
31No portion of this publication may be reproduced without written consent.

Transaction Handling in SAP R/3 — What Every Programmer Needs to Know

Transaction Handling in SAP R/3 —
What Every Programmer
Needs to Know

Thomas G. Schuessler

Thomas G. Schuessler is

the founder of ARAsoft, a

company offering products,

consulting, custom

development, and training

to customers worldwide,

specializing in integration

between SAP and non-SAP

components and applications.

Thomas is the author of

SAP’s CA925 “Programming

with BAPIs in Visual Basic”

class. Prior to founding

ARAsoft in 1993, he worked

with SAP AG and SAP

America for seven years.

How is it that R/3 is able to scale so well, handling even very large

numbers of transactions with ease? Understanding the architecture of

R/3 that makes this possible is required for developers who want to

build performance-optimized applications as well as for administrators

in charge of overall system performance. Even developers who create

external BAPI-enabled applications need to understand the implications

of SAP’s architecture.

In this article, I will explain how transactions are handled in R/3.

I will start with a brief discussion of the three-tier SAP client/server

architecture. Then I will dive into the details of transaction processing.

Because the asynchronous update scheme used in R/3 is such an integral

part of this process, I will spend quite a bit of time on this topic. Lastly,

I will cover the consequences of SAP’s architecture for the ABAP

programmers who write BAPIs and external application developers

who use BAPIs in their software.

The SAP R/3 Three-Tier

Client/Server Architecture

In order to provide the scalability required for any serious multiuser

application, R/3 is built upon a three-tier architecture. Figure 1 shows

the three tiers.

These tiers can be run on one or more physical servers. It is

common to see configurations, where:

(complete bio appears on page 46)

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.32

Figure 1 The Three Tiers of an R/3 System

• The standard presentation layer is SAPGUI1, a

graphical user frontend available for Windows and

other platforms.

• No application logic is executed in SAPGUI, it

just displays a screen (called dynpro in the SAP

vernacular) that enables the user to interact with

the R/3 system. Alternatively, you can build your

own presentation layer, one that calls application

functionality using SAP’s Remote Function Call

(RFC) protocol.

• All application logic is executed in the Work

Processes (Services) of an Application Server.

• While there can be only one Database Server

in an R/3 system, multiple Application Servers

can be used to support large numbers of clients.

• The Application Server “speaks” SQL with the

Database Server.

• There can only be one Database Server in an

R/3 system.

• The Database Server can be any of the relational

database products supported by R/3.

• No SAP code runs in the Database Server.3

Presentation

This is the “thin client” GUI layer.

Application Server 2

This is also known as an “R/3 Instance”.

Database Server

This is the relational database

engine of an R/3 system.

• The Database Server and one Application Server,

supporting multiple clients, reside on the same

physical server. 4

• Multiple Application Servers, each supporting

multiple clients, and each running on a separate

physical server, use the same Database Server.

(The Database Server can reside on the same

physical server as one of the Application

Servers.)

1 The protocol used for the communication between SAPGUI and

the Application Server is proprietary, but you can utilize the SAP

Automation GUI Interface to support it in your own applications.

2 Note that “Application Server” and “R/3 Instance” are synonymous.

I will use the term “Application Server” throughout this article.

3 Unless, of course, you are using SAP’s own database, SAP DB

(http://www.sap.com/solutions/technology/sap_db.htm).

4 When I use the term “Server” in this article, I am referring to

software. Otherwise, I will explicitly use the term “physical

server”.

33No portion of this publication may be reproduced without written consent.

Transaction Handling in SAP R/3 — What Every Programmer Needs to Know

Each Application Server consists of the following

elements:

• A Dispatcher, which is responsible for accepting

requests and assigning them to an available Work

Process.

• Multiple Work Processes — Figure 2 lists all

the Work Process types you may find on an

Application Server.

• Buffers, which are there to improve performance.

They are not pertinent to the discussion at

hand.

Each Application Server has two or more Dialog

Services,5 which is where most application activity

takes place. There are two types of requests that are

serviced in Dialog Services:

• Execution of a request on behalf of an

SAPGUI user: Since SAPGUI is a thin client, all

user interactions with SAPGUI (beyond simple

activities like filling in data entry fields) require

processing in the Application Server. When a

user presses Enter, hits a function key, double-

clicks with the mouse, and so on, SAPGUI sends

an appropriate request to the Application Server.

After the request has been processed, the next

screen is sent back to SAPGUI and the user

can continue. The execution of a request on

behalf of an SAPGUI user is known as a

Dialog Step.

• Invocation of an ABAP function via RFC:

R/3 allows external (SAP and non-SAP) systems

to invoke ABAP function modules via RFC.

Each function call (for example, the invocation

of a BAPI) is a request that is processed by a

Dialog Service.

Update Services are responsible for asynchronous

updates on behalf of activities in Dialog Services.

This will be explained in more detail in the next

section. The Enqueue Service allows an application

to gain exclusive (or shared) control of an entity (e.g.,

a particular customer). Before updating something

(e.g., a customer’s address), an application usually

needs to obtain exclusive control to prevent other

users from interfering with the planned update. The

Spool and Background Work Process types are of no

Figure 2 R/3 Work Process Types

Type Role Total Number of Number of Processes

Processes of This of This Type in One

Type in an R/3 System Application Server

Dialog Executes dialog steps and 2 or more 2 or more

remote function calls

Update Performs asynchronous 1 or more 0 or more

database updates

Enqueue Manages enqueues (locks) 1 0 or 1

Spool Controls printing 0 or more 0 or more

Background Runs batch programs 1 or more 0 or more

5 Concrete instances of particular Work Process types are usually called

“Servers” — e.g., “Enqueue Server”. Since then an “Application

Server” would contain other “Servers”, which might be confusing, I

will use the term “Service” instead. SAP’s publications use both

terms in this context, so I guess I can choose the one I find more

appropriate for our discussion.

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.34

relevance for our discussion, so I will not elaborate

on either.

Figure 3 shows a screen shot displaying the

various Work Processes (Services) in one Application

Server. As you can see, there was not a lot of activity

when I took the screen shot. (The difference between

“UPD” and “UP2” processes will be explained later.)

What you do not see in the figure is the Message

Service6. This service runs on just one Application

Server. Its role is to facilitate communications

between multiple Application Servers (and the

Services running inside them). Due to the importance

of the Message Service, the Application Server on

which it runs is given a special name — the “Central

R/3 Instance”.

Figure 3 The “Process Overview” Transaction (SM50)

6 Often called “Message Server” in the R/3 literature. See Footnote 5

for the usage of “Server” and “Service” in this article.

35No portion of this publication may be reproduced without written consent.

Transaction Handling in SAP R/3 — What Every Programmer Needs to Know

The Life and Adventures

of an SAP Transaction

When the term “transaction” is used by programmers,

it is often as a synonym for “Logical Unit of Work”

(LUW), an indivisible grouping of activities that

either succeed completely or are all summarily

disregarded (rolled back).7 When R/3 users call upon

this term, they are generally referring to someone

running a transaction (identified by a transaction

code) in an application system. Since “LUW” nicely

(and unambiguously) identifies the former concept,

I will stick with this nomenclature when referring

to a Logical Unit of Work. I will use the term

“transaction” to denote the latter concept, the more

colloquial one, the one that is more familiar to R/3

users. In this context, a transaction consists of

multiple Dialog Steps, each processed by a Dialog

Service.

Before I move on with this discussion, I

want to direct a few words to those of you who

are now wondering, “This is an article about

update transactions, but by your own definition a

‘transaction’ does not have to access a database at all;

it is just an activity in a system that can be called up

by entering a transaction code.” True, there are lots

of transactions in R/3 that will never update the

database and hence are not central to this discussion,

but we are only concerned with those that do perform

database updates.

Processing an Update Transaction Request

A user who has logged on to R/3 is said to have

a session with R/3. The session exists within a

particular Application Server, but is not limited to a

specific Dialog Service. The session starts with the

logon and ends with the logoff. A user normally runs

sequential, multiple transactions in a session. A user

can also have multiple independent sessions with the

same R/3 system.

Incoming requests from a client are directed to

the first available Dialog Service by the Dispatcher.

This architecture allows a better utilization of

physical resources than if we started a different

process or thread for each session, requiring memory

to be allocated to each of them, rather than sharing it.

The consequences of this approach are as follows:

• Different requests emanating from the same

session are not necessarily processed by the same

Dialog Service.

• One Dialog Service usually services requests

from different sessions in an interlaced fashion.

• Each Dialog Service is an active database (DB)

user executing SQL statements on behalf of the

application code. The database does not know

anything about the different SAP sessions. As far

as it is concerned, there is one user (the Dialog

Service) that keeps executing SQL statements and

needs to manage its database LUWs via Commit

and Rollback calls:

- Commit tells the database that all updates

since the beginning of the LUW can now be

made on the actual database tables.

- Rollback tells the database that the

application ran into a problem and wants

all updates made since the beginning of the

LUW to be discarded. After the rollback, the

application starts with a clean slate.

Both Commit and Rollback mark the beginning

of a new LUW.

Is it clear to everyone that Dialog Steps from

different sessions cannot share the same database

LUW? To do so would mean that they would end

up committing or rolling back updates made by a

different session, which would destroy the integrity

of the database. Hence, the Dialog Service

automatically issues a DB Commit at the end of each

Dialog Step. This guarantees that changes made by

7 The concept of an LUW is usually associated with databases (either

all related database updates are successful or any database updates

done so far have to be taken back).

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.36

different sessions can never end up in the same LUW,

but adds a new and significant complication:

One transaction in one session consists of

multiple database LUWs (one for each of its

Dialog Steps).

This is a problem because the Commit/Rollback

process needs to be under the control of the

transaction in order to keep the database consistent.

If multiple updates must be executed as part of the

same LUW (and this is usually the case in business

transactions), we cannot make any changes unless we

are in the last Dialog Step. Otherwise, our changes in

an earlier Dialog Step would be committed to the

database due to the automatic DB Commit issued by

the Dialog Service, while we do not know yet that

we will ever reach the end of our transaction

successfully.

Requiring an application to make all DB changes

in its last dialog step would solve the problem (and

indeed you can build SAP transactions that do

precisely that). On the other hand, it would be a

severe restriction on the possible design of individual

applications. SAP came up with a more flexible

remedy: using an asynchronous update process for

the actual “application” updates.

The Asynchronous

Update Process

The asynchronous update process works as follows:

1. The application never updates the application

tables directly, but instead writes information

about required updates to a special Update Log

table.8 An entry in that table is called an Update

Record. Multiple Update Records can be written

in multiple Dialog Steps. It is these Update

Records that are committed to the database by the

automatic DB Commit at the end of each Dialog

Step.

2. R/3 will not act on these Update Records until

the application signals that it has successfully

completed all its activities and is ready to commit

all the changes to the actual application tables.

To do this, it executes the COMMIT WORK

statement in ABAP.

3. COMMIT WORK causes the Message Service to

locate an available Update Service and tell it to

start processing all the Update Records for this

session that have been written between the start

of the SAP LUW and the COMMIT WORK

statement. (An SAP LUW starts at the beginning

of a session, and after each COMMIT WORK

and ROLLBACK WORK.)

4. The Update Service will make all application

database changes prescribed in the Update

Records for this session in one database LUW.

This ensures that all related updates are either

completed successfully or not at all (rollback).

5. If the application never issues a COMMIT

WORK, because, for example, it fails in a later

Dialog Step or the user decides to abort the

transaction, the Update Records written by this

session since the beginning of the SAP LUW are

simply ignored and will be garbage-collected

later.

6. If the application wants to discard all previous

changes and start over, it issues the ROLLBACK

WORK statement.

Figure 4 shows all Update Records in my test

system at a particular time. Normally, Update

Records are processed as quickly as possible and then

deleted, so in a low-activity system most of the time

the list contains only Update Records that failed.

Figure 5 shows the various ABAP function

modules that will be called by the Update Service to

8 For information about how to actually do this in an ABAP program

(CALL FUNCTION xxx IN UPDATE TASK ...), you should consult

the ABAP online documentation.

37No portion of this publication may be reproduced without written consent.

Transaction Handling in SAP R/3 — What Every Programmer Needs to Know

Figure 4 Displaying All Update Records (Transaction SM13)

Figure 5 Displaying the Update Modules for One Update Record

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.38

make the application changes. Notice the “V1” and

“V2” assignments that appear under the “Module

type” column. In order to speed up the update

process for an individual transaction, SAP

differentiates between two types of updates:

• “V1” are all updates that constitute “the meat” of

the transaction. All master table and transaction

table updates belong to this category, as well

as any other updates that are necessary for

a consistent database from an operational

standpoint. All “V1” updates are executed as

part of one database LUW as described above.

• “V2” updates are deemed less critical. SAP

maintains redundant rolled-up (accumulated)

statistical information that is the basis for many

reports in the system. When a user wants a report

about product sales per product group per month

for a specific country, for example, it could take

a long time to read all sales orders to find the

required information. Instead, SAP allows for the

definition of Information Structures containing

accumulated data based on criteria defined by the

customer.9 These Information Structures are

automatically maintained by the update modules

of the applications.

The application developer can decide which

Information Structures must be updated as part of the

“V1” processing, and which do not. Those that are

not important enough to be constantly updated would

be updated later, in a separate step (“V2”). The

system administrator can define special “UP2”

processes to handle just “V2” updates, otherwise they

are also processed by normal Update Services, but

only after the process has no more “V1” records to

work on. As a consequence, “V2” updates are not

part of the same database LUW as the associated

“V1” updates, and there is no guarantee that they

will ever be executed successfully. (“V2” updates

can be used for other non-critical updates than just

the Information Structures.)

It is up to the application designer to decide

which updates of a transaction need to be part of the

same database LUW (“V1”), and where a rare failure

does not pose a major threat to the system. An

Information Structure that does not reflect one out of

a million sales orders, for example, can only lead to

marginally different statistics. Also, you can run

batch programs to rebuild an Information Structure

from scratch if you need absolutely accurate statistics.

Usually, all “V2” updates will be successful, of course,

but there is no formal guarantee as for “V1” updates.

Coming Soon from the

SAP Professional Journal

“The BAPI Bible for SAP Programmers:

The Comprehensive Guide to

Integrating SAP Products with

Web, Desktop, and Mobile Applications

Using Java, Visual Basic, and ABAP”

By Thomas G. Schuessler

Visit www.SAPpro.com/BAPIBible for details

Asynchronous Update: Friend or Foe?

Ascertaining whether or not the asynchronous update

process is a help or hindrance requires us to look at

two important consequences of the asynchronous

update service:

• Performance

• Update failure

From a performance standpoint, asynchronous

updating is definitely a good thing. In a

comprehensive business application with a high

degree of integration, one relatively harmless-looking

update (e.g., a new sales order) may cause updates in
9 Of course, SAP delivers some predefined Information Structures as

well.

39No portion of this publication may be reproduced without written consent.

Transaction Handling in SAP R/3 — What Every Programmer Needs to Know

many different application areas that all have to be

part of one database LUW. If the user had to wait for

the completion of all these updates in the last Dialog

Step, that would create very uneven response times

and thus very unhappy users. (Research has shown

that — within limits — it is more important to have

even response times than to reduce the average

response time.)

Using asynchronous updating, the user can

continue to work as soon as the COMMIT WORK

has been issued. The only side-effect here is that if

the user wants to display the status of, for example,

a newly created sales order, immediately after he

created it, and the Update Service is still busy making

all the required changes, the user would get a

message stating that this sales order was still being

processed and would he please retry soon. In my

estimation, this is not really a problem.

What about failed update processing, though?

Since during the updating process code is being

executed, there is always the possibility of failure —

the ABAP code could be wrong, a table space may be

full. In a properly maintained production system,

failure is rare (my screen shot in Figure 4 was taken

on an SAP training system). But still, we have to

understand what happens in the case of a problem.

Well, here we go:

• An entry is made into the SAP System Log.

This entry documents exactly what went wrong

and where. Any system administrator worth

his salary will review the System Log at least

once a day.

• A warning will be displayed on the Alert Monitor

(part of SAP’s Computing Center Management

System, or CCMS). Any good data center will

have someone watching the Alert Monitor at

very short intervals for production systems.

• A message is sent to the user who entered the

transaction.

The ABAP language also offers a variation of

the COMMIT WORK statement, called COMMIT

WORK AND WAIT. (ABAP syntax is sometimes

funny, isn’t it?) If you use that statement, the Dialog

Service will wait until the Update Service is finished

with all “V1” updating activities and then report

back (in a system variable called SY-SUBRC, if

you must know) whether the update was successful

or not.

✔ Tip

Before you rush off to liberally apply the

COMMIT WORK AND WAIT statement all

over your ABAP code, you should consider

the performance implications: The Dialog

Service will be blocked until the Update

Service is done. This can literally take

seconds for big transactions. Making lots

of calls to COMMIT WORK AND WAIT

can single-handedly destroy the

performance of an R/3 system. Before

using this anywhere, discuss it with your

system administrator and consider setting

up dedicated Application Servers for these

transactions!

Enqueue Handling in R/3

There is one more facet of SAP’s transaction

processing architecture that we need to discuss.

How can an application actually enqueue or lock

something? When we start to change something,

it is usually a good idea to have exclusive control

over that entity to avoid an inconsistent database or,

at the minimum, very unhappy users. SAP uses its

own Enqueue Service to control access to entities.

An application requests a lock on a certain entity

(encapsulated in a Lock Object defined in the SAP

Data Dictionary). This request is either granted

(the application now holds a lock) or denied (the

application has to try later or inform its user that

the activity is currently not possible).

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.40

Figure 6 Lock Entry List (Transaction SM12)

Figure 7 Details of One Lock Entry

Figure 6 shows a list of all lock entries at a

certain point in time, and Figure 7 offers detailed

information about the first lock entry in Figure 6.

Locks can be requested in any Dialog Step. They

remain valid until they are released. This usually

happens in the asynchronous update portion of a

41No portion of this publication may be reproduced without written consent.

Transaction Handling in SAP R/3 — What Every Programmer Needs to Know

transaction, after all database updates have been

applied successfully or the database updates were

rolled back due to a problem. This begs the following

question: “What if a user comes into the office in the

morning, starts to, let’s say, update an employee’s

address, gets distracted (checking the SAP stock

price), goes to lunch, and finally, hours after

obtaining the lock, saves the address change, thus

unlocking the employee? How can anyone else

update this employee during that time?” Here is how

this kind of situation is handled: Usually the R/3

system administrator has defined a time-out value that

determines how many minutes of inactivity a user is

granted before he is thrown off the system (which

will release all locks held by that user).

An administrator can also manually intervene.

Using transaction SM12, administrators can check

who is holding a particular lock, and tell the user to

finalize his transaction or leave it. Worst case (for

example, if the user holding the lock cannot be

found and someone else needs to make a rather

important change), the administrator can

terminate the user’s session and/or manually

delete the Lock Entry.10

BAPIs and Transactions

So how does all of what you just read apply to

BAPIs? Well, BAPI calls are handled by the Dialog

Services exactly like Dialog Steps. After each BAPI

execution there is an automatic DB Commit. BAPIs

can request locks and write to the Update Log, just

like any online transaction. This allows us to build

applications where we combine multiple updates

made by different BAPIs into one LUW, provided

the BAPIs do not contain their own COMMIT

WORK statement.

Update BAPIs in 3.1

All update BAPIs in Release 3.1 contain their own

COMMIT WORK statement. This implies that each

update takes place independently of any other update

done through any other BAPI call. While this

approach is sufficient for some application scenarios,

there are many scenarios for which it is not

appropriate. Sometimes we have to combine multiple

activities into one LUW that should succeed

completely or not at all.

Waiting for the Update Service
in the Client Program

The fact that a Release 3.1 BAPI issues its own

COMMIT WORK (but not COMMIT WORK

AND WAIT) has an interesting effect for the client

programmer. Let us assume that we have just

created a sales order by successfully calling the

SalesOrder.CreateFromData BAPI. Immediately

after the BAPI returns control to us, we now call

SalesOrder.GetStatus for this new sales order. If

the asynchronous update process has not finished

processing this order yet, our BAPI call will fail.

In this kind of situation, you want to code a loop

where you

• wait for a specific interval (100 ms, for example),

and

• then retry the GetStatus BAPI call until it

succeeds or you have reached a certain number of

retries (remember: in theory the update process

might fail altogether, which would cause an

indefinite loop).

Update BAPIs in 4.0 and Later

In Release 4.0, SAP changed the concept for

committing BAPI updates. Now BAPIs are not

supposed to commit their own changes anymore,

instead this task is left to the client program. Due

to the upward compatibility requirement for the

BAPIs, this new concept does not affect the BAPIs

introduced in Release 3.1. Unfortunately, it also did

not affect some of the new BAPIs introduced in 4.0!

10 Proper authorization is required, of course. Also, read the warning

message R/3 displays when you attempt to delete a Lock Entry and

make sure that you follow the advice given, otherwise you may

destroy the integrity of the database.

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.42

How is this possible? SAP is a nice company to work

for. You can break the rules without (in most cases)

having to face severe penalties. Therefore, some

developers interpreted the new rule to be just a

suggestion and ignored it.

So how do we find out whether any given update

BAPI does or does not execute its own COMMIT

WORK? According to the rules laid down in the

BAPI Programming Guide (available on the Open

BAPI Network at http://www.sap.com/products/

techno/bapis/edu/docu/45a/prog45ae.doc), any

BAPI added in 4.0 or later that does not follow the

rule about not executing its own COMMIT WORK

should say so in its documentation. (After what I just

told you about people following rules, you can guess

how successful this idea has been.)

In order to help with this situation, SAP has

created an OSS (Online Software Services) note

(131838) that, in theory, lists all the BAPIs that do

their own COMMIT WORK. But, as the note itself

says, “Please note that we cannot guarantee the

completeness of this note.” If you look at Figure 8,

you will see that that is an understatement: Many

BAPIs that are doing their own COMMIT WORK

calls are missing.

If a BAPI (added in 4.0 or later) does not

explicitly document its approach, the only ways to

really know which commit paradigm it adheres to

are as follows:

• Read the source code. This may not be a very

practical suggestion, because you have to read

not only the source code of the function module

implementing the BAPI itself, but also the source

code of any function called in that function

module until you find a COMMIT WORK

statement or reach the end of the source code.

Given the layered architecture of the application

— which is a good idea in principle — this could

mean trudging through a lot of source code,

indeed.

• Test the individual BAPI without issuing an

explicit COMMIT WORK in your client

Figure 8 BAPIs That Are Doing Their
Own COMMIT WORK Calls

CTRequest.CreateTasks

CTRequest.Release

InvestmentProgram.SaveValueReplicas

Kanban.SetInProcess

SalesOrder.CreateFromData

SalesOrder.CreateFromDat1

SiteLayoutModule.Change

BapiService.TransactionCommit11

RetailMaterial.Clone12

application. If the application tables are changed,

then the BAPI obviously commits its own work.

• Finally, some BAPIs let the client program

choose whether they should commit or not

by offering a parameter (most often called

“Nocommit”). Figure 9 is a list of the BAPIs

that I could find in Release 4.6 with that

behavior. I cannot guarantee completeness

of this list!13

Commit and Rollback

in a Client Program

Assuming that we are only using well-behaved

BAPIs, we now need to discuss how to commit

11 This is the BAPI used to actually issue a COMMIT WORK statement

in a program using BAPIs that do not. See below for details.

12 According to the note, “This BAPI does not contain a Commit Work,

however, it requires a Commit Work command after every call since

it writes directly to the database without update.” Please read the

documentation of this BAPI extremely carefully to understand how it

handles commit and why it requires an explicit COMMIT WORK call

by the client program.

13 Actually, two types of BAPIs were omitted on purpose. First, all

Human Resources (HR) BAPIs called “Simulatecreation,” because

they never write anything to the Update Log in the first place.

Why they should have a “Nocommit” parameter is beyond my

comprehension. Second, all country-specific subclasses (e.g.,

EmployeePrivatAdrCH) of non-country-specific HR classes

(e.g., EmployeePrivAddress) listed. The latter was done to save

some space.

43No portion of this publication may be reproduced without written consent.

Transaction Handling in SAP R/3 — What Every Programmer Needs to Know

CustomerInquiry.CreateFromData

CustomerQuotation.CreateFromData

EmplCommunication.Change

EmplCommunication.Create

EmplCommunication.Createsuccessor

EmplCommunication.Delete

EmplCommunication.Delimit

EmployeeAbsence.Approve

EmployeeAbsence.Change

EmployeeAbsence.Create

EmployeeAbsence.Delete

EmployeeAbsence.Request

EmployeeBankDetail.Approve

EmployeeBankDetail.Change

EmployeeBankDetail.Create

EmployeeBankDetail.Createsuccessor

EmployeeBankDetail.Delete

EmployeeBankDetail.Delimit

EmployeeBankDetail.Request

EmployeeBasicpay.Approve

EmployeeBasicpay.Change

EmployeeBasicpay.Create

EmployeeBasicpay.CreateSuccessor

EmployeeBasicpay.Delete

EmployeeBasicpay.Request

Figure 9 BAPIs with Commit Parameters in Release 4.6

EmployeeFamilyMember.Approve

EmployeeFamilyMember.Change

EmployeeFamilyMember.Create

EmployeeFamilyMember.Createsuccessor

EmployeeFamilyMember.Delete

EmployeeFamilyMember.Delimit

EmployeeFamilyMember.Request

EmployeeIntControl.Approve

EmployeeIntControl.Change

EmployeeIntControl.Create

EmployeeIntControl.Createsuccessor

EmployeeIntControl.Delete

EmployeeIntControl.Delimit

EmployeeIntControl.Request

EmployeePersonalData.Change

EmployeePersonalData.Create

EmployeePersonalData.Createsuccessor

EmployeePersonalData.Delete

EmployeePersonalData.Delimit

EmployeePrivAddress.Approve

EmployeePrivAddress.Change

EmployeePrivAddress.Create

EmployeePrivAddress.Createsuccessor

EmployeePrivAddress.Delete

EmployeePrivAddress.Delimit

EmployeePrivAddress.Request

SalesOrder.CreateFromDat1

Figure 10 Commit and Rollback BAPIs

BAPI Name Function Module Name

BapiService.TransactionCommit BAPI_TRANSACTION_COMMIT

BapiService.TransactionRollback BAPI_TRANSACTION_ROLLBACK

(or rollback) the Update Records written by a client

program. Since Release 4.5A, the BapiService object

has two BAPIs for this purpose. They are listed in

Figure 10.

When you call TransactionCommit, all records

written to the Update Log by any BAPIs since the last

call to TransactionCommit (or TransactionRollback,

or the beginning of your program, if you have

not previously called TransactionCommit and

TransactionRollback) will now be processed by an

Update Service. When you call TransactionRollback,

all records written to the Update Log by any

BAPIs since the last call to TransactionCommit

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.44

(or TransactionRollback or the beginning of

your program, if you have not previously called

TransactionCommit and TransactionRollback) will

be discarded, and you start with a clean slate.

✔ Tip

If any BAPI call returns an error type of “A”

(Abort) in its Return parameter, you should

always call TransactionRollback, because

something horrible has happened in R/3 and

you want to be on the safe side and back out

any changes just in case.

Commit and Rollback in 4.0

In Release 4.0, the BapiService object type

does not have the TransactionCommit and

TransactionRollback BAPIs. But do not

despair, the underlying function modules

(BAPI_TRANSACTION_COMMIT and

BAPI_TRANSACTION_ROLLBACK) are there.

The source code required to call these function

modules will differ depending on the middleware

and programming language being used in your

project. Listing 1 shows an example of a call to

BAPI_TRANSACTION_COMMIT using Visual

Basic and the SAP DCOM Connector.

Wait and See

Release 4.5 is the release in which the commit

and rollback functions became “BAPI-fied”.

There was also new functionality added to

the BAPI_TRANSACTION_COMMIT

module, and as a consequence also to the

BapiService.TransactionCommit BAPI. You can

now elect to use the COMMIT WORK AND WAIT

command instead of the simple COMMIT WORK.

Figure 11 shows the new parameters of the BAPI.

Setting the Wait parameter to “X” will cause two

things to happen:

• The BAPI will execute COMMIT WORK AND

WAIT. It will wait for the Update Service to

complete before returning control to the client

program.

Listing 1: Calling BAPI_TRANSACTION_COMMIT in Release 4.0

Dim oSapFunctions As SapFunctions
 Set oSapFunctions = _

 oSession.CreateInstance("SAP.SapFunctions")
 oSapFunctions.Bapi_Transaction_Commit

Figure 11 Parameters of BapiService.TransactionCommit

Parameter Name Data Type Optional Import/Export

Wait Character 1 Yes Import

Return BAPIRET2 Yes Export

45No portion of this publication may be reproduced without written consent.

Transaction Handling in SAP R/3 — What Every Programmer Needs to Know

• The Return structure will be filled in, so that

we can find out whether the Update Service

succeeded or not.

This is clearly an improvement, because now we

can be absolutely sure that the asynchronous update

process has succeeded. Remember my warning about

the dire performance consequences, though. Do

not use this without approval from your system

administrator.

Do Not Mix and Match

Once you have figured out which update paradigm

is implemented by the BAPIs you want to use in a

particular application, you should be very careful

not to mix update BAPIs of different types in the

same SAP LUW. The COMMIT WORK statement

commits all Update Log records for a session. Let us

assume that you want to do three updates within one

SAP LUW. Let us further assume that the first and

third BAPIs called follow the new rules (i.e., do not

contain their own COMMIT WORK), but that the

second BAPI was developed for Release 3.1 and

therefore does call COMMIT WORK. Once you

call this second BAPI, any changes made by the

first and second BAPIs will be committed. The

third BAPI call will be executed in a separate

LUW. There is no way to prevent an old-style

BAPI from calling COMMIT WORK, so the

only solution is not to combine new-style and

old-style update BAPIs.

Transactions in the SAP DCOM
Connector

Anything said so far applies to BAPI programming in

general, regardless of the programming language and

middleware used. The developers of the SAP DCOM

Connector (SDC) did a nice job to support transaction

handling directly in the proxy classes generated by

SDC for the business objects in R/3. Each proxy

class has the following methods:

• Sub CommitWork()

• Sub CommitWorkAndWait()

• Sub RollbackWork()

CommitWork and RollbackWork call function

modules containing COMMIT WORK and

ROLLBACK WORK statements, respectively.

CommitWorkAndWait is not implemented yet

in the current release of SDC (4.6B). When it is

implemented, SAP will need to extend its signature

to include the Return parameter discussed earlier.

If you are using Release 4.0, you can

choose between using either the function modules

BAPI_TRANSACTION_COMMIT and

BAPI_TRANSACTION_ROLLBACK or the SDC

methods CommitWork and RollbackWork.

If you are on Release 4.5 or later, you should

use the BapiService BAPIs TransactionCommit and

TransactionRollback so that you can benefit from the

new Wait parameter, where that is appropriate.

Conclusion

The architecture of R/3 is the basis for the

scalability and performance of the system. Using

an asynchronous update mechanism guarantees

more even response times, but requires a certain

programming style for updating transactions.

Release 4.0 has considerably extended the

usefulness of the BAPI concept by allowing us to

combine multiple update BAPIs into one LUW. You

can take advantage of this in your BAPI-enabled

applications. Should you write BAPIs yourself, you

should definitely use the normal asynchronous update

paradigm for your database changes and not make

any COMMIT WORK calls, in order to let your

BAPIs participate in extended LUWs.

SAP Professional Journal July/August 2000

www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.46

Addendum

In the November/December 1999 issue of this

journal, I published an article called “Simplifying

BAPI Programming with Components”. This article

contained generic information, but also introduced

the beta version of a product called the “ARAsoft

Java BAPI Object Factory”. Based on feedback

from readers and from students of my Java BAPI

programming classes, I was since able to add many

interesting capabilities to this product and simplify

the use of it. The first official release is now

available. To receive the evaluation copy of the

Object Factory, just send me an e-mail. If you are

using Java for your BAPI projects, this product

will save you significant amounts of time.

Thomas G. Schuessler is the founder of ARAsoft

(www.arasoft.de), a company offering products,

consulting, custom development, and training to

a worldwide base of customers. The company

specializes in integration between SAP and non-

SAP components and applications. ARAsoft offers

various products for BAPI-enabled programs on

the Windows and Java platforms. These products

facilitate the development of desktop and Internet

applications that communicate with R/3. Thomas

is the author of SAP’s CA925 “Programming with

BAPIs in Visual Basic” class, which he teaches in

Germany and in English-speaking countries. His

book on the same subject, “The BAPI Bible for

SAP Programmers: The Comprehensive Guide to

Integrating SAP Products with Web, Desktop, and

Mobile Applications Using Java, Visual Basic,

and ABAP”, will be published soon by the SAP

Professional Journal. Thomas is a regularly

featured speaker at SAP TechEd and SAPPHIRE

conferences. Prior to founding ARAsoft in 1993,

he worked with SAP AG and SAP America for

seven years. Thomas can be contacted at

thomas.schuessler@sap.com or at tgs@arasoft.de.

