field for ep o:
the table. Write the ABAP Code
) I(\:Ih:(lfl( tltlle. I?lt' cgefc kb;});(. lell(lis indicates that Let’s recap what we have done up to this point. We
ot Null 1s torced Tor this field. have identified a scenario for our BAPI, which is to
- For Field type, enter “S_CUSTOMER”.
¢ S CUSTOMER is a data element that already exists. It represents the
- Press the Enter key, and the remaining entries customer number for the sample flight reservation training application.
56 www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.



Building Your Own BAPIs — A Step-by-Step Guide

Figure 4

Building the Structure “ZBAPICUST” for the FlightCustomer GetList BAPI

Table Edit Goto Lhilities Help

(] IESHEB OHDLa0 EER @B

Dicignary: Maintain Table

4=| | = | 2 9% & ‘ qul| 1|5 |52 ‘ BE Technical seftings || Indexes.. | Append structures

Transparent table ZBAPICUST Active

Short text Tahle for FlightCustormer GetlList Bapi
Atiributes ' Fields k Currencyiguant. fields |

¥ o BR[| Newows | ’E‘ i L) | || Data elementiDirect type |
Fields Key|Init. |Field type Data..|Lgth.  |Dec.p..|Checktable |Short text
1D S_CUSTOMER WUMC 8 ] Custarner number for Warkbench fraining data model BC_ Travel [+]
WAME S_CUSTHAME CHRR 25 L2} Customer name for Workbench training data model BC_Travel E‘

[]
| []
Ko (<[]

provide a list of FlightCustomers that will display
both the ID number and the name of the customer.
We then identified ZBAPICUST as the structure
we will need to accomplish this. There are two
fields within ZBAPICUST — the ID field and

the NAME field. We used the Data Dictionary to
define this new structure (which will be used in
one of our BAPI parameters) and its fields.

We are now ready to write our ABAP
code. We will use the Function Builder
to write our function module, which will
become our GetList BAPI for the FlightCustomer
object type. We will also use the Function
Builder to define global data that can be accessed
by our function module and any other function
modules that we might create later on to
support this BAPI scenario — e.g., a GetDetail
BAPI for the FlightCustomer object. We
will also create a form routine to handle
messaging.

To write the function module, we perform the

following steps:

1.

3.

Go to the Function Builder and create a function
group. Use the menu path Tools -~ ABAP Work-
bench — Development — Function Builder.

Go to the “Goto” menu and select Function
Groups — Create Group.

Name the function group “ZSBAPI” (see
Figure 5 for the Create Function Group dialog).

Figure 5 Building the Function Group “ZSBAPI”

Function group
Short text

Person respansible

o Save |

Create Function Group

Z5BAPT
Flightcustomer BAPI Function Group)

TRAINING

No portion of this publication may be reproduced without written consent.

57



SAP Professional Journal May/June 2000

Figure 6

Building the Remote Function Module for the FlightCustomer GetList BAPI

g  0H e@e LR fnos Dh @B
Function Builder: Initial Screen

s 1 @ @ | 00 B Resssin

Z_BAPI_GET_CUSTOMER_LIST

° Frocessing terminated

4. Create a function module and name it Figure 7 The “Create Function Module” Dialog
“Z BAPI GET CUSTOMER LIST”. This
is shown in Figure 6. 2_BAFI_GET_CUSTOMER_LIST
Z5BAPI
5. Once you have selected the Create button, the FlshiCustomer GetList Functon Modu'e
Create Function Module dialog will display.
This is shown in Figure 7. Assign the function
module to the function group “ZSBAPI” and
provide a short text description of the function
module. the function module cannot be invoked via
RFC and cannot be used as a BAPIL.
6. Define the interface for your function
module. On the Attributes tab (shown in 7. On the Import tab, you don’t need to make any
Figure 8): entries.
- Enter‘the Shor‘t text. This text can be 8. On the Export tab, enter “RETURN” for the
anythmg,:‘yqu like. You can see ’Ehat Topted Parameter name and “BAPIRET2” for the
to enter “Flight Customer BAPI”. Reference type (see Figure 9). Press Enter
- Under Processing type select “Remote- and the Type spec. and Short text fields are
enabled module”. Without this option, automatically filled in for you by the system.
58 www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.




Building Your Own BAPIs — A Step-by-Step Guide

Figure 8 Defining the Interface for the Remote Function Module

Function module  Edit  Gota  Utilities  Enwironment e Help

g 0 ca@ CHB D00 BEE @

Function Builder: Change Z_BAPI_GET_CUSTOMER_LIST
G| =D | w2 9 & | gu 1| @ & 5h S | ()| Pattern | Pretty Printer || Function module documentation
Function mudk Z_BAPI_GET_CUSTOMER_LIST Inactive(revised)
Aftrihutes k Import k Export k Changing k Tables k Exceptions k Source code |
Classification [2]
Function group ZE5BAPT Flight Custormer BAP] Function Group g
Application
Shart text Flight Customer BAPI
Processing tyne General data
) Mormal function module Person responsible TRAINING
Remote-enabled module Last changed by TRAINING
) Update module Changed on 17 .04 2000
@ Startimmed Development class TP
) Immediate start, no restart Prograrn name SAPLZEEAPT
() Start delayed Prograrm name LZSBAPILAT
) Collrun Original language EM
Mot released
[] Editlock [
[ Global =
(4]
(]
J Z
Figure 9 Setting the Export Parameters for the Remote Function Module

Function module  Edit  Goto  LHilities  Ernvironment em  Help

G PH CE@ CHE Do BE @0

Function Builder: Change Z_BAPI_GET_CUSTOMER_LIST
G -:(>| 2 9% o | sa 1| E & B | (| | Pattern | Pretfty Printer || Function module documentation
Function module iBHPIjELCUSTDMERfLIST Inactivedrevised)
Aftributes k Import~ Export k Changing k Tahles k Exceptions k Source code |
$ DR R
Parameter name Type spec. |Reference type FPass val..|Shart text Lang text
RETURN T¥PE B4PIRETZ| [ Feturn parameter Cre... [«]
O g
L1
1
1
|
|
|
|
|
1
O ]
L (4]
L (-]
[l (0]
47

No portion of this publication may be reproduced without written consent.

59




SAP Professional Journal

May/June 2000

Figure 10 Setting the Table Parameters for the Remote Function Module

Function module  Edit Goto  Utilities  Environment  System  Help

G| 0H o SHE DDoan HERE @R

Function Builder: Change Z_BAPI_GET_CUSTOMER_LIST

&= ':(>| 7 |1% '-_EH oy @ & B | [0 Patiern | Pretty Printer | Funetion madule dacumantation

Function module Z_BAPI_GET_CUSTOMER_LIST Inactivelravised)

Aftributes k Import kﬁxpm k Changing " Tables k Exceptions k Source code |

EAEEENEES

Parameter name Type spec. |Reference type Optional |Short text Long text

SCUSTLIST LIKE ZBAPICUST | CustomerL\stingTablel Cre... E|
m g
L]
I
|
]
]
|
]
I
I
D |
O [+]
] [=]

K10 J(«][x]

a7
The Type spec. field indicates the type assign- 11. Do not make any entries on the Exceptions tab.

ment for the reference type. “Return” is a stan-

dardized parameter name. We use BAPIRET2

for the structure name because it is also used as a 12.
reference structure in many other BAPIs.

Exceptions are not recommended for BAPIs.

In the Function Builder, you will find a Function
module documentation button. Use this
button to enter documentation for the function

9. On the Changing tab, you do not need to make module. A documentation window provides a
any entries either. Please note that changing text editor with several predefined sections for
parameter types are not supported in BAPI you to fill in (see Figure 11). The Functionality
development. section can provide documentation about

what the function module does, as shown in

10. On the Tables tab, enter “SCUSTLIST” for the Figure 11, as well as the data elements that are
Parameter name, and enter “ZBAPICUST” for used, and information about the parameters
the Reference type, as shown in Figure 10. As that may help the user of the function module.
before, the Type spec. and Short text field are The Example section may contain illustrative
filled in automatically — in this case a “LIKE” examples of using the function module, and
type assignment is filled in by the system. The the Hints section can be valuable for document-
parameter name SCUSTLIST is unique to our ing any tricky and subtle functionality that
GetList BAPI for the FlightCustomer object. might help the developer. The Further Sources

60 www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.




Building Your Own BAPIs — A Step-by-Step Guide

Figure 11

The Documentation Window for the Remote Function Module

Document  Edit  Goto Format  Insert

g U0 ea@ SHE ODOn HEE@m

Ct&ange Function module: Z_BAPI_GET_CUSTOMER_LIST Language EN
2 ¢ qu 1 | W E R | & Formats | &) Character forrmats | B 2 & &

Par.formats * Standard paragraph & Char formats AB ABAP language element ]

&FUNCTIONALITY&
This Remaote Function Madule provides a list of FlightCustorners displaying the Flight Custorner Murnber and Mame

SEXAMPLE&

&HINTS&

&FURTHER_SOURCES_OF_INF&

3

of Inf section is provided for references to other
documentation in the system relevant to the func-
tion module. (More on documentation toward the
end of the article.)

be able to share it. We are only creating one BAPI in
our particular example, but you could take this a bit

further on your own and create a GetDetail BAPIL. In
this case, the GetDetail BAPI would be able to access

the global data we have created here, and you would
not need to repeat these declarations.

The Global Data

We now need to add global data for the function
group — specifically declarations for the SCUSTOM
table, data for a messages structure, and data for the
internal table. The internal table will contain the
application data that the GetList BAPI returns to the
client program. We are creating global data so that
additional BAPIs we create in this function pool’ will

7 A pool is a group of functions that have related tasks or functionality.

We are creating global data so that
additional BAPIs we create in this
function poolwill be able to share it.
We are only creating one BAPI in our
particular example, but if you created
an additional BAPI, it would be able to
access the global data we have created
here, and you would not need to repeat
these declarations.

No portion of this publication may be reproduced without written consent.

61



SAP Professional Journal

May/June 2000

Figure 12

Global Data ABAP Program Code in the ABAP Editor

Function module  Edit  Goto Utilities

Environment  Sysi

g rEHSeEa SHE Do D DR @ m

Function Builder: Change Z_BAPI_GET_CUSTOMER_LIST
(= | 7 % B o

f @ EC—> fa E, | @ Pattern  Prefty Printer || Function module documentation

Function module Z_BAPI_GET_CUSTOMER_LIST Inactiveirevised)

Attributes k Import k Export k Changing k Tahles k Exceptions .

lplEl 2l @l (2E

FUMCTIOW-POOL Z105.

"MESSAGE-ID ..

TABLES: SCUSTOM
DATA: ITAB LIKE ZBAPICUST105 OCCURS @ WITH HEADER LINE.

DATA: BEGIMN OF MESSAGE,
MSGTY LIKE 5Y-MSGETY,
MSGID LIKE 5Y-MSGID,
MSGND LIKE SY-MSGNHO,
MSGY1 LIKE SY-MSEYT,
MSGY2 LIKE 5Y-MSENZ,
MSGY3 LIKE 5Y-MSEY3,
MSGY4 LIKE 5Y-MSGW4,
END OF MESSAGE

Source code

INS Li1,Coi Lni-Ln150f15lines

To add the global data, we follow these steps:

statement, which is crucial since BAPIs are not
supposed to directly communicate with the end

1. While in the ABAP Editor for the function mod- user. On the other hand, the same table (T100)
ule, go to the menu path GoTo — Global Data to that is used to store online user messages also
access the global data area from the Source code contains the BAPI error message that will be
tab, as shown in Figure 12. returned to the client in the Return parameter.

2. Code the function module. The “SELECT” Using the MESSAGE st.atement inan ABAP
statement is shown in Figure 13. This statement program, even one that is never executed, auto-
moves all FlightCustomer data from the database matically createg a reference so .that youcan find
to the ID and NAME fields of the structure we out where a particular message is being used. In

. . . short, to benefit from this Where Used capability
created in the Export tab of the Function Builder . )
interface. in a BAPI, we include a MESSAGE statement,

but never execute it. Comparing 1 to 2 for equal-

In the function module code (Figure 13) you ity does the trick!
see the use of a messaging routine named
SET RETURN MESSAGE. In this routine, we 3. We will need to create a form routine that handles
see some strange code: “IF 1 =2". Why include messages for the function module. To access the
a line of code that will never evaluate to “True”? form routine (subroutine) area in the ABAP Edi-
The code in the message routine is designed to tor, double-click on the name of the form routine
leverage the “Where Used” list utility. Allow me being called in the function module code — i.e.,
to explain.... This line of code, which obviously SET_RETURN_MESSAGE in Figure 13. The
will not evaluate to “True,” eliminates the possi- SET RETURN_ MESSAGE form routine is
bility of ever executing the ABAP “MESSAGE” shown in Figure 14. This is a standard routine

62 www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.



Building Your Own BAPIs — A Step-by-Step Guide

Figure 13

The ABAP Function Module Program Code for the FlightCustomer GetList BAPI

nodule  Edit  Goto  Utilities  Epvironment m  Help

g 0H ead DHEB Do on EE G|

Function Builder: Change Z_BAP!_GET_CUSTOMER_LIST

Ll | Wﬂ % %" ‘ ] = EG’ &8 ﬁ ‘ @ Pattern | Prefty Printer | Function module documentation

Function madule Z_BAPI_GET_CUSTOMER_LIST Inactiverevised)

Attributes k Import k Export h Changing h Tables k Exceptions " Source code

*"*="Local interface
*" EXPORTING
i REFERENCE (RETURN) LIKE BAPIRETZ STRUCTURE BAPIRETZ
*" TABLES
ﬁ” SCUSTLIST STRUCTURE ZBAPICUST

FUNCTION ZBAFI_GET_CUSTOWER_LIST105.
CLEAR SCUSTLIST. REFRESH SCUSTLIST
CLEAR ITAB. REFRESH ITAB

CLEAR RETURN

CLEAR SCUSTOM

SELECT * FROM SCUSTOM INTO CORRESPONDING FIELDS OF TABLE ITHB

IF 5Y-SUBRC NE @

CLEMR MESSAGE
MESSABE-MEGTY = 'E'
MESSABE-MSGID = ‘FN'
MESSRGE-MSGND = @22
PERFORM SET_RETURN_MESSAGE USING MESSAGE CHANGING RETURM
IF1=2

MESSAGE ED22 (FM)
ENDIF.
ENDIF

CHECK RETURN IS INITIAL
SCUSTLISTI] = ITAB[]

ENDFUNCTION

[ (B2

(ER3 [l

T INS Li31,Cod

Ln2-Ln 33 of 33 lines

Figure 14

The ABAP Form Routine Program Code for the FlightCustomer GetList BAPI

B am Edit Goto  Utilities n Help

Pl @Ge DHE Dhon EHI @B

ABAP Editor: Display Subroutine pool LZSBAPIF01
@ = | |%e 8 ]85S | '@ Patterr || Prety Printer

Subroutine pool LZSBAPIFE1 Active
(2] ol |2l e @2

» .

-->P_MESSAGE  text
F_RETURN text
FORM SET_RETURN_MESSAGE USING P_MESSAGE LIKE MESSAGE
CHANGING P_RETURN LIKE BRPIRETZ

CHECK NOT MESSAGE IS5 IWITIAL
CALL FUNCTION 'BALW_BAPIRETURM_GET'

EXPORTING
TYPE P_MESEAGE-MSGTY
CL P_MESSAGE-MSGID
NUMBER P_MESEAGE-MSGHO

FAR1 = P_MESSAGE -M5GY1

PARZ P_MESEAGE-MSGYE

PAR3 P_MESESAGE-MSGY3

PARA P_MESSAGE - MSGY4
IMPORTING

BAPIRETURN = P_RETURN
EXCEPTIONS

OTHERS = 1.

ENDFORM " SET_RETURN_MESSAGE

No portion of this publication may be reproduced without written consent.

63



SAP Professional Journal May/June 2000

Figure 15

Business Object Builder Initial Screen

Ohjecttype  Edit Goto Uilittes Environment  Settings stem  Help

G0 @@ CRE OO0 EE @M

Business Object Builder: Initial Screen

go @ o> [ @O B 4 [ Subtype | Business Object Repository

Objectinterface type BCUSTOMER [a)

Category

® Object type = Test
(1 Interface ty

@ Display | [# change | [0 create

for BAPIs that handles the messaging structure
for the BAPIRET?2 structure that we defined
earlier. This structure is one of several structures
used in BAPIs to inform the external program —
the program that calls the BAPI — on whether or
not the BAPI was successful. Please note that we
are creating this form routine for illustrative
purposes only. There are standard functions we

can use to accomplish this messaging functionality.

Step 4:
Create the API Method Using
the BAPI Wizard

In order to expose the remote function module as an
API method (a.k.a. a BAPI), we need to use the BAPI
Wizard. This tool will generate some additional code
that is required so that our function module is a valid
method of a Business Object type in the BOR. This
code allows our BAPI to be called as a Workflow
method within R/3 in addition to being able to be
invoked by an outside client program. The steps to
use the BAPI Wizard are outlined below:

1. Go to the Business Object Builder — you can use
the main menu path:

Tools — ABAP Workbench -
Development — Business Object Builder

In the Business Object Builder initial screen
(shown in Figure 15), enter “SCUSTOMER” as
the object type. Then select the Change com-
mand button. This will launch the Change Object
Type screen (Figure 16). In our example, we
use SCUSTOMER as the external object type
identification, and FlightCustomer as the “offi-
cial” object type name. SAP Objects can be
identified by both an object type and an object
name. SCUSTOMER is the object type for

the object named FlightCustomer. The
SCUSTOMER object type serves as a unique
internal R/3 object identifier. The object name
serves as an alias that developers can use to iden-
tify an object through some meaningful name.
Figure 17 shows the General tab of the object
type SCUSTOMER. Note that the object name is
FlightCustomer.

Once we have displayed the Change Object Type
screen by selecting the Change command button,
follow the menu path:

Utilities — API methods -~ Add method
This will display the Create API Method Proper-

ties dialog, where you enter the function module
name you created in the previous steps — e.g.,

64 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.




Building Your Own BAPIs — A Step-by-Step Guide

Figure 16 Change Object Type Screen
ne €] Utilities  Environment S tem  Help
g|Ir0 e OHE DDoan BE @
Change Object Type SCUSTOMER
2 & go @ & @ [ 3 b 0@ Program | Pararneters | Exceptions
Object type SCUSTOMER « Customer (SAP training)
@ Interfaces|
—=Ca Key fields
& Attributes
—= Methods
——F1ightCustomer . Find Find object
———F1ightCustomer . CreateFrombata v @ Generate
———F1ightCustomer . CheckPassword v @ Check Internet password
——F1ightCustomer . ChangePassword v @ Change Internet password
——F1ightCustomer . Getlist @ Flight Customer BAFI
—FlightCustomer GetCustomerlistad @ johns test bapi
———F1ightCustomer . ExistenceCheck Check existence of object
—F1ightCustomer Edit Change object
——FTlightCustomer Create Create object
—F1ightCustomer . Display Display ohject
—@ Events
Figure 17 General Tab of Object Type “SCUSTOMER”

em

Help

Object Type SCUSTOMER: Edit Basic Data

‘f’?@ & Program
Lo

Chj. type SCUSTOMER Customer
Object hame FlightCustomer

Frogram SAPBC_BOR_SCUSTOMER
Objtype status generated Saved

General k Transport data h Change data k Defaults k Customizing

released

Mame lcustomer
Description Custorner (SAP fraining)
Relationships

Supettype

Data model IE

Clasgsification

[ Business okject

[] @rganizational type

Application 8 Basis

No portion of this publication may be reproduced without written consent.

65




SAP Professional Journal

May/June 2000

Z BAPI GET CUSTOMER LIST. You can see
this in Figure 18. Select the checkmark button
(00) at the lower left of the dialog. This will
invoke the BAPI Wizard and begin to walk you
through the process of generating the BAPI in the

In the Create Parameters dialog, a list of
parameters and default names is displayed,
which we need to edit as required. We
will modify the parameter names as
follows:

Business Object Repository. You can see the first

step of the BAPI Wizard, which takes us to the - Each new word in the parameter name must

Create API Method Features dialog, in Figure 19. start with a capital letter — for example,
“Scustlist”.

4. Enter the method name, using the name
“GetList”, as shown in Figure 20. In the text
boxes, enter an appropriate name and description
for documentation purposes. In the Characteris-
tics section, make sure the Synchronous and
Instance-independent checkboxes are checked.
An instance-independent BAPI means that R/3
does not expect a key field to be passed to it for
instantiating a specific object instance.

- The end result of the BAPI Wizard is a
program that is shown in Figure 22.
The program starts with the statement
“BEGIN_METHOD GETLIST”. The BAPI
Wizard generated this code for us. The
program associates our GetList method with
our object.

5. Select the middle button (») at the lower left of - Specify whether the individujal table
the dialog. This will take us to the next step in parameters are used for data import or

the BOR/BAPI Wizard, the Create Parameters data export. Our Return parameter
dialog, shown in Figure 21. should be export-only. Table parameters

such as Scustlist can serve as both an
Import and Export parameter. Table
parameters are marked with a check in
column “MLine” (multiple lines).
Select the next button () at the lower
left of the dialog to bring us to the next

Figure 18 The “Create APl Method
Properties” Dialog

Create AP| Method: Method Properties

Function module [f_EAPI_GET_CUSTOMER_LIST

¥ R

Figure 19 The “Create APl Method Features”
Dialog Before the Name Change

Figure 20 The “Create APl Method Features”
Dialog After the Name Change

Create APl method: Method features

Create AP method: Method features

Function module |Z_BMPI_GET_CUSTDHER_LIST | Function module |Z_B.“.PI_GET_CUSTDHER_LIST |

Method [ZBAP IGet CustonerList | Method [Getlist |
Texts Texts
Mame Flight Customer Getl Mame Flight Customer Getl

Description Flight Customer GetList Description Flight Customer GetlList

Characteristics Characteristics

[ Dialog ] pialog
Synchronous Synchronous
Instance-independent Instance-ir‘ependent

v PR v » R

66 www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.



Building Your Own BAPIs — A Step-by-Step Guide

Figure 21 The BAPI Wizard’s “Create Parameters” Dialog

Mame in function module \Method parameter Mame
e

Return Return parameter

. Tahle
—
BAPIRETZ2

Scustlist Custamer Listing Tab

FBRAPICLUIST

Figure 22 Program “SAPBC_BOR_SCUSTOMER”

g|rE @@ CHE nthoan BE @B

Object Type: Editor Edit Program SAPBC_BOR_SCUSTOMER

=iy (@ | Markers || Pattern | Concatenat || Double

Mark line

PEGIN_METHOD GETLIST CHAMGIMG COMTAIMWER

DATA:

RETURM LIKE BAPIRETZ,

SCUSTLIST LIKE ZBAPICUST OCCURS 0

SWC_GET_TABLE CONTAINER ‘Scustlist' SCUSTLIST

CALL FUMCTIOW 'Z_BAPI_GET_CUSTOMER_LIST®

IMPORTING

RETURM = RETURN

TABLES

SCUSTLIST = SCUSTLIST

EXCEPTIONS

OTHERS = 1

CASE SY-GUBRC

WHEN O "R

WHEN OTHERS " to he implemented

ENDLASE

SWC_SET_ELEMENT COWTAIMER ‘Return’ RETURN.

SWC_SET_TABLE CONTAINER ‘'Scustlist' SCUSTLIST
EWD_METHOD.

No portion of this publication may be reproduced without written consent.

67



SAP Professional Journal May/June 2000

Figure 23 The BAPI Wizard’s Extend
Program Step

[ Extend Program

method GETLIST notyet implemented

Do vou wantto generate a template
autornatically for the missing section?

Yasg o | | Cancel

step in the BOR/BAPI wizard, the Extend
Program step, shown in Figure 23.

6. The Extend Program dialog warns us that the
BAPI is not yet implemented. Select “Yes” to
generate the template that will add the BAPI as a
method of the SCUSTOMER object type. This

step adds “wrapper object-oriented” code to our
function module, converting it to a method of an
SAP Business Object.

The next step is to generate the BAPI entry.
The BAPI Wizard has returned us to the
Change Object Type screen. Select the

plus (+) sign next to Methods to expand and
display all the methods of SCUSTOMER.
Our BAPI should now be listed with a green
circle icon (green light). Select the BAPI
once, and then select the Generate icon in the
toolbar (fourth icon from the left). This is
illustrated in Figure 24.

Test the BAPI by selecting your BAPI and then
selecting the test tool in the toolbar (the sixth icon
from the left), or you can press the F8 key. You
will reach the screen shown in Figure 25. The
results of the test are shown in Figure 26.

Figure 24 The FlightCustomer Object (SCUSTOMER) with the GetList BAPI Now Displayed

| PH CO& CHRRE D008 FEE @ mE

DOhjecttype Edit Goto  Utilities Environment  Seftings Systerm Help

Clgange Cbject Type SCUSTOMER

2 & qu @ |G @ [ ¥ Bb T Prograrn  Parameters | Exceptions

Object type SCUSTOMER « Customer (SAP training)

—&E Interfaces
—0E Key Tields
—&E Mtributes

—E= Methaods
FlightCustomer . Find Find abject
FlightCustomer . CreatefFrombata v @ Generate
——FTightCustomer .CheckPassword v @ Check Internet password
——FlightCustomer  ChangePassword v @ Change Internet password
FlightCustomer.GetCustomerliston @ johns test hapi
——FlightCustomer.ExistenceCheck Check existence of ohject
——FTightCustomer Edit Change ohject
FlightCustomer Create Create ohject
——FTightCustomer Display Display object
—F1ightCustomer.Getlist @ Flight Customer BAPI
—@ Events

68 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.



Building Your Own BAPIs — A Step-by-Step Guide

Figure 25

Testing the FlightCustomer GetList BAPI

Method

Edit

Goto Ll

@ BldH @ SHE Dhan BRI @m
Test Method GETLIST: Display Results
TestObject-=GETLIST() ;
Runtime: 973.203 Microseconds
REETLIST
= Export params
[BRETURN [al:12
= CHANGING parameter
[SCUSTLIST B 4 596 Entries
]| KD
| 4.7

Figure 26

FlightCustomer GetList BAPI Test Results

Object

Edit Goto  Utilities

S 14 4 Ml EH cowmn EH Entry || Metadata

28 Entries K

1D

‘NAME

 ETTaalo |
felalulololojeée3
(eLafal oo oete)
BEEOOO24
[E000025
felalalalololeds)
HEEOOEZY
BEEO0O2E
[E000029
[E000030
BEE00A31
HEEOOE3Z
BEEO0O3Z
[E000034
00000035
BE000036
BEEOOOZY
BEE00O3E
[E000033
BE000040
HEEOOE41
BEEO0O42
[E000043
[E000044
BE000045

SAP AG

Andreas Lotz
Hans Tillinger
Bindewald

Hartin

Starr

King

Hoore

Everton FC

Raupp

Eallmann
Radetzky

Hueller

Genee

Soehnen
Leihinger Brauere
Ruthenberqg
Hueller

Becker

Eecker

SAP Desterreich
SAP (Schweiz) MG
SAP #merica Inc
SAP Thailand

SAP Mustralia PTY LTD

K

KD

No portion of this publication may be reproduced without written consent.

69



SAP Professional Journal May/June 2000

Step 5:
Document Your BAPI

The documentation on the BAPI and the interface
parameters are created in the Function Builder for
the function module that the BAPI is based upon.

Among the components that must be documented
are:

*  The function module

*  The parameters of the function module
*  The fields of the parameters

* The key fields

The purpose of this documentation is to describe
exactly what the BAPI can do and how external
programs can use the BAPI. For example, for a
GetDetail type BAPI, we would document what key
fields must be passed as import parameters from an
external program. We would also specify the exact
detail that our BAPI sends back (exports) to the call-
ing application, and if there are special authorizations
required to use the BAPI. Other special areas should
also be documented, for example, if the BAPI uses a
COMMIT WORK or if there are any important limi-

tations (functionality that the BAPI does not support).

The documentation on Return parameters must
describe all possible return values and messages.

The documentation on the BAPI and the
interface parameters are created in the
Function Builder for the function module
that the BAPI is based upon. Among the
components that must be documented
are the function module, the parameters
of the function module, the fields of

the parameters, and the key fields.

The purpose of this documentation is

to describe exactly what the BAPI can
do and how external programs can

use the BAPI.

Helpful Hints

In order to maintain consistent access to R/3 data
and processes, you must be sure to follow certain
guidelines:

U BAPIs must not contain certain commands.
These commands are CALL TRANSACTION,
SUBMIT REPORT, and SUBMIT REPORT AND
RETURN. The call of a BAPI must not trigger
further Logical Units of Work (LUWSs) that are
independent of the BAPI. This is the reason

these ABAP keywords are not permitted.

0 BAPIs must not invoke a COMMIT WORK.
In Release 4.0, those BAPIs that cause database
changes must not use the COMMIT WORK
statement. Instead, a special BAPI —
TransactionCommit — of the BAPIService object
type is used. This BAPI executes the COMMIT
WORK. The program flow in this case would be
the following:

Call BAPI to change data —
Call BAPI Service.TransactionCommit

[0 BAPI structures must not use Include
structures. Enhancements to the Include structures
generally lead to incompatible changes to the BAPI
structure.

0 There should be no functional dependencies
between two BAPIs. A BAPI call must not be
adversely impacted by an earlier call to a BAPI. A
follow-up call must not assume an earlier call. For
this reason, avoid using Set or Get parameters in the
BAPI or global memory. A repeated call of one
BAPI must produce the same result.

U BAPIs must perform their own authorization
checks.

0 BAPIs must not be dialog dependent. While
Release 4.6 does away with this restriction, it’s still a
good idea not to allow your BAPIs to have dialogs.

70 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.



Building Your Own BAPIs — A Step-by-Step Guide

They must not produce any screen output, including
any function modules that the BAPI might call.

An external program — for example, a Java applet —
calling a BAPI would halt execution if the BAPI
called a dialog box. The Java program would stop
execution and wait for some response back from R/3,
which in turn is waiting for some action to be taken
on the dialog.

[0 BAPIs must not cause the program to

abort or terminate. Relevant messages must be
communicated through the Return parameter.

In this way, a standard for external developers is
established. They can always check the Return
parameters of BAPIs to determine success or failure
of the BAPIL.

[0 For BAPIs that read large amounts of

data — e.g., GetList BAPIs — a method of
providing selection criteria or a limit on the
amount of returned data should be specified,
and a message should be sent to the calling
program. This message can notify the caller that
a large amount of data is being sent. Some mecha-
nism is needed for handling massive amounts of
data. If a Java or Visual Basic program calls a
BAPI that returns a large amount of data, all the
data will be sent from the application server to
the client.

[0 Make the key of a modified record very
specific. This will minimize the locking of the record
by different BAPIs. If a key is less specific (partial),
then the chances of locking by multiple BAPIs are
increased.

[0 Define the processes and situations in which
the BAPI will be used. Before you begin building
your BAPI, consider issues such as how the process
will flow.

In our scenario, using the FlightCustomer object, for
example, a request for a list of FlightCustomers is
processed. Once the calling program receives the list,
the flow could involve a request for details about a

specific customer. By applying this concept and
creating a complete model scenario, you can ensure
that the BAPIs involved in your application will
complement each other.

[0 A BAPI should provide its functionality
exclusively to one SAP Business Object. It’s
a good idea to design your BAPIs to function
independently of one another. This is one of the
fundamental principles of good object-oriented
program design. In this way, a GetDetail BAPI
is not dependent upon the invocation of a
GetList BAPL

In our simple example, a GetDetail BAPI
could be used independently of retrieving a list
of FlightCustomers, since the user may already
know which FlightCustomer they want

details on.

A BAPI should provide its functionality
exclusively to one SAP Business Object.
It's a good idea to design your BAPIs
to function independently of one
another. This is one of the fundamental
principles of good object-oriented
program design. In this way, a
GetDetail BAPI is not dependent upon
the invocation of a GetList BAPI. In our
simple example, a GetDetail BAPI could
be used independently of retrieving

a list of FlightCustomers.

Conclusion

BAPIs are one of the primary technologies for inter-
facing with R/3. Creating BAPIs requires a great
deal of ABAP knowledge, a good working knowl-
edge of the application area, and some knowledge of
what external developers need to interface with R/3.
At the heart of the last requirement is documentation.
Poor documentation can make the best and most
efficient BAPI unusable. Good and thorough

No portion of this publication may be reproduced without written consent. 71



SAP Professional Journal May/June 2000

documentation can make the BAPI a very valuable
component.

Documenting the BAPI should be considered a
major step in the BAPI development cycle. It is the
responsibility of the BAPI developer to provide docu-
mentation on all aspects of the BAPI. Application
developers access the technical metadata and docu-
mentation of BAPIs from the Business Object Reposi-
tory. Readers of BAPI documentation are often not
R/3 experts or business application experts.

The best way to learn to create BAPIs and
become good at it is, of course, to develop some.
Try it, and hopefully you will find creating your
own BAPIs challenging and rewarding.

Ralph Melone received a B.A. in Liberal Arts and
an M.S. in Information Sciences from Villanova
University. He also holds an M.B.A. in Marketing
from Temple University. He joined SAP in March
1998 in the Curriculum Development Area.

There, he is responsible for the integration
technology curriculum, which includes BAPI,
RFC, Internet, and object-oriented technologies.
Ralph is also a Microsoft Certified Instructor,
Engineer, and Solution Developer. Prior to
Jjoining SAP, he also had his own consulting firm,
and has held management and IT positions with
AT&T and ADP. Ralph can be reached at
ralph.melone@sap.com.

72 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.



