
47No portion of this publication may be reproduced without written consent.

Selecting the Optimal System Landscape for Your SAP R/3 Upgrade Project

Selecting the Optimal System
Landscape for Your SAP
R/3 Upgrade Project
Arthur Miller

Arthur Miller has been

employed at SAP America

for over six years. He is

the manager of the Upgrade

Competence Center, an

internal SAP support team

that has the mission of

supporting SAP consultants

and customers through all

phases of the release

upgrade process.

As with any major packaged software installation, managing the periodic

R/3 release upgrade is a necessary part of life. Upgrading ensures that

you have access to the latest core functionality of the R/3 product, that

you can support the full mySAP.com product suite as well as the latest

third-party tools and packages, and that you will receive current support

from SAP in the form of Support Packages, HR legal updates, and bug

fixes published in SAPNet. SAP’s goal is to make the release upgrade

process “manageable” — meaning the upgrade can be completed in a

timely manner, at reasonable expense, and with minimal impact.1

Anyone who has participated in a previous R/3 release upgrade

knows that it’s not exactly a trivial exercise. Ideally, each and every

business process used in your R/3 system must be re-tested for its

functionality at the new release. Additionally, your authorizations

scheme and custom Workbench developments (e.g., reports and

interfaces) must also be tested to ensure they continue to function as

expected. If you’re not exactly sure how to evaluate these areas,

then an upgrade project requires that you first get your house in order

in these areas.

In an ideal world, the process of upgrading your production

landscape2 would be relatively simple: you would upgrade your

(complete bio appears on page 62)

1 While this article focuses on SAP R/3 system upgrades, many concepts apply to other

mySAP.com application components, such as SAP Business Information Warehouse

(SAP BW), SAP Advanced Planner and Optimizer (SAP APO), and SAP Business-to-Business

Procurement (SAP BBP). Since these products are based on a similar technical architecture to

R/3, upgrades may be managed similarly. For more specific information, contact the respective

competency centers for these products.

2 A “landscape,” as used here, refers to the R/3 systems in use by an enterprise, the clients in

those systems, and the policies governing the management of changes to those systems.

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.48

development system, move on to your quality assur-

ance system, and finish with your production system

— one-two-three, and you’re all done!

Reality, of course, presents an entirely different

picture. The impact of the new release is simply too

great in a complex, integrated system like R/3 that

has been configured to a customer’s exact specifica-

tions. You generally need to make changes to the

new system that you will be rolling out, as well as

support ongoing changes3 to the production system

for the duration of the upgrade project. Because

change management is so critical to the upgrade

process, you want to make sure that you employ a

system landscape that makes it easy to manage:

• Changes that support the future rollout of the

upgrade: Modification adjustments, changes to

Customizing settings to either preserve existing

functionality or make use of new functionality,

and new ABAP Workbench development activity

could all be part of the changes made to the new

release before it is ready for production activity.4

• Changes that support the existing production

system: Since an upgrade project may take

months, it is not realistic to think that no changes

will be allowed in the production system prior to

the upgrade of that system. Instead, such changes

must be made in isolated environments, tested

properly, and introduced into the production

system in accordance with the quality control

procedures already in place. Since these changes

also need to be present after the upgrade, they

must be included in the activities being performed

as part of your upgrade project.

The degree of change that must be managed in

parallel with the upgrade project varies widely among

implementations. At one end of the spectrum, some

implementations are able to all but eliminate produc-

tion changes for the duration of the upgrade project,

allowing only qualified emergencies. At the other

end, some upgrade projects are forced to conduct

their evaluation work alongside a significant degree

of change in the existing production system. This

change could be the result of ongoing rollouts of new

users or functionality, or simply due to a relatively

unstable environment that is still “working out the

kinks.”

There are probably an infinite number of different

upgrade landscape strategies that have been proposed

3 The term change in this context refers to changes in functionality

effected through updates to Customizing settings or to the ABAP

Workbench. Changes to master and transaction data are obviously part

of normal production activity and are not considered “changes” in this

sense.

4 The latter two types of changes — changes to Customizing settings

and new ABAP Workbench development activity — will be imported

into the newly upgraded system after the upgrade. Modification

adjustments are imported or manually performed at their respective

points during the upgrade itself.

The Repository Switch Upgrade

In an upgrade, a new release of software is

applied to the R/3 Repository, which includes

the entire ABAP Workbench library of ABAP

programs, screen and menu layouts, and the

ABAP Dictionary and its assorted components.

Regardless of the net change between a source

release of a system and the release it is being

upgraded to, a complete copy of the repository

is delivered with each upgrade. We refer to this

as the “repository switch upgrade.”5 Since the

complete, standard repository of a given R/3

release is imported into the system (regardless

of what release was present prior to the

upgrade), a series of adjustments are

performed to retain customer modifications and

new objects. Elements of the old repository that

were created or modified by the customer and

are needed after the new repository is delivered

are copied into the new repository. Finally,

a “switch” is effected, and the old repository is

deleted from the system.

5 As of R/3 Release 3.0, SAP introduced the repository switch

upgrade as the means of delivering a new release of R/3 to an

existing system. In the “old” days, before Release 3.0, only the

changed repository objects were delivered with an upgrade; this

method was called a delta upgrade. For example, the upgrade

process between Releases 2.1D and 2.2C delivered a different set

of objects than an upgrade from 2.2B to 2.2C. This strategy, while

efficient from a data volume standpoint, led to many inconsisten-

cies and was difficult in general for SAP to support with a high

level of quality.

49No portion of this publication may be reproduced without written consent.

Selecting the Optimal System Landscape for Your SAP R/3 Upgrade Project

from time to time, but for the most part, and depend-

ing where they fall on the aforementioned spectrum,

all upgrade projects use a variation on one of the

following two landscape strategies:

• Method A: Rehearsal of the upgrade process on a

separate, standalone R/3 sandbox system, with the

intent of rolling out the upgrade to the production

landscape at a later point in time.

• Method B: Upgrade of the production land-

scape’s development system right away, followed

after a period of time by the upgrade of the QAS

system, with the maintenance of additional,

temporary development and QAS systems to

support the production system at the old release.

Understanding the principles, benefits, and limita-

tions of each of these two landscape strategies 6 will

help you decide which approach best suits your

upgrade project. No single strategy could apply to all

upgrade projects. As such, the goal of this article is

to present the two basic approaches, Method A and

Method B, and allow you to decide which elements of

each to incorporate in your own plan.

Method A: Rehearsal of the

Upgrade Process on a Separate

Sandbox System

When upgrading a system landscape to a new release,

you must perform the following general steps for

each system in the landscape:

1. Apply the upgrade to the system and make any

necessary SPDD adjustments during the process.

This process includes the entire technical upgrade

(see sidebar entitled “The Repository Switch

Upgrade”). The system will identify for you

which objects, if any, must be addressed in the

SPDD adjustment, as shown in Figure 1. See

sidebar for more information on SPDD

adjustments.

Figure 1 The System Identifies the Necessary SPDD Adjustments

6 For the sake of simplicity, a basic three-system landscape will be used

in the examples. Extending the concepts to larger landscapes should

be relatively simple once the basic principles of each strategy are

understood.

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.50

2. At the very end of the upgrade, make the neces-

sary SPAU adjustments (see sidebar on modifica-

tion adjustments). Again, the system will have

determined which objects require attention in this

capacity, as shown in Figure 2.

3. Apply any new change requests to the system.

These changes will represent the customer-

specific adjustments to the new release to preserve

existing functionality and/or incorporate new

functionality, and should be considered as one of

the primary deliverables of the upgrade project.

4. Perform a final set of acceptance tests to validate

the system. These tests, which may be executed

manually or via automated testing tools, should

put your business processes through their paces

and allow you to see whether or not the upgraded

system is performing as expected. The rigor and

thoroughness to which you conduct these tests is

up to you; I have found that upgrade projects vary

greatly in this respect.

Figure 2 The System Identifies the Necessary SPAU Adjustments

Why Are Modification Adjustments
Necessary During an Upgrade?

Adjustments of ABAP Workbench objects are necessary

in one specific case: when both SAP and the customer

have made changes to the object since the prior

release. (If SAP has made a change to a given object

but the customer has not, then there is no conflict;

conversely, if SAP has not updated the object, then

a customer modification can be retained after the

upgrade without question.)

This adjustment cannot be performed automatically by

the system. Someone must examine both versions and

determine what the final result should look like. Since

SAP’s changes are desirable in almost all situations,

adjustment usually involves modifying the SAP code yet

again to include the customer’s new functionality.

SPDD is used to identify the ABAP Dictionary objects

that affect data storage. This step is done during the

upgrade, prior to activation of the new ABAP Dictionary

to avoid potential loss of data in the underlying data-

base tables. All other ABAP Workbench object conflicts

are identified in SPAU at the very end of the upgrade.

51No portion of this publication may be reproduced without written consent.

Selecting the Optimal System Landscape for Your SAP R/3 Upgrade Project

Figure 3 The “Method A” Architecture:
One Upgrade Test System

TMS Configuration for

Landscape Method A

If you are using Method A (using a separate system for

upgrade testing), you do not need to modify the existing

TMS configuration to support changes within the pro-

duction landscape. You do, however, need to provide

for the export of changes from the upgrade sandbox

UPG. You can accomplish this by defining a virtual

system as a consolidation system for UPG, as shown

below.

 TMS Configuration for Landscape Method A

You can give this system any name (e.g., “DMY” in the

diagram). In addition, you must also define a customer-

object transport route (shown as “ZUPG”) between

UPG and your virtual system. Without this route,

change requests created in UPG are not transportable

and cannot therefore be exported from the system.

If your policy is to allow modifications of SAP objects

during the upgrade process, then you also need to

establish the “SAP” transport route between these

two systems.

The DMY transport buffer contains a sequential

list of the changes exported from UPG. If you need to

import these changes into another system or back into

UPG after a refresh, you can copy the transport buffer

at the operating system level and use it to perform the

import. You can rename this transport buffer to the

proper SID and use it to execute a tp import all

command, or simply use it as a reference.

It is important to understand that it will take

some time and a series of iterations before the

exact tasks involved in these general steps can be

refined and proven.

The basic principle of Method A is to rehearse

and refine these tasks on a separate upgrade testing

system — this separate system is identified as

“UPG” in Figure 3. You create UPG as a database-

level complete copy of any of the existing systems

in the landscape. (In this figure, the standalone

system is a replica of the development system.

The question about which system in your three-

system landscape should be copied onto the

sandbox system — the development, QAS, or

production system — will be answered in just a

moment.) The four steps listed above are then

executed (obviously, the first time such a system

is created, there would be no customer-specific

adjustments in step 3).

Figure 3 illustrates this approach for an upgrade

from Release 3.1H to 4.6B.

As the process is repeated, the UPG system

is necessarily destroyed and re-created as another

complete database-level copy of one of the existing

systems. The trick to this approach is retaining the

UPG
4.6B DMY

ZUPG

SAP

changes made in the UPG system through each of

these refreshes. During the first refresh or two, your

project team will most likely be in a “discover-and-

learn” mode. Thus, retaining changes may not be

1. Upgrade applied

2. Adjustments performed

3. Customer-specific adjustments added

4. Validation tests conducted

Periodic
refreshes

QAS
3.1H

PRD
3.1H

UPG
4.6B

DEV
3.1H

Production
Landscape

Standalone
Sandbox
System

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.52

necessary, and you can treat the system as a “sand-

box” to help you evaluate the new release. Eventu-

ally, however, you will need to preserve these

changes by releasing the change requests prior to the

refresh and rebuild of the UPG system. You can then

import the same change requests back into the UPG

system as part of step 3 of the next refresh. (See the

sidebar on the previous page for more suggestions as

to how the Transport Management System, or TMS,

configuration of such a landscape should be configured.)

Which System Should Be Used As a Source for
Your Sandbox System?

Before you create the UPG system, you have to

decide which of the existing R/3 systems should be

used as the source for creating the upgrade sandbox.

In a standard three-system landscape, the develop-

ment system, quality assurance system, and produc-

tion system each has characteristics that make it more

or less ideal than the others for this purpose.

✔ Tip

As you decide whether or not it is feasible to use

the production system as the source system for the

upgrade sandbox, remember that there are

currently no tools or methods for extracting a

logically consistent subset of master or transaction

data. Thus, you must copy the entire production

system if real production master/transaction data

is needed for testing.

Figure 4 compares the merits of using

each system.

The most often-used system is the production

system, because it contains real-world application

data. A key consideration in choosing to use the

production system as the source for your upgrade

sandbox is obviously going to be the volume of

production application data in that system. If your

database is particularly large, the costs involved with

duplicating it could be prohibitive — e.g., the size

may exceed your available disk storage space, in

which case you would need to purchase additional

space.

If your production system is, in fact, prohibitively

large, the QAS system is a good second choice.

Here, the benefits of proper change management

processes become evident. If managed correctly, the

QAS and production systems should be functionally

identical, in the sense that they contain near-identical

repository and configuration settings in the primary

QAS client. They differ only in the volume of appli-

cation data present in the system. In such a setup,

QAS would be a perfect choice as an upgrade sand-

box, since it will allow for valid functional tests

without requiring duplication of enormous amounts

of application data.

A development system would be useful for some

early versions of the upgrade sandbox, but is probably

Figure 4 Considerations When Choosing a Source System for the Upgrade Sandbox
Source System Characteristics

Development Source of all configuration and
development activities. Probably
many in-process or miscellaneous
changes that have never been
transported elsewhere.

Quality Assurance Same functionality as production,
but may not have much, if any,
“real” production master/
transaction data.

Production Valid configuration with real
master/transaction data.

Suitability for Upgrade Testing

Probably suitable for functionality testing,
depending on how congruent the configuration and
repository are with the QAS and production systems.

Suitable for functionality testing, depending
on the requirement for “real” application data.

Ideal if technically feasible, due to the presence of
real application data. May not be feasible depending
on size of the database.

53No portion of this publication may be reproduced without written consent.

Selecting the Optimal System Landscape for Your SAP R/3 Upgrade Project

not suitable for more detailed upgrade testing.

A development system is probably more “out of

synch” with production than any other system,

and is also unlikely to contain master/transaction

data that even remotely resembles production

system data.

Managing Changes to the Production Landscape

When considering how to manage the production

landscape changes during an upgrade project, you

have three options:

• Manually re-enter all DEV changes in UPG at

an appropriate time (e.g., once the change has

passed QAS testing and is approved for import

into PRD). These changes are included in the

upgrade impact analysis, but excluded from the

adjustments made in step 3 since they would

already be part of the base configuration.

Effectively maintaining and enforcing this policy

might be problematic — for example, a Custom-

izing transaction may change entirely between

two releases, obscuring the re-entry process.

Since the upgrade team will rely heavily on

proper replication of changes, you need to insert

some sort of QAS into the transport process to

ensure that the changes made within the produc-

tion landscape are indeed replicated properly into

the upgrade testing system.

• Import all DEV changes into UPG via

change requests at an appropriate time. This

method may be faster than manual re-entry.

However, there is a risk that the import will

overwrite changes made as part of the upgrade

project, due to the way changes are transported

(e.g., the entire Workbench object or Customizing

table entry is included at one time). More signifi-

cant is the fact that this option involves transports

between differing releases of the R/3 system,

which makes it inadvisable in most cases.

(See the sidebar on page 54 for a discussion of

cross-release transports.)

• Introduce changes into UPG at the next

refresh of that system, instead of bringing

production support changes directly into UPG.

You can rely upon the testing process in step 4 to

identify any new problems that arise as a result of

changes to the base configuration.

Your choice of policy will depend on many

criteria. Primarily, you need to estimate and

consider the volume of production changes that

need to be supported. A high volume of production

changes will mean propagating those changes

more frequently to the upgrade testing system.

The frequency of UPG system rebuilds is also

a key factor.

 If your plans call for rebuilding UPG only three

times during an eight-month project, you will have

relatively few chances to understand the impact of

those new production changes at the new release.

Refreshing more frequently diminishes the impact

of manual re-entry, since the changes will appear in

the UPG system in a relatively short amount of time.

In general, I tend to recommend a more frequent

refresh of an upgrade sandbox system, with no real

attempt to continually update those systems with

changes in the production landscape. The actual

tolerable refresh frequency will depend on the volume

of transports going through your production land-

scape, but one refresh per month should be sufficient

for a majority of upgrade projects.

✔ Tip

Managing an upgrade project alongside

significant change to the production landscape

(e.g., new rollouts of users or functionality) will

certainly increase the length of time and total

cost of your upgrade project.

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.54

Variation: Using Two Separate Rehearsal
Systems

Alternatively, you could implement a variation of the

Method A strategy that incorporates two upgrade test

systems at the new release. Figure 5 shows the archi-

tecture for this Method A variation with two separate

systems for testing the upgrade (called UPG and UP2

in the diagram). Using a second system allows you to

release and transport changes to a separate environ-

ment. Since testing the transport itself is part of the

change management process in general, using a sec-

ond system should result in higher-quality transport

requests for step 3 — although at the expense of

maintaining an additional system. Finally, applying

the upgrade process to more systems gives you more

Cross-Release Transports

Generally, SAP neither recommends nor supports cross-release transports. However, since there are cases
where it may save time and manual effort, let’s examine whether you should even consider these types of
transports. Primarily, the contents of a change request determine whether a cross-release transport is

technically feasible, as summarized below.

Feasibility of Cross-Release Transports

Note: This information is not an endorsement of cross-release transports and is provided for informational

purposes only.

Type of Object in Cross-Release Explanation
Change Request Transports Allowed?

SAP-owned ABAP Definitely not Since SAP may have changed the object, transporting

Workbench objects from a different release could introduce changes that

are incompatible with other objects in the repository.

Customer-owned Yes, in most cases Unless the object has also been changed by someone

ABAP Workbench at the new release, a cross-transport object usually
objects poses no problems. Whether the program functions

as before depends on separate factors that must be

evaluated as part of the upgrade impact analysis.

Customizing table/ Possible If the underlying ABAP Dictionary structures have

view data not changed significantly, transports usually can be

imported without a problem. Dictionary inconsisten-
cies are usually identified as warnings or errors in

the import logs. It is always prudent to examine

the relevant transactions in the IMG to review the

results of the import.

Transport-defined Probably not These objects represent special transport rules
objects other than embedded in the source code of the OS-level utilities

above — e.g., R3TR that perform the export/import. Since a cross-release

AM17, R3TR COC1, transport usually also involves different versions of

R3TR SRTR the utilities (tp and R3trans), problems may result.

Potential problems in this case may not be identified

in the import logs, so you should only attempt such

transports with caution.

55No portion of this publication may be reproduced without written consent.

Selecting the Optimal System Landscape for Your SAP R/3 Upgrade Project

practice (a key element of upgrade success), perhaps

reducing the frequency of refreshing UPG and UP2.

When executing the actual upgrade of the produc-

tion landscape, you perform steps 1 through 4 for

each of the systems in the production landscape:

DEV, QAS, and finally PRD. You can then discard

the UPG and UP2 systems, since they are no longer

needed.

Clearly, the phased-rollout approaches for both

initial implementation and upgrades of R/3 are highly

similar, in the sense that you must manage changes

for both the new and existing landscapes at the same

time. Thus, the architecture shown in Figure 5 could

also be part of an overall strategy to support an entire

implementation life cycle. In this manner, you could

rebuild the UPG and UP2 systems to support the next

phase in the rollout plan.

On the surface, this alternative Method A archi-

tecture looks similar to Method B (the second

upgrade landscape method). But looks can be deceiv-

ing. As we delve beneath the surface, you will see

that Method B supports a very different approach to

a release upgrade.

Method B: Maintenance of

Temporary DEV and QAS

Systems to Support the PRD

System at the Old Release

The second upgrade strategy, Method B, consists of

directly upgrading the existing development system,

without prior testing on a separate upgrade system.

After a period of time, the QAS system is upgraded,

followed by the upgrade of the production system.

During this time, you implement secondary develop-

ment and QAS systems to support the production

system that is still at the old release.

The advantage of this method is that it reduces

the overall time to upgrade by minimizing the actual

number of upgrades necessary to move the entire

landscape to the new release. The reason for this is

that only three upgrades are ultimately required to

get the entire landscape to the new release. Also,

depending on the volume of changes within the pro-

duction environment during the upgrade project, it

may not be necessary to maintain a secondary devel-

opment system (this is discussed later in the article).

Figure 6 shows the Method B architecture with two

Figure 5 Method A Architecture —
Two Upgrade Test Systems

Figure 6 Method B Architecture —
Two Production Support Systems

QAS
3.1H

PRD
3.1H

UPG
4.6B

UP2
4.6B

Manual re-entry of
changes or system
refreshes

Production
Landscape

DEV
3.1H

QAS
4.6B

PRD
3.1H

DEV
4.6B

QA2
3.1H

DB copies

DV2
3.1H

Production
Landscape

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.56

temporary systems for supporting production

(called “DV2” and “QA2”).

Method B consists of directly upgrading
the existing development system,
without prior testing on a separate
upgrade system. After a period of time,
the QAS system is upgraded, followed
by the upgrade of the production
system. During this time, you implement
secondary development and QAS
systems to support the production
system that is still at the old release.

TMS Configuration for

Landscape Method B

If you are using Method B (upgrading your

production landscape and using secondary

development and QAS systems for production

support), you will need to modify the existing

TMS configuration. Since you no longer want

automatic transports from DEV or QAS to

PRD, you need to delete the delivery route

between these two systems. As shown below,

set up a standard TMS configuration between

DV2, QA2, and PRD that is basically identical

to the one that previously existed for DEV →
QAS → PRD.

TMS Configuration for Landscape Method B

Create a virtual system (shown as “DMY”) to

use as a delivery system from the 4.5 QAS

system. The transport buffer for this non-

existent system represents the transport

requests that should be applied to the produc-

tion system after the upgrade, in their proper

import sequence. Keep in mind that these

changes should include all the changes made

to support the production environment made

in DV2/QA2, since those changes should

have been manually entered in DEV and

transported to QAS along with upgrade-

related changes. With proper testing

and quality control, applying these

changes after PRD has been upgraded

should not be harmful.

Again, you need to decide whether modifica-

tions to SAP objects are allowed in DEV, DV2,

or both, and add the “SAP” transport routes to

the configuration accordingly. In addition, you

need to determine whether to permit changes

to customer-owned objects in DV2. These

objects would be treated as repairs in DV2,

since they would still reflect that the originat-

ing system was DEV. If your policy is to allow

these changes to be made and transported

to QA2, set up the “ZDV2” transport route

accordingly.

Based on this method, you can upgrade an entire

landscape by following these steps:

1. Make complete database-level copies of your

DEV and QAS systems. Give the copies unique

names, such as DV2 and QA2, as shown in

Figure 6. Continue running the old release on

these systems for the purpose of providing

production support.7

7 For more information on the specific tasks involved in performing

a database-level copy of an R/3 system, refer to the document R/3

Homogeneous System Copy, which is available as part of the R/3

system installation kits.

DEV
4.6B

ZDEV

SAP

DMYQAS
4.6B

DV2
3.1H

ZDV2

SAP
PRD
3.1H

QA2
3.1H

57No portion of this publication may be reproduced without written consent.

Selecting the Optimal System Landscape for Your SAP R/3 Upgrade Project

2. Apply the upgrade, including modification

adjustments, to the DEV system.

3. Perform a series of impact analysis activities

on the DEV system, capturing any necessary

changes in change requests. These activities

will involve research and education on the new

release, as well as changes necessary to preserve

existing business functionality.

4. Apply the upgrade, including modification

adjustments, to the QAS system.

5. Maintain DEV and QAS at the new release,

applying transports as necessary from DEV to

QAS. Meanwhile, enter any production-support

changes in the DV2 system, then transport them

through QA2 and finally to PRD.

6. Upgrade the PRD system, make any modification

adjustments, and import any change requests

generated on the DEV/QAS systems.

7. Discard the DV2 and QA2 systems, as they are

no longer needed.

The advantage of Method B is that it
reduces the overall time to upgrade
by minimizing the actual number of
upgrades necessary to move the
entire landscape to the new release.
The reason for this is that only three
upgrades are ultimately required to
get the entire landscape to the new
release.

Incorporating production support changes

remains an issue with this method. However,

the upgraded systems will never be rebuilt or

refreshed. Therefore, you must re-enter all produc-

tion support changes in DEV, either manually or via

change requests. In general, this method is suitable

for more stable production systems (e.g., those with

relatively few changes being introduced) or those

upgrade projects that are relatively simple in their

Figure 7 Method B Architecture — One
 Secondary Production Support System

scope and complexity. (See the sidebar on page 56

for suggestions on the TMS configuration for this

landscape.)

Variation: Using a Single System

If the volume of production support changes is very

low, you probably do not need to maintain both DEV

and QAS systems at the old release. Figure 7 shows

the architecture for this Method B variation with a

single system for supporting production (called

“QA2” in the diagram). Since changes would be rare

and made only in an emergency, you would make

them directly in the QA2 system and then transport

them to the PRD system. Obviously, this approach

is not ideal if the volume of changes is high (e.g.,

numerous changes introduced to PRD every week).

Choosing Between Method A

and Method B

Obviously, every project is different. No single

upgrade strategy works with every project for every

customer. In one sense, the difference between the

two methods is primarily philosophical. Should you

develop, test, and retest the upgrade process in an

isolated environment? Or, should you start by

directly upgrading the landscape, taking care to

Manual
re-entry of

changes

QAS
4.6B

PRD
3.1H

DEV
4.6B

DB copy

QA2
3.1H

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.58

Decision Factor Method A Method B

Number of additional R/3 One system (potentially two, Two systems (potentially one,
systems required? based on your requirements). based on requirements).

Experience obtained with Many practice upgrades Practice is limited to the DEV
the upgrade process? are executed. and QAS systems.

Best strategy given a Yes, because production No, because all production
high volume of changes support changes may not need changes must be entered
within the production to be entered manually in manually.
environment? upgrade system.

Best strategy for a shorter, Maybe not, because the value added Perhaps, because the time involved
less complex upgrade project? by the extra systems decreases. is greatly minimized.

Figure 8 Selecting the Right Upgrade Strategy

provide for changes within the production environ-

ment as needed? SAP’s recent extension of support

for Release 3.1I and 4.0B make this decision poten-

tially more important. For example, an upgrade from

3.1H to 3.1I is going to be quite low in its complexity

due to the small functional and technological deltas

between the two releases, while an upgrade from 3.0F

to 4.6C is going to be at the other end of the spectrum

entirely.

Figure 8 contrasts key characteristics of the two

methods.

Further Considerations

The following sections include some important

considerations to keep in mind when undertaking a

system landscape upgrade — i.e., documenting the

landscape plan, factors that will affect your invest-

ment in the upgrade, and managing downtime when

executing the upgrade.

Documenting the Landscape Plan

A landscape strategy is not static; it changes and

evolves along with the project as a whole. Thus, it is

usually helpful to correlate the changes in the land-

scape to the high-level phases of the upgrade project

plan, and define the landscape separately for each

unique situation. Figure 9 shows an example.

During the Evaluation phase, no changes in UPG

are retained. UPG is rebuilt at the end of Evaluation,

and all changes will be preserved from then on. Two

more refreshes of UPG will again occur during

Buiness Blueprint, although these don’t really change

the landscape per se. Once the Realization phase

begins, and the production landscape is upgraded, the

landscape will change with each step of the way to

reflect new procedures and potentially the loss or

addition of systems in the landscape.

Then, with each step in the evolution of the

upgrade project, a more detailed landscape strategy

can be documented. The landscape itself, change

management policies and procedures, and other

key assumptions should be documented clearly

for each step.

A landscape strategy is not static; it
changes and evolves along with the
project. Thus, it is usually helpful to
correlate the changes in the landscape
to the high-level phases of the upgrade
project plan, and define the landscape
separately for each unique situation.

59No portion of this publication may be reproduced without written consent.

Selecting the Optimal System Landscape for Your SAP R/3 Upgrade Project

Contributing Factors

Regardless of the method you choose to use, certain

factors may well influence the investment of time and

money required to upgrade your R/3 systems to a new

release. If you are just starting to consider whether to

upgrade, or if you are still assessing the potential

costs of upgrading, answering these questions may

help you identify potential areas of concern:

• How well are your system modifications docu-

mented? Do you know which modifications you

will still need at the new release? Keep in mind

that the upgrade considers manually applied OSS

notes to be “modifications,” so having a list of

such notes will be very helpful in resolving

SPAU conflicts.

• How easily can you test the necessary business

processes on the system? Does the project team

have a good understanding of exactly what must

be tested? While ideally every implementation

has a defined testing process that is used to test

all changes (for example, the production-support

changes that often occur regularly), the upgrade

project often reveals that no documented, defined

testing practice is in place already. The release

upgrade thus forces the issue, requiring the

project team to address this deficiency as part of

the upgrade.

• Based on your decision with regard to your up-

grade landscape strategy, how many extra R/3

systems will you need? Do sufficient hardware

resources exist to support the extra system(s)?

• If you decide to use an upgrade test system,

which production landscape system will you use

for creating it? Are there any issues with data-

base size or application data consistency across

the various systems?

Managing Production Downtime When
Executing the Production Upgrade

With any production upgrade, minimizing productive

downtime while the system is being upgraded is a

primary concern. To understand the concept of

downtime as it relates to upgrade runtime, consider

the high-level phases of an upgrade as shown in

Figure 10. Based on your database log archiving

strategy — which controls how and when the data-

base redo logs are activated, and affects overall

runtime as well as whether a full offline backup is

required post-upgrade — you may be able increase

productive uptime by running parts of the upgrade in

parallel to productive activities. While there will

likely be some impact on system performance, at least

you can keep the production system available for as

long as possible.

Evaluation RealizationBusiness Blueprint

1st UPG
build

2nd UPG
build

3rd UPG
build

4th UPG
build

DEV
upgrade

QAS
upgrade

PRD
upgrade

Points during the project in which the system landscape will change

Figure 9 Upgrade Project Timeline

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.60

You need to evaluate several factors when esti-

mating the upgrade runtime. Carefully consider, and,

if necessary, address each of these factors before

beginning a production upgrade, especially if

minimizing downtime is a major priority:

• Database Server Hardware

Note that the upgrade process does not use

application servers in a system. Generally, these

servers are shut down at the beginning of down-

time and are not started again for the duration of

the upgrade. Therefore, the speed and processing

power of the central database server is a primary

factor in determining upgrade runtime. In addi-

tion, investing in intelligent disk subsystems

can pay significant dividends during upgrades,

as they increase the overall I/O throughput of

the system.

• General Database Performance

If a database is heavily fragmented, performance

degradation may cause the upgrade to run longer

than is necessary. In general, consider cleaning

up large databases (e.g., perform reorganizations)

before the upgrade to minimize this factor.

• Database Size

Although generally not the major factor in

upgrade runtime, database size can be critical

depending on the specific tables undergoing

conversion and how big those tables happen to be

in a given system. You can determine whether

database size presents a consideration for

you once the initial upgrades have occurred.

Also, additional clients tend to slow the

upgrade; delete any unnecessary clients before

upgrading.

• Unexpected Problems

Remember that encountering a problem that you

have not seen on previous upgrades can result in

unexpected delays while you try to resolve the

problem. A single never-before-encountered

error that arises during a production upgrade

could prevent completion of the upgrade, if you

cannot summon the necessary support resources

in a timely manner. For this reason, I strongly

Figure 10 Phases of an Upgrade and Their Effect on Productive Operations
Upgrade Phase Key Activities Status of Productive

Operations

Initialization Version and environment checks, upgrade Uptime

tools imported, and upgrade processing

parameters are entered.

Data Transfer New Repository is imported into the database; Optional

analysis is performed on customer

modifications.

Pool Transfer Some pool tables are converted into Downtime

transparent tables.

Basis Adjustment Old release is shut down; repository of Downtime

new release begins activation.

Application Adjustment Adjust modifications (SPDD early, SPAU Downtime

late), convert application pool tables, and

perform all other adjustments to the new

release.

61No portion of this publication may be reproduced without written consent.

Selecting the Optimal System Landscape for Your SAP R/3 Upgrade Project

recommend that you make every attempt to

practice the upgrade multiple times and fully

document each and every error or warning

message that occurs — as well as its eventual

resolution.

One common R/3 upgrade challenge is not

having any available servers that are the size and

class of the production database server. This scenario

makes it impossible to conclusively determine how

fast the upgrade might run on that server. By

running the upgrade on smaller servers, you can at

least determine an upper limit on upgrade runtime

and use it to establish your schedule. Obviously, if

the test server is considerably smaller than the

production server, your estimates will be extremely

conservative.

As a protective measure, standard upgrade

procedures call for a “drop-dead” time. At this

prespecified time, if the upgrade has either not fin-

ished or not passed the testing/validation process, you

abort the upgrade and restore the system to a point

prior to the upgrade. You can enlarge this time win-

dow by implementing a standby database. Some data

storage technologies, such as those offered by EMC

Corp., allow for breaking the disk mirrors at a spe-

cific point in time; in case of emergency, the restore

can be performed from that mirror. Investigate your

options, given the technology in place at your

implementation.

With any production upgrade, minimizing
productive downtime while the system is
being upgraded is a primary concern.
Based on your database log archiving
strategy — which controls how and
when the database redo logs are
activated and affects overall runtime,
as well as whether a full offline backup
is required post-upgrade — you may
be able increase productive uptime by
running parts of the upgrade in parallel
to productive activities.

Conclusion

In my six years with SAP, I have been directly

involved with 15 different customer upgrade projects.

I have found the following practices to be generally

accepted throughout the extended SAP community

as conducive to successful upgrade projects:

✔ Practice, Practice, Practice

Without doubt, having significant experience with the

upgrade process (the technical upgrade, modification

adjustment, customer-specific adjustments to the new

release, and testing/validation procedures) is key to

the success of the overall upgrade effort.

✔ Control the Scope

To minimize project complexity and reduce the over-

all duration of the project, consider restricting the

implementation of new functionality during the

upgrade process. Focus first on preserving existing

business processes at the new release, then take

advantage of new capabilities after the upgrade.

✔ Utilize Scripting/Testing Tools

Since the testing and validation procedure should be

performed many times, investing in supporting tools

can pay significant dividends. For example, R/3

comes with the Computer-Aided Testing Tool

(CATT), and Mercury Interactive offers the

WinRunner product. As with any tools, they will

require an investment of time to learn properly. In

addition, the process of developing test scripts will

help clarify the business processes in use and the data

necessary to validate them, and this will pay divi-

dends long after the upgrade project has concluded.

✔ Track Modifications

Avoid wasting time during the upgrade to investigate

modifications that occurred years ago and for which

you have no documentation whatsoever. Instead, set

up a process now to track all modifications to the R/3

system, and establish policies regarding long-term

ownership of those modifications. With no one avail-

able to “vouch for” or otherwise defend the presence

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.62

of a modification, you face the risk of not properly

including it in the new release.

✔ Clean House

A release upgrade can be a “clarifying” endeavor.

Some projects accumulate a formidable number of

extraneous clients throughout the landscape, many

with poorly defined roles. The upgrade project is a

great time to re-evaluate the presence of these clients,

delete the unnecessary ones, and simplify the land-

scape and transport process in general. As mentioned

before, database size can have a direct effect on

upgrade runtime, so consider the use of SAP’s

Archiving functionality to remove unnecessary

master and transaction data from the production

database prior to the release upgrade.

Arthur Miller has been employed at SAP America

for over six years. He is the manager of the

Upgrade Competence Center, an internal SAP

support team that has the mission of supporting

SAP consultants and customers by providing

direct support and information about available

services, tools, and accelerators through all

phases of the release upgrade process.

Formerly, he was a technical consultant and

member of SAP’s Platinum Consulting

Organization specializing in R/3 release upgrades,

the Transport Management System, and system

landscape management in general. Prior to

joining SAP, he was a consultant with Andersen

Consulting in Chicago, Illinois.

Mr. Miller, his wife, and two daughters live in

suburban Chicago. He has a Bachelor’s degree

in computer science from Northwestern

University. He can be reached at

arthur.miller@sap.com.

