
3No portion of this publication may be reproduced without written consent.

Extending and Modifying the SAP Standard with Business Add-Ins and the New Modification Assistant

Extending and Modifying the SAP
Standard with Business Add-Ins
and the New Modification Assistant

Karl Kessler

Karl Kessler studied

Computer Science at the

Technical University of

Munich, Germany. He

joined SAP AG in 1992

as a member of the basis

modeling group. In 1994,

he joined the product

management group of the

ABAP/4 Development

Workbench. Since 1997,

Karl has been product

manager for SAP’s applica-

tion engineering tools.

B
ETWEEN CUSTOMER EXITS AND MODIFICATIONS lies a

great development divide. Customer Exits provide predefined

exit points from SAP source code, enabling you to insert your

own code and locally enhance a standard application without having to

dive into SAP application logic. To actually extend or modify a standard

application requires the more powerful adaptation techniques found in

the ABAP Workbench. Here, advanced programming knowledge is a

must, as you are actually diving into the application’s logic in order to

make changes. As a rule, most developers only employ modifications

when absolutely necessary, because the modified objects cannot be

automatically reimported into your system after an upgrade. All modifi-

cations must be compared and adjusted manually.

Up until now, Customer Exits and Modifications were the only

development techniques available to developers for extending and modi-

fying standard SAP applications. There was nothing in between these

two extremes. But that all changes with Release 4, where R/3 basis

technology now offers two new techniques — Business Add-Ins (as of

Release 4.6) and the Modification Assistant (Release 4.5):

• Business Add-Ins are predefined exit points in a source that allow

developers to either insert their own logic during implementation or

simply adopt one of the standard supplemental solutions provided

by SAP. In contrast to Customer Exits, Business Add-Ins are not

bound by a two-system infrastructure (SAP and customers), but

instead allow for multiple levels of software development (by SAP,

partners and customers, as country versions, industry solutions, and

the like). In removing some of the restrictions inherent to Customer

(complete bio appears on page 16)

SAP Professional Journal Premiere Issue

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.4

Exits, Business Add-Ins allow different software

producers to work independently in a veritable

“software supply chain.” Business Add-In logic

can be created at each level within such a system

infrastructure. Implementation of the add-ins

themselves can also be undertaken at each level

of development and their delivery to subsequent

levels is now allowed.

• The Modification Assistant, as its name implies,

makes it easier to modify the R/3 System. It

works behind the scenes to register all the modifi-

cations you make to objects in the standard sys-

tem in a separate layer in the ABAP Workbench.

At the same time, Workbench tools have been

redesigned to operate in “modification mode,”

which prevents you from inadvertently overwrit-

ing code, making an unwanted deletion, etc. You

will find that when modifying the standard, the

process is less error-prone and far easier to handle

when you go to upgrade your system because

modifications made using the Modification Assis-

tant can generally be reimported during a release

upgrade without manual intervention — i.e.,

reimporting of those modifications takes place

automatically, in many cases.

 Figure 1 gives you a feel for where Business

Add-Ins and the Modification Assistant fit within the

spectrum of techniques that allow you to adapt the

standard SAP R/3 applications.

In this article, I will introduce you to both

Business Add-Ins and the Modification Assistant,

with descriptions of how they will impact your cur-

rent R/3 environment and do’s and don’ts for using

these powerful new modification techniques.

Business Add-Ins

Specific country versions and industries often require

user requirements too specific to be included in the

standard SAP delivery. Business Add-Ins accommo-

date the need to attach additional software to standard

SAP source code.

Figure 1 Where Business Add-Ins and the Modification Assistant Fit In

Flexibility

Ease of use

Modifications

Assisted Modifications

Business Add-Ins

Customer Exits

5No portion of this publication may be reproduced without written consent.

Extending and Modifying the SAP Standard with Business Add-Ins and the New Modification Assistant

Take, for example, the benefit calculation

of the payroll in Human Resources. If employees

participate in benefit plans, calculation procedures

are performed that require tax calculations that

differ from country to country. Consequently,

country-specific processing needs to be factored

out. Here, neither Customer Exits nor Modifications

are the ideal development choice — Business

Add-Ins are. Business Add-Ins can be defined

according to filter values. This allows you to

control add-in implementation and make it dependent

on specific criteria (on a specific Country value,

for example). Customer Exits are not aware of the

specific environment for a country version (nor can

they support multiple implementations that operate

in parallel in one installation), which means that

for this HR scenario, you would have to rely on a

modification of the SAP standard. When you do

that, you compromise the idea of an upward

compatible extension.

Let’s take a look now at how you would actually

enhance a program using a Business Add-In.

Enhancing Programs with

Business Add-Ins

A single Business Add-In contains all of the inter-

faces necessary to implement a specific task imple-

mentation. All ABAP sources, screens, GUIs, and

table interfaces created using this enhancement tech-

nique are defined in a manner that allows customers

to include their own enhancements in the standard.

An overview of the enhancement process is

shown in Figure 2.

A single Business Add-In contains
all of the interfaces necessary to
implement a specific task implementa-
tion. All ABAP sources, screens, GUIs,
and table interfaces created using this
enhancement technique are defined
in a manner that allows customers to
include their own enhancements
in the standard.

Figure 2 Enhancing Programs with Business Add-Ins

Application

Adapter
class:
Distribution
Filtering
Control

In
terface

In
terface

Country
Version

In
terface

Industry
Solution

SAP Professional Journal Premiere Issue

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.6

 In order to enhance a program, a Business Add-

In must first be defined. Application developers

create an interface for the add-in. Enhancement

management takes this interface and generates an

adapter class for implementing it, thus opening a path

for implementations created by partners or customers.

Your developer then creates an instance of the

adapter class in the application program and calls the

corresponding method at the appropriate time. The

application interface definition ensures that consistent

data is passed to the different add-in implementations.

The adapter class, which is automatically generated

by the system, takes care of calling and filtering out

the proper components. (I will be providing details on

all these activities.)

Customers can find the enhancements present in

their system in the IMG and in the component hierar-

chy. To actually use a Business Add-In, customers

must create their own implementation of that add-in,

implement methods and user interface enhancements,

and then activate their implementations of the

enhancement. The enhancement’s active components

are then called at runtime.

Defining Business Add-Ins

In order for application developers to include Busi-

ness Add-Ins in their programs, they must define an

interface for the enhancement in transaction SE18 and

call this interface at the appropriate point in their

application program. Customers can then choose the

add-in and implement it according to their needs.

In order for application developers to
include Business Add-Ins in their
programs, they must define an interface
for the enhancement in transaction SE18
and call this interface at the appropriate
point in their application program.
Customers can then choose the add-in
and implement it according to their needs.

Say, for example, you want to be able to convert

strings in your application program. You also want

users to determine how their strings are converted

themselves. As the application developer, you define

an enhancement consisting of an interface with a

method. A changing parameter is used to transfer

strings.

In order to create an add-in like this, you would

proceed as follows:

1. Start the Add-In Manager (transaction

SE18).

2. Name your Business Add-In.

3. Associate an ABAP Objects Interface with your

add-in. You can change the name of the interface

that is generated, if you like.

4. Add method definitions to the interface.

The system will take you to the Class

Builder.

5. Add parameters to your methods.

6. Create documentation for your add-in.

Whenever you assign a method to an interface,

the corresponding executing class is generated. The

code generated cannot be altered in the initial expan-

sion phase.

Calling Add-Ins from Application Programs

During Business Add-In definition, enhancement

management generates an adapter class that imple-

ments the interface. Application developers use

factory methods to create instances of adapter classes

during initialization. The instance methods are then

called at the appropriate time.

7No portion of this publication may be reproduced without written consent.

Extending and Modifying the SAP Standard with Business Add-Ins and the New Modification Assistant

The adapter class methods generated by add-in

management decide if multiple active implementa-

tions should be called. If necessary, these implemen-

tations are subsequently executed. The application

program itself simply calls the adapter class methods;

it does not need to know which implementations are

actually being called.

Here is an example of how to program a Business

Add-In call into your ABAP source code. It builds

upon the string conversion example:

Report businessaddin.

class cl_exithandler definition load.

"declaration

data exit type ref to if_ex_businessaddin.

"interface reference

data word(15) type c value 'Business Add-In'.

"string you want to change

start-of-selection.

call method cl_exithandler=>get_instance

"factory method call

changing instance = exit.

write:/'Please click here'.

at line-selection.

write:/ 'Original word: ',word.

call method exit->method "add-in call

changing parameter = word.

write:/ 'Changed word: ',word.

In order to be able to call static methods, you

must declare the corresponding class in ABAP

Objects. This is why the “class … definition load”

(in this case, “class cl_exithandler definition load”)

statement is necessary for the factory class.

A variable for object reference is also necessary

for the method call. Use the “data” statement to

create it and type it to the interface.

During Business Add-In definition,
enhancement management generates
an adapter class that implements the
interface. Application developers use
factory methods to create instances of
adapter classes during initialization.
The instance methods are then called
at the appropriate time. The adapter
class methods generated by add-in
management decide if multiple active
implementations should be called. If
necessary, these implementations are
subsequently executed.

Implementing Business Add-Ins

A list of the Business Add-Ins present in your system

can be found either in the IMG or in the component

hierarchy. The enhancements’ names and corre-

sponding documentation should help you decide the

add-in for which you want to create an implementa-

tion. During implementation creation, a class for

implementing the enhancement’s interface is also

created. Implementations are discrete transport

objects and lie within the namespace of the person or

organization implementing them.

In order to create an implementation for the string

conversion example, the add-in (in this case, the

interface’s method) needs to be filled with logic that

converts the string. This logic will be run through

every time the add-in is called from the application

program.

To create an implementation, proceed as follows:

1. Start the Add-In Manager or select the corre-

sponding activity in the Implementation Guide.

2. Enter a name for the implementation.

3. Associate an add-in with your implementation.

SAP Professional Journal Premiere Issue

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.8

Figure 3 Implementing Add-In Methods

4. Add code to the interface’s methods (see

Figure 3).

In order to implement a method for your add-in,

insert the desired source code for the implementation

between the following method statements, which are

automatically provided to you by the system:

if_ex_businessaddin~methode.
...
endmethod.

Numerous implementations may exist for a Busi-

ness Add-In that only supports a single implementa-

tion. However, only one implementation can be

active for these kinds of Business Add-Ins at any one

time.

Filter-Dependent Business Add-Ins

Business Add-Ins may be implemented depending on

a specific filter value. If the standard allows for an

9No portion of this publication may be reproduced without written consent.

Extending and Modifying the SAP Standard with Business Add-Ins and the New Modification Assistant

enhancement for different country versions, for

example, it is likely that various partners will want

to implement this enhancement. Distinct country-

specific implementations can then be created and

activated according to country.

Enter a filter type when defining your enhance-

ment (a country or industry sector, for example). All

methods created in the enhancement’s interface have

filter value FLT_VAL as their import parameter. The

application program provides the filter value to the

enhancement method. The method then selects the

active implementation for that value.

Defining a Filter-Dependent Business Add-In

To define a filter-dependent Business Add-In, you

must associate a filter type to your add-in.

Filter types are data elements and must fulfill the

following criteria:

• The data element’s domain may contain a maxi-

mum of 30 characters and must be of type

Character.

• The data element must either have a search help

with a search help parameter of the same type as

the data element, and this parameter must serve as

both the import and export parameter, or the

element’s domain must have fixed domain values

or a value table containing a column with the

same type as the data element.

If need be, you can create such data elements

yourself.

Now create an interface with a method. Be aware

that for each method you create in the interface of a

filter-dependent enhancement, the appropriate filter

value must be defined as the import parameter so that

the application program can provide the filter value to

the enhancement method. The method then selects

the active implementation for that value. The filter

value is declared using parameter FLT_VAL and is

preset in the list of parameters.

Calling a Filter-Dependent Business Add-In
from an Application Program

As previously discussed, application developers

create an instance of the generated class in their

application programs and call the corresponding

method at the appropriate time. The filter value is

passed to the method as an export parameter, as

shown below:

Report businessaddin.
class cl_exithandler definition load.
data flt type usa_land.
data exit type ref to if_ex_businessaddin.
data word(15) type c value 'Business Add-In'.

start-of-selection.
perform formatlist.
call method cl_exithandler=>get_instance
changing instance = exit.
write:/ 'Please click here'.

at line-selection.
new-page.
write:/ 'Original word: ',word.

call method exit->method
exporting
flt_val = flt.
Changing
parameter = word.

write:/ 'Changed word: ',word.

The subroutine formatlist looks like this:

form formatlist.
write:/'USA ->Conversion to upper
case'.
flt = 'USA'.
hide flt.
write :/'Ireland ->Conversion to upper
case'.
flt = 'Ireland'
hide flt.
write :/'Italy ->Conversion to...'
flt = 'Italy'.
hide flt.
endform.

SAP Professional Journal Premiere Issue

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.10

Implementing a Filter-Dependent Business
Add-In

If you want to use a filter-dependent Business Add-

In, you will need implementations for each filter

value you intend to use. Multiple filter values may

use the same implementation, however.

When implementing a filter-dependent Business

Add-In, proceed as follows:

1. Create an implementation by referring to the

corresponding Business Add-In definition.

2. Select a characteristic filter value for the imple-

mentation. In principle, it is possible to define

multiple characteristic filter values for each

implementation.

3. Use the Class Editor to fill the interface method.

4. In the string conversion example, you would

make the following entries for each country:

USA:

translate parameter to upper case.

Ireland:

translate parameter to lower case.

Italy:

translate parameter using ‘iItTaAlLyY’.

5. Activate your implementations.

Now, whenever you execute the report program

described above, different country-specific imple-

mentations are executed.

Multiple-Use Business Add-Ins

The Business Add-In enhancement technique

differentiates between enhancements that can only

be implemented once and enhancements that can

be used actively by any number of customers at the

same time. This feature allows you to couple the

SAP standard with additional solutions based on

the publish/subscribe pattern for communication.

The Business Add-In enhancement
technique differentiates between
enhancements that can only be
implemented once and enhancements
that can be used actively by any number
of customers at the same time. This
feature allows you to couple the SAP
standard with additional solutions based
on the publish/subscribe pattern for
communication.

You can differentiate between single- and

multiple-use Business Add-Ins. Single-use add-ins

are based on procedures, whereas multiple-use

add-ins have characteristics similar to those of events.

In the first case, the program waits for the enhance-

ment to return something, usually a return code.

Benefit calculation in HR is a good example of this

type of enhancement. Here, different calculations

can be performed according to whichever implemen-

tation is active. With multiple-use add-ins, an event

is processed in program flow that may be of interest

for other components. These components can then

use this event as a hook to hang their own additional

actions on; nothing is returned to the original

program.

Say, for example, you want your application to

continue processing indexes with a different compo-

nent after you have saved (in other words, the system

should allow you to use an add-in after saving).

Since this is a good callup point for numerous

different functions, you want to create an enhance-

ment at this juncture that can be used by multiple

subscribers.

The number of subscribers that subsequently call

the event and hang their own additional actions on it

is of no importance to the application program calling

the add-in. Active implementations are called in the

adapter method.

11No portion of this publication may be reproduced without written consent.

Extending and Modifying the SAP Standard with Business Add-Ins and the New Modification Assistant

Coming Soon…

Normally, a Business Add-In contains an interface

and other additional components such as function

codes for menu enhancements. Starting with the next

release, Business Add-Ins will also include enhance-

ments for screens and tables.

Helpful Hints

✔ SAP guarantees the upward compatibility of all

Business Add-In interfaces. Release upgrades do not

affect enhancement calls from within the standard

software nor do they affect the validity of call inter-

faces. You do not have to register Business Add-Ins

in SSCR.

✔ Business Add-Ins are not a replacement

for Customer Exits and there is no automatic

conversion from Customer Exits to Business

Add-Ins.

✔ Enhancements, interfaces, and generated classes

all lie in the namespace for application development.

Business Add-In implementations lie in the respective

namespaces of the people who created them. So, if

you plan to distribute your Business Add-In (both

definition and implementation), you should consider

working in your own namespace.

✔ The standard naming conventions for repository

objects apply for Business Add-Ins. Start your imple-

mentation with Z or Y.

✔ Give careful thought to the kind of Business Add-

In you want to design, because changing from one

kind to another can have consequences. To change

from a standard to a filter add-in, for instance, might

invalidate your generated interfaces, thereby invali-

dating potential implementations.

✔ Be aware that Business Add-In Interfaces

are based on ABAP Objects. Parameter passing

defaults to reference. Internal tables do not have

a header line.

✔ Calling a Business Add-In requires allocating an

instance of your add-in class. This can cause perfor-

mance problems if your add-in is heavily called. The

benefit calculation mentioned earlier uses a table of

references that are reused whenever a calculation is

done.

✔ When working with multiple-use Business Add-

Ins, do not use IMPORTING parameters, since you

work in publish/subscribe mode with multiple event

consumers.

✔ If you want to ask your Business Add-In imple-

mentation for something like status information and

later inform it about some state change, I recommend

you use standard add-ins that use methods with an

export-only interface.

✔ Add-ins are a complementary technology

and do not contrast with BAPIs. You can think

of them as an outbound call, whereas a BAPI

represents an inbound call in most cases.

✔ Design your add-in with a local scope in

mind. If you add too many dependencies to your

program, you will encounter modification-like

problems.

Enhancements, interfaces, and gener-
ated classes all lie in the namespace
for application development. Business
Add-In implementations lie in the
respective namespaces of the people
who created them. So, if you plan
to distribute your Business Add-In
(both definition and implementation),
you should consider working in your
own namespace.

SAP Professional Journal Premiere Issue

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.12

Figure 4 Integrating the Modification Assistant into the ABAP Workbench Tools

Tool New, Integrated Functions Description/Example

ABAP Editor Overlay source code in any module Extend an SQL statement

Append and delete source code Add functionality, remove functionality

Screen Painter Add elements Add custom fields or

(extra fields and controls) subscreen

Modify field attributes Change an input field into an output field

Change the layout Customize the screens

Modify the flow logic Provide logic to handle additional fields

Menu Painter Insert, replace, and delete Add functionality

menu entries, menus, pushbuttons

Function Builder Add a customer function module Requested by many IS

to an SAP function group solutions

Add new parameters to a function module Upward compatible extension

Modify the parameter types Necessary for structural changes

Text Elements Add new text and modify existing text Add specific terminology

ABAP Dictionary Change data element attributes Change keywords and headings

Documentation Expand or replace long text Add customer documentation

The Modification Assistant

From Release 4.5, the Modification Assistant will

make it considerably easier to modify the R/3 Sys-

tem. Its greatest benefits are the time and money

saved during release upgrades. I predict that with the

new Modification Assistant, traditional modifications

will become nearly obsolete.

The Modification Assistant registers all modifica-

tions that you make to objects in the standard system,

and administers them in a separate layer in the ABAP

Workbench. When you modify an object, the Work-

bench tools operate in a new modification mode,

which, by only offering a selection of appropriate

functions, prevents you from making any unwanted

changes by, for example, overwriting code. You

cannot modify the object directly, and any modifica-

tion can be undone at the push of a button, allowing

you to restore the standard version easily at any time.

Modifications made using the Modification Assistant

can often be reimported automatically during a

release upgrade.

Take a look at Figure 4, where you see a list of

the new functions that have been added to the indi-

vidual ABAP Workbench tools. In integrating the

Modification Assistant into the ABAP Workbench,

SAP placed great emphasis on ease of use and

security.

From Release 4.5, the Modification
Assistant will make it considerably
easier to modify the R/3 System. Its
greatest benefits are the time and
money saved during release upgrades.
I predict that with the new Modification
Assistant, traditional modifications will
become nearly obsolete.

13No portion of this publication may be reproduced without written consent.

Extending and Modifying the SAP Standard with Business Add-Ins and the New Modification Assistant

I hope the emphasis on ease of use becomes

immediately apparent to you when you look at

Figure 5, which presents the ABAP Editor in modifi-

cation mode. A modification appears cleanly sur-

rounded by comment braces indicating the type of

the modification (insertion, replacement, deletion)

together with the current date and correction number.

As for the emphasis on security, this comment is

added automatically and cannot be changed by the

end user. The rest of the source is displayed in view-

only mode. Note that modifications in the user GUI

use different colors and fill patterns to indicate

modified sub-objects.

In each of the individual ABAP Workbench tools,

there is now a local overview function that allows you

to display object-specific modifications as a hierarchi-

cal list. Additionally, the Modification Browser

Figure 5 Modification Overview, ABAP Editor

SAP Professional Journal Premiere Issue

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.14

(transaction SE95) provides a system-wide overview

that you can call directly from the ABAP Workbench

menu. You can use either of these tools as a starting

point for modifying an object.

Easier Adoption of Modification Means
Easier Upgrades

Because the Modification Assistant logs all of your

modifications, the upgrade procedure is simplified.

You adjust your modified objects using transaction

SPAU. The objects are displayed in a hierarchical list

similar to the Modification Browser. There are two

possible ways of adopting a modification in the

upgraded system:

• Case 1 — Automatically. You can reimport

your modification with a single mouse-click.

All of the modules that you have changed and

that have not been re-delivered by SAP in the

upgrade can be adopted straightaway. The

fine granularity of the comparison — right

down to modularization level — ensures that

many conflicts can be avoided. The following

is a list of circumstances in which modifications

can usually be reimported automatically:

- New modules created by the customer

- New screen elements, as long as there is

enough room on the screen

- Changes to screen element attributes

- Changes to the layout, as long as there are no

positioning conflicts

- Additions in the flow logic

- Changes to menus and menu texts, as

long as they do not conflict with the

SAP version

• Case 2 — Semi-automatically. Here, the system

identifies a conflict (for example, an object name

used by SAP, a layout conflict in screens or

menus, and so on) and advises you on how to

solve the problem (consistent renaming). If the

conflict arose in a source code modification,

the splitscreen editor appears. You can then

copy the modifications from your modified

program version and paste them into the new

standard.

The overview distinguishes between case 1

and case 2 using different color stoplights, as

shown in Figure 6. Once a modification has been

processed successfully, you can remove it from the

overview.

A typical modification example is the handling

of custom fields. Initially you would go to the

dictionary and create an APPEND structure for some

SAP standard table. Next you would add those fields

on the maintenance screen for that table. If you are

able to manage the fields in a subscreen, you can

better encapsulate your source code modifications,

which results in less conflicts during upgrade. Once

you have added your custom fields, you might add

additional menus or pushbuttons to process custom

functionality.

Because the Modification Assistant logs
all of your modifications, the upgrade
procedure is simplified. You adjust your
modified objects using transaction
SPAU. The objects are displayed in a
hierarchical list similar to the Modifica-
tion Browser. There are two possible
ways of adopting a modification in the
upgraded system: automatically and
semi-automatically.

Helpful Hints

✔ For technical reasons, you can switch off the

Modification Assistant for a development object.

Thus you are losing any upgrade support other than

displaying and comparing versions. The correspond-

ing objects will nevertheless be present in the upgrade

overview.

15No portion of this publication may be reproduced without written consent.

Extending and Modifying the SAP Standard with Business Add-Ins and the New Modification Assistant

Figure 6 Adjusting Modifications After the Upgrade

✔ When using the Modification Assistant

for the very first time, a good place to

start is the maintenance of preliminary corrections,

especially in the area of user interface elements

where many tedious tasks can often be

automated. Using the Modification Assistant

for maintenance of preliminary corrections will

save a lot of time when applying hot packages

later on.

✔ The Modification Assistant is activated whenever

you try to change a repository object that is not main-

tained as an original in your system. The correspond-

ing tool will switch automatically into modification

mode. As usual, you must open a Repair for Trans-

port Purposes.

✔ Always keep in mind that a modification might

affect the functional behavior of your application.

SAP Professional Journal Premiere Issue

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.16

Therefore, never make a modification if you can

implement the functional change by means of SAP

standard customizing or the various personalization

tools that SAP offers.

✔ Keep your modifications in a compact manner.

Think of them as add-ins that were not originally

defined by SAP. Fewer modifications means fewer

conflicts during the upgrade.

✔ I would encourage IT managers to use the

modification and upgrade overview functions to

examine the modifications inside the development

system.

✔ The modification protocol (log) is maintained in

system tables of the ABAP Workbench. When doing

a modification, the log is applied to the original and

saved at the original’s location. If you later transport

the modified original to your production system, the

modification log remains in your development sys-

tem. That means that modifications are delivered via

the source. The upgrade support is based on the

modification log. Other system components like the

runtime environment and the correction and transport

system are not aware of the modification log.

Conclusion

SAP has a long tradition in offering technology

to derive customized industry solutions out of the

core R/3 System. Only a set of well-defined

tools like the ones mentioned above can help

with the task to adapt the standard to meet the

customer’s need. If you follow the extension and

modification guidelines of SAP you will benefit

from the new features of ABAP Workbench as of

Release 4.

Karl Kessler studied Computer Science at the

Technical University of Munich, Germany. He

joined SAP AG in 1992 as a member of the basis

modeling group, where he gained experience with

SAP’s basis technology. In 1994, he joined the

product management group of the ABAP/4

Development Workbench. Since 1997, Karl

has been product manager for SAP’s application

engineering tools. Karl can be reached at

karl.kessler@sap-ag.de.

