
23No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

An Introduction to SAP’s
New and Improved
Frontend Printing
Stefan Fuchs

Dr. Stefan Fuchs has
worked since 1987
 developing new operating
system concepts for the
Chair for Operating
Systems at the Technical
University of Karlsruhe,
Germany. Since 1995,
Stefan has been working
for SAP Germany, in the
Basis Department, on the
development of the R/3
Spool System.

How many of you, as R/3 administrators, have had to define an output
device1 for each and every user who wants to print to his or her per-
sonal, frontend printer? And how many of you, after creating dozens,
hundreds, or even thousands of output device definitions, have had to
contend with end-user complaints because:

• Users do not have a way to interactively select an output device via
a familiar and intuitive Windows dropdown box, as is the case with
most applications from which they print?

• Users can only print to a fixed printer name (or, in newer R/3
releases, to their current default printer) because the name is a fixed
part of the output device definition?

• Users who work on a different terminal each day and who require
local output must locate the output device that is associated with
their current terminal?

• Users on terminals with a dynamic IP address (e.g., laptops that
connect by a phone line) have difficulty printing to their frontend?

These are common R/3 Release 3.0 frontend printing scenarios.

A clean and easy way for users to print directly from the SAPGUI
has long been an elusive goal. The reason is that R/3 is embodied in a
three-tiered client/server structure, where print data is never completely
available at the frontend. Only the visible portion of the data is trans-
ferred to the GUI for display. So R/3 is very different from most Win-
dows applications, for example, in the sense that R/3 is actually not

(complete bio appears on page 48)

1 An output device is a dedicated object in an R/3 configuration. It denotes the logical
destination of an output request, while a printer is an actual, physical printing device.

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.24

running on the frontend.2 Only the GUI is. That
being the case, SAP could not simply add a print
function to the GUI to print out all the data associated
with a spool request. We had to develop a new spool
access method that allows the transfer of print data
from the application server to the current location of
the SAPGUI, and from there have the data sent to the
local spooler on the user’s particular frontend. That
new spool access method — method “F” — is what
we at SAP call “frontend printing.”

Frontend printing makes life a lot easier for both
end users and administrators. The predecessor of
frontend printing, the “local print” functionality in
transaction SP01, can only be used from within trans-
action SP01.3 This means that a user first has to
choose an arbitrary output device and then create a
spool request without the “immediate” print option.
Afterward, the user has to call transaction SP01,
locate his or her spool request, click the “Print” but-
ton, and then click the “Print locally” button. This
gives rise to a pop-up, like the one shown in Figure 1,
with four parameter lines that most users do not really
understand.

or the output can take on an appearance that was not
intended by the user. How many of your users know
that the Program that is entered on the next line to
execute the printout is normally the SAPLPD pro-
gram, but theoretically could be any command line
that does printout? Do most of your end users know
that the Parameters are parameters to the program
that was specified in the preceding line? For
SAPLPD, the -f parameter gives the filename of the
temporary print file and the -p parameter is followed
by the name of the Windows printer that should
receive the output. And for our bonus round, how
many of your users would be able to explain that the
File name in the last entry specifies the name of the
temporary print data file that is downloaded to the
frontend? This name must be the same as the one
supplied with the -f parameter in the preceding line,
otherwise SAPLPD would not find the print data.
(The file automatically gets deleted by SAPLPD after
processing the printout.)

With frontend printing, users don’t have to be
concerned with any of these details. In fact, they
never see the pop-up shown in Figure 1. Instead, they
are presented with the standard print pop-up shown in
Figure 2. In order to do frontend printing, the user
just has to enter the name of an R/3 frontend output
device (“LOCL” in this example).

As of Release 4.6A, this print pop-up has been
extended to allow the selection of the frontend
printer, as shown in Figure 3. After entering a
frontend output device name (“LOCL”), a dropdown
box appears that lists all the printers that are available
on the frontend. The user can interactively select a
printer from this list, just as he or she would in any
Windows application.

Since this solution revolves around a single,
generic output device definition that can support all
frontend users, administrators don’t have to do a lot
of work to facilitate this functionality. There is no
need to establish a definition for every frontend
printer in your R/3 environment. One generic defini-
tion will do the trick. R/3 takes care of the rest. New
terminals with attached printers can even be added to3 Local print functionality is only available in Release 3.x, not in 4.x.

Figure 1 The “Local Print” Pop-Up

2 Frontend printing does not only apply to Windows frontends. It is
supported on other platforms as well.

How many of your end users, for example, under-
stand that the Device type parameter should be the
same type as the device type of the output device that
was selected to generate the spool request? When
they are not the same type, printing errors can happen

25No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

Figure 2 The R/3 Print Pop-Up with “LOCL” Entered As the Output Device

Figure 3 R/3 Release 4.6A Dropdown Box of Available Windows Printers

the R/3 System without any additional configuration
work necessary in the R/3 spooler.

Frontend printing is not limited to R/3 Release
4.6A. By applying the proper kernel patches and Hot
Packages (which I will describe in detail later in this
article), you can incorporate frontend printing — with
some limitations — into your printer landscape in any
R/3 System starting with 3.0D.

How does the spool access method “F” work?
How does it remedy the end-user problems listed at
the very beginning of this article? How does it elimi-
nate the need for multiple output device definitions
for all users who want to print to their frontend?
What do administrators need to know in order to
ensure its successful deployment? What are its
benefits and limitations? These are questions that
will be answered in this article as we review:

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.26

• The fundamental differences between printing
data to a frontend printer with spool access
method “F” versus printing to a frontend printer
via traditional host spooler access methods like
“U,” “S,” “L,” and “C”

• The benefits and limitations of the new spool
access method “F”

• What administrators need to know about different
versions of the four components that support
frontend printing — the R/3 kernel, ABAP-based
communication methods, the SAPGUI/LPRINT
RFC-Server, and SAPLPD

• A typical R/3 Release 4.x frontend printing setup
for a Windows 32-bit environment, using
SAPLPD

• Defining an output device for a frontend printer
in a 3.x system

• Configuring non-standard systems

Frontend Printing with Method
“F” — More Flexible Than
Methods “U,” “S,” “L,” or “C”
Those of you who support Release 3.0 R/3 environ-
ments have basically two choices for configuring an
output device to work off a user’s frontend. You can
use a network access method like “U” or “S,” or you
can use a local access method, like “L” or “C.”
Neither is ideal:

• Network access methods: Whether you use
method “U” (for the Berkeley RFC1179 protocol)
or method “S” (for SAP’s own protocol), you
have to enter the IP address (or the name that gets
resolved into an IP address) of the target com-
puter where the LPD is running and waiting for
print jobs. You also have to enter the name of the
target printer. Based on this IP address and target
printer name, there is a one-to-one fixed mapping
between an output device definition and a physi-
cal printer. This means there has to be one output
device definition in R/3 for each and every
frontend where printing to a personal printer is to
be supported.

Needless to say, while it is possible to employ
these network access methods for frontend print
requests, it is not recommended. Any time a user
switches off his or her PC, you run the risk of
network timeouts at your R/3 spool system, which
can seriously impede normal printing operations.

• Local access methods: With the local access
methods “L” and “C,” you only need to enter the
name of the target printer, which is defined on the
local R/3 application server.4 There is no need to
enter the IP address information because this
information is stored in the remote printer
definition on the local application server.

In the spool system of that application server, you
once again have to enter the name of the target
host (or the IP address) and the printer name on
that host. This again implies a one-to-one fixed
mapping of an output device definition to a
physical printer. The only benefit of a local
access method over the network access method
is that network problems have no influence on
the R/3 spool work process; it doesn’t have to
deal with network timeouts in such a configura-
tion. This means other R/3 print jobs are pro-
cessed even if there are network problems with
some frontend PCs.

Of the two options, local access methods are the
better configuration alternative, since they do not
delay other print requests the way that network access
methods can. They are still bound, however, by that
cumbersome one-to-one fixed mapping between an
output device definition and a target printer.

Flexibility Through Generic Mapping

In order to get rid of that fixed mapping, method “F”
does away with the need to enter a dedicated printer
name and, more important, does away with the need
to enter IP address information within the output
device definition. Here’s how:

4 Note that access method “C” is only available for NT and AS/400
platforms.

27No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

• To eliminate the need to enter a dedicated
printer name for every frontend output
device, method “F” addresses the default
printer on the frontend with a generic name,
“__DEFAULT”(that’s two underscores before
DEFAULT). 5

The mapping of this generic name to the
actual default printer is done by SAPLPD.
SAPLPD, and SAPLPD alone, recognizes
__DEFAULT as a special name and maps it
to the default printer. Other LPDs will not
recognize __DEFAULT. They will handle
__DEFAULT as a normal printer. That means
if you want to take advantage of this generic
naming feature, you will have to use SAPLPD
as your LPD on the frontend.

Note that the __DEFAULT name is not specific
to method “F.” It can be used with any access

method, but access method “F” is the place where
this generic name is most useful with regard to
frontend printing.

• To eliminate the need to enter IP address
information in the output device definition,
method “F” stores terminal information with each
print job, making it possible for print data to be
delivered to the current frontend location where
the user is running his or her GUI. This frees the
output device definition in R/3 from any IP
address information. This is the foundation
upon which we built access method “F”; the
__DEFAULT name is merely a convenience.

Once you eliminate the need to enter IP address
information in the output device definition, you move
away from one-to-one fixed mappings and can adopt
generic mappings, which are far more flexible,
manageable, and scalable.

In Figure 4 you can see the difference between
fixed and generic mappings. The output devices

5 In older releases, this was “%DEFAULT%,” which should no longer
be used in any release, as it is incompatible with UNIX environments.

Figure 4 Fixed Mapping vs. Generic Mapping of Frontend Output Devices

Printer B

User A

P204 LPT1 LT50 LOCL

Printer A

User B

fixed mappings

generic mappings

R/3

GUI connections

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.28

“P204,” “LPT1,” and “LT50” are defined using one
of the traditional access methods (network or local).
Note that each output device represents exactly one
physical printer, since, by definition, their fixed output
device definitions contain the IP address of the target
spooler.

“LOCL” is an output device that is defined
with access method “F.” There is no IP address
associated with this output device. So it can be
mapped to an unlimited number of destinations. In
this case, it’s just being mapped to two destinations
— User A and User B. That number could be 200
or even 2,000.

The destination information is determined by the
terminal (i.e., the GUI connection) where the print
request comes from, as shown in Figure 5. In this
example, the print request is coming from User B, so
the print destination is understood to be User B’s
default printer, Printer B. If User B had made Printer
Net the default printer, the output would have been
sent there.

Even though Users A and B have chosen
different names for their default Windows printers
(“Printer A” and “Printer B” respectively), both
use the same logical output device — the one we
have named “LOCL.” Provided that the administrator
defined the logical output device with the generic
name “__DEFAULT,” all a user has to do in order to
use this common, generic output device is make his or
her intended Windows printer the default printer, and
print to the output device named “LOCL.”

On the server side, the administrator has
to make the proper output device definition for
output device “LOCL.” You have to make sure that
the required Hot Packages and kernel patches have
been installed. Each client must have either a
recent SAPGUI or LPRINT installed. SAPLPD
should also be available for the most convenient
printout facility.

I’ll provide much more detail on these adminis-
trative activities later on in this article.

Figure 5 Processing of Frontend
Print Request

User B

Send print
request

Send print
data

Printer B

Spooler

SAPGUI

R/3 Application
Server

(1) (2)

Frontend
(Windows/Motif)

(3)

Printer Net

Network

Processing &
Routing

29No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

Benefits and Limitations of
Frontend Printing

I hope it’s clear that both end users and administrators
alike stand to benefit from this new print spool access
method. R/3 users now have a way to print to the
very same printers that support printing from their
Windows applications. This means:

✔ Users who previously found they could only print
to a fixed printer name are now able to print to
their current default printer. By changing the de-
fault printer in Windows, any printer can be used.

✔ As I mentioned earlier, Release 4.6A takes this
one step further. A new dropdown box makes it
possible for users to interactively point-and-click
on any printer that has been defined on the cur-
rent frontend. The list of available printers is
retrieved by an RFC call to the frontend
(SAPGUI or LPRINT), which returns all defined
printers. This list is displayed in an additional
dropdown box when the user enters the output
device name of a frontend output device (e.g.,
“LOCL”).

The Windows printer name that the user finally
selects is stored together with the spool request
that was created when the user was prompted for
an output device name.

The R/3 host printer name that is associated with
the output device definition only serves as a
default in this case. If this particular name does
not exit on the current frontend, or if it is the
special name __DEFAULT, the default printer
will be used automatically.

✔ Users who work on a different terminal each day
and who require local output are now able to use
the same output device name, no matter what
their current frontend is or where they are
located. They no longer have to locate the
specific output device name that is associated
with their current terminal.

6 You can choose POSTSCPT or POST2 as of Release 4.5A.

But What About Different Printer Types?

In R/3, every output device has an associated device
type (e.g., PostScript, PCL, or Prescribe). So how
does R/3 know which of these device types is associ-
ated with the current user’s default printer? This is
fundamental to being able to have only one output
device definition.

Here, the R/3 device type SWIN (SAPWIN in
older releases) comes in very handy. SWIN is a
device type for Windows printers. This device type is
interpreted by SAPLPD, which translates it into
commands to the Windows Graphics Device Interface
(GDI). This way, every Windows printer that has a
Windows printer driver can be used independently of
the exact device type. Note that this feature once
again requires that you use SAPLPD, as other LPDs
will not understand device type SWIN.

Do you always have to use SWIN for frontend
printing? No. Using SWIN makes the most sense in
environments where users have different types of
frontend printers. If you are in an environment where
every user has a PostScript printer, you can choose
device type POSTSCPT 6 in the definition of the
frontend output device instead of SWIN. You can
also define multiple frontend output devices (one for
each device type that you must support) at the same
time if you have a heterogeneous environment.
In this case, however, the user must know which
frontend output device has a suitable device type for
his or her personal printer.

To eliminate the need to enter IP
address information in the output device
definition, method “F” stores terminal
information with each print job, making
it possible for print data to be delivered
to the current frontend location where
the user is running his or her GUI. This
is the foundation upon which we built
access method “F.”

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.30

✔ Users on terminals with dynamic IP addresses
(e.g., laptops that connect by a phone line) can
now print in the same way that LAN-connected
users with fixed IP addresses print. With the
traditional host spool access methods, this was
not possible because the IP address information
was stored together with the output device
definition. Each time you logged on with a
different IP address, you would have to use a
different output device! Even if you used
computer names instead of IP addresses, you
would experience the same problem because
R/3 keeps an internal cache with the IP addresses.
(This cache is normally not deleted, which
means that a new connection from the same
host, but with a different IP address, is not
recognized.)

Administrators now have an easy way to set up
frontend printing for a large number of users. You no
longer have to configure countless individual frontend
output devices. This provides three significant
administrative benefits:

✔ The first, and perhaps most important, is that a
single generic output device definition is now
sufficient for all frontend users.7 This generic
output device definition is made with transaction
SPAD, specifying the new access method “F,”
as shown in Figure 6. In the interest of space,
I have combined two screen shots into one.
In the top portion of the tab section, the
DeviceAttributes tab is active, and in the bottom

Figure 6 Typical Definition of a Frontend Output Device in SPAD (Release 4.6A)

7 Provided that they use the same device type (e.g., SWIN for
Windows frontends).

31No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

portion, the HostSpoolAccMethod tab is active.
In the actual system, these separate active tabs
would have to be viewed on different screens.

✔ New terminals with attached printers can be
added to the R/3 System without any additional
configuration work necessary in the R/3 spooler.
A big area where this feature is currently being
leveraged is SAPnet (the former OSS system of
SAP). Every customer can print in this system
using the output device name “LOCL,” which is
defined with access method “F.”8

✔ Lastly, frontend printing is a convenient way
to allow DHCP (Dynamic Host Configuration
Protocol — i.e., dynamic IP addressing) clients
to print to the frontend location. Access methods
specifying terminal names that get resolved to IP
addresses (e.g., “S” and “U”) do not work in this
case, as IP addresses are only resolved once by
R/3 and cached afterwards. So R/3 will not rec-
ognize any change in IP addresses in the future
until R/3 is restarted (or the cache has been reset
manually). Whether or not local access methods
“L” and “C” work in such an environment is up
to the underlying operating system, as it is the
operating system that has to resolve the dynamic
IP addresses correctly in this case.

This Is Not the Frontend Printing of Yesteryear
— Still, It’s Got Limitations

Our original design envisioned frontend printing as a
solution to print relatively small documents, online, to
the current frontend location. But users soon began
using method “F” for printing from the update task
and batch jobs, and presenting us with a variety of
other challenges that we had not forseen. Some we
were able to tackle. Some we were not.

Let me start by listing three limitations of
frontend printing that we did not address in Release
4.6 and that you should be prepared to live with:

• The first is that frontend printing cannot be used
to get an immediate printout from a batch job.
During batch processing there is no connection to
a GUI, therefore you cannot print to the GUI
location. In Release 4.6A, the output request is
generated, but it is not processed. Processing of
this request will start as soon as the user begins a
new frontend print request in a dialog (or in the
update task). The user can also re-trigger print
job processing manually via transaction SP01.
In older releases, the use of a frontend output
device in batch processing caused runtime errors.

• The transfer of the print data to the frontend
requires a new session, which means that
frontend printing only works if the user is not
using all available sessions. If a user has more
than five open sessions for the same logon,
frontend printing will not work. As is the case
with batch processing, such a request will not get
processed; it will either restart automatically the
next time a frontend printout succeeds, or it will
be manually restarted from transaction SP01.
(In the first release, each concurrent printout of a
user required a separate session. This require-
ment has been reduced to one session for all
printouts, and printouts for one user are
serialized.)

• Lastly, there is no status feedback inside R/3 for
frontend print requests. Once the processing of
the print request is done in R/3 and the data is
transferred successfully to the frontend, the print
job is set to a “done” state. Any further errors
that may occur on the frontend side are not
reported back to R/3.

While the limitations associated with batch
processing, new sessions, and status feedback still
persist (the latter two may be solved in the future),
the limitations listed below have been solved in the
4.5A and 4.6A releases:

8 If you’re wondering about the derivation of the name “LOCL,” it
was completely arbitrary. Here, at SAP, we agreed to make it the
name of the frontend output device for Windows (device type SWIN).
This is just a convention. The name can be different in your own
System.

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.32

• Printing from the update task had the same prob-
lem as printing from batch — there was no con-
nection to the GUI from the update task. This
problem was addressed with R/3 Release 4.5A.
Now the update task inherits the GUI connection
information, making it possible to re-establish the
GUI connection for a user who is still logged on
at the time when the output request is processed
by the spool system.

• Formatting of the output data for frontend print-
ing up to 4.5B takes place in a dialog process. In
a system with a standard configuration, dialog
tasks have a timeout limit of five minutes. If the
formatting process for a large document takes
more time, the job will run into a timeout, and
frontend printing will fail. As of R/3 Release
4.6A, formatting will be done by a spool work
process, which offers infinite processing time.
This means that even large documents can now
be printed using this method.

• Since formatting of the print data takes place in a
dialog process, the dialog workload will increase
significantly if frontend printing is used by many
users at the same time (or in the first release of
frontend printing, up to Release 4.0B, even if one
user prints multiple times). Moreover, the trans-
fer of the print data to the GUI temporarily
requires a second dialog process. In the first
implementation (3.1G), three dialog processes
were used for a very short period of time — i.e.,
when frontend printing is initiated. As of Release
4.6A, processing will be done by a spool work
process so that the dialog load in the system is
not increased.

• The first implementation of frontend printing
did not support multiple copies. Instead, the
frontend output device had to be defined with the
flag “Send each copy as own print request” in
transaction SPAD. This limitation caused a
tremendous load in the old release, as n sessions
and n dialog processes were required. Because of
this, we disabled this flag in SPAD and imple-

mented a copy count for frontend print requests
(Release 4.5B).

Let me summarize this benefits/limitations dis-
cussion by saying that frontend printing is most useful
in a Windows environment where it gives the user the
ability to print to his or her default printer, and as of
R/3 Release 4.6A, to interactively select a frontend
printer.

Four R/3 Components
Support Frontend Printing

Frontend printing is built upon the following four
system parts:

• The R/3 kernel

• ABAP-based communication methods

• SAPGUI/LPRINT RFC-Server

• (SAP)LPD9

Figure 7 illustrates how a typical Release 4.0B or
Release 4.5A frontend print request would utilize these
four components. The steps are outlined as follows:

1. The print request is generated by the R/3 kernel,
where it runs in a dialog process, or, as of Release
4.5A, as part of the update process.

2. The print request is passed by an asynchronous
ABAP call to a second dialog process. This
dialog process takes care of the formatting of the
print request and the transfer of the print data to
the frontend (communication method). The way
the print request is passed from the kernel to the
dialog process is called the “kernel method.” The
new process is used here in order to de-couple the
generation of the print request, which is done by
the application, from the actual outputting of the
print data. Otherwise, the application would be
hampered in its progress.

9 The use of the parentheses here is to indicate that either SAPLPD or
just an LPD can be used.

33No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

3. Now the print data is transferred to the frontend
using RFC calls to SAPGUI or LPRINT, which
act as the RFC-Server for frontend printing.

4. The SAPGUI/LPRINT RFC-Server transfers
the data to the locally running (SAP)LPD using
the “localhost” IP address (127.0.0.1). If
SAPLPD is not running, it will be started
automatically at this point. Other LPDs are not
started automatically.

5. (SAP)LPD prints the data to the Windows Spooler.

As administrators, you need to understand what
new features/functions we have introduced, over the
course of various releases, into all of the following:
the kernel; the ABAP code that is responsible for
formatting and communication; the frontend software

(consisting of the SAPGUI/LPRINT RFC-Server);
and SAPLPD. Armed with this knowledge, you can
apply the right patches and/or perform the appropriate
upgrades.

As administrators, you need to
understand what new features/functions
we have introduced, over the course
of various releases, into all of the
following: the kernel; the ABAP code
that is responsible for formatting and
communication; the frontend software
(consisting of the SAPGUI/LPRINT
RFC-Server); and SAPLPD. Armed with
this knowledge, you can apply the right
patches and/or perform the appropriate
upgrades.

Figure 7 Components Involved in Frontend Printing

R/3 Instance Frontend (Windows/Motif)

RFC TCP/IPasynchr
ABAP

call

SAPGUI (SAP)LPD

RFC-Server for
Frontend Printing

Kernel
Method

C
-K

ern
el

DIA/UPD

F
o

rm
attin

g

DIA Communication
Method

Spooler

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.34

Figure 8 Features and Required Components*

 Kernel ABAP ` Frontend

 SAPGUI LPRINT SAPLPD

Kernel Methods

Direct Execution 3.1G 3.0D/58 3.0F/46
3.1G

Buffered Execution 3.1I 3.0D/58 3.0F/46
3.1G

Frontend Print Server 3.1I/123 3.0D/58 3.0F/46
4.0B 3.1H/29 3.1I/7
4.0B

Print Messages 4.6A 4.6A

Communication Methods

LOCAL_PRINT 3.0D/58 3.0F/46 20.1
3.1G

SAPGUI 3.0D/58 3.0F/46 4.0A Win32**
3.1H/29 3.1I/7 4.0B Mac
4.0B

DOWNLOAD (LPRINT 3.0D/58 3.0F/46 20.25
command line interface) 3.1H/29 3.1I/7

4.0B/5
4.5A

Other Features

Printing from update task 4.5A

Delay print request if used in 3.1I/205
batch (or update task prior 4.0B/289
to 4.5A) 4.5A/58

4.5B

Binary data transfer 3.0D/58 3.0F/46 4.0B Win32 20.27
3.1H/29 3.1I/7 4.0B Mac
4.0B/5 4.5A/1
4.5B

Process failed (delayed) 3.0D/64 3.0F/52
print requests 3.1H/35 3.1I/12

4.0B/9 4.5A/3
4.5B

Command execution 4.6A Win32 21.03
4.6A Mac

Recognize __DEFAULT 2.44

Start SAPLPD iconified 4.03

Device type SWIN 4.0A 4.09

WTS & printer names 4.24
with spaces

** The 4.0A GUI works only for non-binary transfer. The Hot Packages mentioned try only binary transfer.
So the combination will not work. It is therefore recommended that you use at least the 4.0B SAPGUI version.

* Highlighted items are used to support the example configurations discussed in the text.

35No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

Figure 8 provides a summary of the features that
have been added from the first implementation of
frontend printing, along with the patches you need in
order to leverage these features (wherever possible) in
older releases.

In order to support frontend printing, you need to
select a kernel method and a communication method.
What makes this whole affair so complicated is the
fact that you can introduce most features by applying
some kernel patches, Hot Packages, and updates of
frontend components, but these three areas sometimes
depend on each other.

Support for the other features is generally op-
tional, and is only required in certain environments
(e.g., binary data transfer is required if not all compo-
nents use ASCII code page).

A few examples will help illustrate what needs to
be done:

• Example 1: You want to use the Frontend Print
Server as your kernel method and the SAPGUI as
your communication method in a 3.1I system.
This requires that you use at least 3.1I kernel
patch level 123, 3.1I Hot Package 7, and a 4.0B
Win32 SAPGUI. In Figure 8, I have highlighted
the choices required in this example.

• Example 2: You additionally want to be able to
print from the update task. This feature is only
available as of kernel Release 4.5A. So you need
to upgrade your R/3 in this case. In Figure 8, I
have highlighted the “Printing from update task”
selection.

The R/3 Kernel

The R/3 kernel offers four different methods for
processing frontend print requests inside R/3. In the
previous example, we opted to use the Frontend Print
Server as our kernel method. The method that will be
used by the kernel can be configured by the profile
parameter rspo/local_print/method. Figure 9 lists

Figure 9 Four Kernel Methods for Processing
 Frontend Print Requests

Method Value Kernel Release

Direct Execution 0 3.1G

Buffered Execution 1 3.1I

Frontend Print Server 2 4.0B, 3.1I PL 123

Print Messages 3 4.6A

the possible values for that parameter. The default is
always to use the newest configuration method that is
available with the current kernel.

How do you know which kernel method is best
for your environment? Let’s review them. . .

Direct Execution was introduced with Release
3.1G. After the print job has been created by the
kernel, an asynchronous ABAP call is performed
immediately to process the job in a second dialog
process. This ABAP call decouples the formatting
process of the print job from the generation of the
print job, which speeds up the original transaction.
This call also facilitates the RFC call that transfers the
data to the GUI. Unfortunately, this method’s asyn-
chronous RFC performs an implicit COMMIT on the
application, which makes it impossible to perform
ROLLBACK after creating the print request. This
problem was solved with the “Buffered Execution”
method. Note that Direct Execution cannot be used
when it should be possible to print from the update
task.

Buffered Execution was established to collect all
frontend print requests (like normal print requests) up
until the time that the application COMMITs. So we
introduced a special (limited) queue, where all
frontend print requests get stored until COMMIT.
The length of this queue can be configured by the
profile parameter rspo/local_print/jobs (default 50).
At COMMIT, an asynchronous ABAP call is
performed for each print request. The parameter
rspo/local_print/wait can be used to limit the

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.36

requests (of all users) whose jobs require processing.
The kernel now just enters a print request into table
TSP02F and calls the asynchronous ABAP program
after COMMIT. That ABAP program processes all
jobs for the current user that can be found in table
TSP02F. (In Figure 10, for example, jobs 1 and 3
would be processed for User A.)

Whenever a second print request is started for a
user, a check is made to see if there is already another
dialog that is busy processing frontend requests
(using ABAP enqueues). If there is, the asynchro-
nous ABAP program terminates immediately and the
running frontend print server will pick up this request
in the next scan of the database before terminating
itself. This gives us a single running frontend print
server that processes all of a user’s jobs. If no jobs
are left, it simply terminates.

The good news is that this kernel method reduces
the number of required dialog processes for each user to

number of concurrent asynchronous ABAP calls. The
parameter specifies the maximum amount of time, in
seconds, that the system should wait for the current
printout to terminate before the next one is started by
an asynchronous call. If the current printout does not
terminate in the given time, a new asynchronous call
is started for the next job.

Both of these methods (Direct and Buffered
Execution) have the disadvantage that each print job
gets processed by an individual dialog process.
(Parameter rspo/local_print/wait can limit this.)
This means that a single user could potentially clog
up the whole system if he or she prints several
frontend jobs at once. This is solved with the
Frontend Print Server method.

The Frontend Print Server method was
designed to limit the number of dialog processes a
single user could occupy. To do this, we created a
new table, TSP02F, which contains all frontend print

Figure 10 Frontend Printing with TSP02F and the “Frontend Print Server” Method

R/3 Application
Server

asynchronous
ABAP

TSP02F

User B

User A

User A

Job 1

Job 2

Job 3

to frontend

C
-K

ern
el

F
o

rm
attin

g

DIA/UPD DIA

37No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

just one.10 (Note that when the transfer of the print
data to the frontend is initiated, a second dialog is re-
quired for a very short period of time.)

Another benefit is that frontend print requests do
not get lost, even if the job cannot be processed im-
mediately. Jobs can get lost if the user runs out of
sessions or starts frontend print requests in batch jobs.
With the kernel method, however, the TSP02F entry
is written in the database and only the asynchronous
ABAP call for the processing of that job fails, not the
job itself. The print job will be processed as soon as
another frontend job for that user has been processed
successfully (e.g., the user closes one session and
prints again). The old request gets processed because
the frontend print server scans the entire table,
TSP02F, for jobs that need processing. In this way,
all older jobs that failed before will now also be
printed for that user. If the user just wants to get all
failed frontend jobs out of the system without printing
a new job, he or she can do so by calling the transac-
tion SP01 menu item “Restart Frontend Jobs” (avail-
able since 4.5A). In older releases, the
RSPO_PROCESS_FRONTEND_JOBS function
module can be used without any parameters specified.

The Print Messages method is currently the
reigning solution for addressing very high dialog
loads. It processes frontend print requests in the
spool work process just like ordinary print jobs. This
method requires that the GUI connection information
be transferred from the dialog process to the spool
work process over the dispatcher or message server.
Note that new development work was done to support
the Print Messages method in Release 4.6A, and that
it cannot be transported into older releases.

While the other kernel methods require no spool
work process for frontend printing, the Print Mes-
sages method requires at least one spool work process
in the system. Although it is not necessary for each
application server to have its own spool work process,
this configuration reduces communication overhead
between application servers in the R/3 System, so it is

recommended that a spool process be configured for
each application server where frontend printing will
be done. If you have an application server that does
not have a spool work process, you can predetermine
which spool server should handle requests that are
generated on this server. The profile variable rspo/
local_printer/server specifies the server (real or
logical) that gets those print messages. If you do not
configure anything for this variable, the spool work
process with the lowest load will process the frontend
print request.

It is also possible to restrict frontend printing to a
certain number of spool work processes on each
application server. Otherwise, if all spool work pro-
cesses are busy with frontend printing, urgent produc-
tive print requests may not get processed in time.11

The default for the maximum occupancy of
spool work processes is 1. The profile parameter
rdisp/wp_no_spo_FRO_max can be used to increase
this limit. For example, if you have five spool work
processes on one application server and set
rdisp/wp_no_spo_FRO_max = 2, at least three
spool work processes will be available for non-access
method “F” printing. In this example, increasing this
profile parameter to “2” does not guarantee that two
spool work processes will always be available for
processing frontend print requests. Higher-priority
jobs take precedence. It’s possible that no spool work
process may be available for frontend printing, for
example, if all five processes are being used for
productive printing at the same time.

We used to consider frontend printing to be a
very low-priority task, but user requirements have
changed. This is why, as of Release 4.6B, there is
another parameter, rdisp/wp_no_spo_FRO_min,
which defines how many spool work processes are
reserved for frontend printing and cannot be occupied

10 If numerous users employ this print method simultaneously, the
dialog load can still be prohibitive.

11 For a comprehensive discussion about classifying/configuring your
output landscape for optimal support of production, high-volume,
desktop (frontend), and test printing, please refer to the article
“Achieving a More Manageable and Reliable R/3 Spool Server
Landscape Using Release 4 Output Classifications, Logical Servers,
and Alternate Servers,” which also appears in this issue of the
SAP Professional Journal.

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.38

Figure 11 Summary of Profile Parameters for Frontend Printing

Parameter Default Description

rspo/local_print/method (3.1I) Defaults to newest Four kernel methods (see Figure 9) are available for
available method processing frontend print requests. The “Print Messages”

method is the newest.

rspo/local_print/server (4.6A) Use spool server Specify spool server for the “Print Messages” kernel
with lowest load method if application server has nospool work processes.

rspo/local_print/jobs (3.1I) 50 Number of jobs that can be stored until COMMIT for
the “Buffered Execution” and “Frontend Print Server” methods.

rspo/local_print/wait (3.1I) 100 Time (in seconds) that should be waited for completion
of print request before next printout is started (only
applicable for the “Direct Execution” and “Buffered
Execution” methods). Can be used to limit the number
of concurrent printouts.

rdisp/wp_no_spo_FRO_max (4.6A) 1 Number of spool work processes that can handle
frontend print requests when using the “ Print Messages”
method.

rdisp/wp_no_spo_FRO_min (4.6B) 0 Number of spool work processes that cannot be
occupied by services other than frontend printing when
using “Print Messages.”

abap/no_sapgui_rfc 0 Disables RFC connections to the frontend if set to “1.”

by other services. (The default for this parameter is 0.)

Figure 11 provides a summary of all the different
profile parameters.

The print message configuration issues basically
boil down to two things:

• You should increase the number of spool
work processes by 1 (or by the value of
rdisp/wp_no_spo_FRO_max, if set differently).

• You should ensure that every application server
with dialog or update processes has a spool work
process.

Of the four kernel methods — Direct Execution,
Buffered Execution, the Frontend Print Server method,
and the Print Messages method — which should you
use? The optimal kernel configuration, Print Mes-
sages, comes with Release 4.6A. It enables you to
use the spool work process for frontend printing
without posing additional dialog load on your system.
All you have to do is set up a suitable number of
spool work processes such that your normal print jobs

do not get delayed by frontend printing. If you can-
not upgrade to Release 4.6A, the next best thing is to
use the Frontend Print Server method. This method
will be used automatically if you are using the kernel
patches and Hot Packages mentioned in Figure 8.

Communicating with the Frontend

In addition to selecting a kernel method to support
frontend printing, you also need to select a communi-
cation method. The communication from R/3 to the
frontend can be handled in three different ways:

1. LOCAL_PRINT: LOCAL_PRINT was the first
implementation of the R/3-to-GUI communica-
tion component. It uses a dedicated RFC-Server
named “LPRINT,” which has to be installed in
the SAPGUI directory. In R/3, the RFC destina-
tion LOCAL_PRINT (see transaction SM59
TCP/IP connections) was created so that the
RFC-Server LPRINT gets started automatically
each time a printout is requested.12

12 This RFC destination is hardcoded in the R/3 kernel. It can only be
changed temporarily and will be reset to its original value each time work
process #1 gets restarted (e.g., any application server is restarted).

39No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

Running on the frontend, the RFC-Server con-
nects to the R/3 System via RFC calls, and with
the (SAP)LPD using a local TCP/IP connection,
as shown in Figure 12. The problem with this
method is represented by the brick wall. The
connection from the frontend to the R/3 System
results in a new connection — the GUI connec-
tion is always open as long as the GUI is running,
so starting a new RFC server on the frontend
establishes a new connection. And this new
connection will fail if a SAProuter is involved
that is configured to use a “one-time” password,
or if the passwords of the SAProuter and the
SAPgateway are different. This is a general
limitation of the RFC mechanism, where the
frontend server is started automatically by the
SAPGUI. It is not a special frontend printing
problem. This RFC limitation is what led to the
design of the SAPGUI method.

2. SAPGUI: From SAPGUI 4.0A onward, the
functions of the RFC-Server LPRINT were inte-
grated into the SAPGUI. This way, the destina-
tion SAPGUI (see transaction SM59 TCP/IP

connections) acts directly as the RFC-Server for
frontend printing. The big advantage of this
integration is that the current GUI connection
can be used to transfer the data. There is no need
to establish a new connection, and, as a conse-
quence, there are no problems with SAProuters.
You also do not have to worry about installing a
separate program. This is the most secure
method, but it is only available for Windows
32-bit platforms (and, as of Release 4.0B, for the
Macintosh). Because of this limited availability
we had to create a third communication method
(described next) that works on all platforms and
on network configurations where LPRINT could
not be used.

3. DOWNLOAD & EXECUTE: The DOWN-
LOAD & EXECUTE method works very
 much the same way that the old local print
function from Release 3.0A worked. The print
data is downloaded to the frontend. Then a
program is executed that processes this print
data. The only difference is that we do not
execute SAPLPD for each print request, but

Figure 12 The “LOCAL_PRINT” Communication Method

Frontend (Window/Motif)

Start

Start

Spooler

SAPGUI

R/3 Application
Server

RFC

connection TCP/IP

Network

LPRINT
RFC-Server

(SAP)LPD

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.40

instead start LPRINT (a much smaller program),
which also has a command line interface to do
printouts. This means LPRINT can act as an
RFC-Server and has a command line interface at
the same time. Then LPRINT sends the spool
data to the currently running (SAP)LPD using
local TCP/IP. The drawback of this method is
that it cannot be used from within the update task
or the spool work process (Release 4.6A, Print
Messages kernel configuration method). Another
disadvantage is that it is not possible to monitor
whether the data really arrives at the LPD. As
soon as LPRINT is successfully started, the print
job goes to status “Done.”

If not configured otherwise, frontend printing will
try to use the communication methods in the
following sequence: SAPGUI, LOCAL_PRINT,
DOWNLOAD. By making an entry with key
LPRINT_DEST in table TSPOPTIONS, the
starting point for this sequence can be changed.
If, for example, you enter LOCAL_PRINT as
LPRINT_DEST, the SAPGUI destination will be
skipped, and only LOCAL_PRINT and DOWN-
LOAD will be tried. As of Release 4.6A, this
setting can also be changed with the transaction
SPAD path Settings → Spool System →
Frontend Printing → RFC destination for
frontend printing.

To wrap things up, the SAPGUI communication
method is the most secure and reliable communica-
tion method, provided you have installed the neces-
sary Hot Packages and GUI release. It will be
used automatically if you have not previously
configured another method. You should only
consider using one of the other methods in the f
ollowing cases:

• You have reasons that disallow you to use at
least a 4.0B SAPGUI. In this case, you can
update the standalone program LPRINT on each
frontend and use the LOCAL_PRINT destination.
It is a good idea to create the entry in table
TSPOPTIONS mentioned above to disable the
SAPGUI.

• You are not using a Windows or Macintosh
frontend. For a solution, please see the section
entitled “Configuring Non-Standarad Systems,”
which appears later in this article,

• You are using the Windows Terminal Server.
Again, refer to the “Configuring Non-Standard
Systems” section.

SAPGUI

As of Release 4.0A, the SAPGUI for Windows 32-bit
platforms (4.0B for Macintosh) was extended in such
a way that it can serve as an RFC-Server for frontend
printing. This means you do not need to install a
separate program on your frontend in order to transfer
the print data by RFC calls. As of Release 4.6A, a
new call was added that allows the querying of printer
names that are defined on the frontend — this allows
users to interactively select printers, as you saw
earlier in Figure 3.

Other GUI platforms currently do not support
these RFC functions for frontend printing. You
would have to use the separate RFC-Server program
LPRINT described in the next section.

RFC-Server “LPRINT”

The current version of the RFC-Server program
LPRINT is version 21.03. As LPRINT is downward
compatible, there should be no problem using at least
version 21.03 on your frontends. Older versions had
the following problems:

• Data was transferred as characters, not as bytes
(binary data transfer). This caused errors if the
frontend and the application server were running
on different code pages — e.g., application server
AS/400 (EBCEDIC) and NT frontend in ASCII.

• Temporary file (created by LPRINT) was not
deleted in case of error.

• Spaces in the user name or in the frontend printer
name caused errors for the DOWNLOAD method
(the command line interface of LPRINT).

41No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

• SAPLPD was not started automatically.

• Command execution for printing was not
available.

Version 21.03 of LPRINT also offers the ability
to execute any command line to do printing (very
much like access method “L” in R/3). This is espe-
cially useful for UNIX environments where a normal
lp or lpr command can be used for printing. This
means you no longer need an (SAP)LPD to do
frontend printing! Using the command execution
interface is also the recommended way for frontend
printing with the Windows Terminal Server (WTS).

Version 21.01 is mandatory for R/3 Release 4.6A
as it offers an additional RFC function to transfer the
list of known frontend printers to the R/3 System.

LPD Versions

Frontend printing can use any LPD that is running on
the frontend. But remember that some features are
not available with ordinary LPDs that are offered by
SAPLPD. Normal LPDs cannot:

• Process R/3 device type SWIN (SAPWIN):
This implies that the only Windows printers that
can be used are ones that match the device type
of the frontend output device definition. If, for
example, the frontend output device is defined
using device type PostScript, only Windows
printers that understand PostScript can be used.

• Recognize printer name “__DEFAULT”:
SAPLPD recognizes this special printer name and
maps it automatically to the user’s current default
printer. This is very convenient for the user and
the administrator. If a user is using a normal
LPD, the host printer name in R/3 and the Win-
dows printer name must match in order to print
on his or her frontend. This means that either all
users have to use the same Windows name for
their printers or multiple frontend output device
definitions are required in R/3.

Based on these two features, I strongly recommend
the use of SAPLPD as the line printer daemon for
Windows platforms.

Some (UNIX) LPDs may refuse to accept con-
nections from the RFC-Server program since this
program is not running with root access and is not
using secure TCP/IP ports to communicate with the
LPD. In this case, the command execution interface
(lp and lpr interface) of LPRINT must be used.

Helpful Hints for Configuring
Frontend Printing

While it is desirable to implement frontend
printing with all the most recent components,
I realize it’s not always possible. That’s why
you see so many options listed in Figure 8.
As you plan an implementation that is
uniquely suited for your R/3 environment,
keep the following tips in mind:

✔ Tips for configuring kernel releases:
Frontend printing requires at least a 3.1G
kernel. It is absolutely impossible to use this
method in older kernel releases.

The following kernel releases are recom-
mended to get the best results for frontend
printing:

3.1I: Patch level 205 or higher
• Uses “Frontend Print Server”
• Prohibits processing of print requests

from batch and update task
• Uses language of current user for SAP

spool title page

4.0B: Patch level 289 or higher
• Same as 3.1I

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.42

4.5A: Patch level 124 or higher
• Same as 4.0B
• Plus: Allows processing of print

requests in update task

4.6A: Patch level 0
• Same as 4.5A
• Plus: Uses “Print Messages” to process

requests in spool work process

✔ Tips for configuring Hot Packages:
After the introduction of frontend printing
in Release 3.1G, we created transport
requests for older releases (i.e., 3.0D to
3.0F). But these transports caused lots
of problems when the customer finally
upgraded to a Release 3.1G or higher,
which is why we discontinued this method
of bringing new functionality into older
releases. For the benefit of the customer
and to ensure ease of use, we decided to
use Hot Packages to update frontend
printing functionality as of Release 3.0D.
The use of the following Hot Packages
is recommended to get the newest
improvements for frontend printing:

3.0D: SAPKH30D64
3.0F: SAPKH30F52
3.1H: SAPKH31H35
3.1I: SAPKH31I12
4.0B: SAPKH40B10
4.5A: SAPKH45A05

✔ Tips for configuring SAPGUI/RFC-
Server LPRINT: Frontend printing on the
frontend side normally requires an RFC-
Server program that is either integrated
into SAPGUI or is a separate executable
called LPRINT(.EXE). Frontend printing is
integrated into SAPGUI only since GUI
Release 4.0B for Windows 32-bit and
Macintosh platforms. In older releases and
on other platforms, the separate RFC-Server

LPRINT has to be installed in the SAPGUI
directory. The current version of LPRINT is
21.03 (shipped with R/3 4.6A) and can be
obtained from our sapservX machines for
older releases. You should use at least
version 20.40.

✔ Tips for configuring (SAP)LPD: It is
very useful to combine frontend printing
with the use of SAPLPD because it offers
access to the default printer and can pro-
cess device type SWIN. You should use at
least SAPLPD version 4.03 (the currently
available version is 4.24) — version 4.03
was the first version that had the ability to
start SAPLPD iconified. If you run SAPLPD
as a service, you do not need to start
SAPLPD iconified, and older SAPLPDs will
work as well. If you are using a normal
LPD, you may have problems with the local
TCP/IP connection. That topic is addressed
in the section entitled, “Configuring
Non-Standard Systems.”

A Typical R/3 Release 4.x
Frontend Printing Setup for a
Windows 32-Bit Environment
Using SAPLPD

In this section, I show you how to set up a
Windows 32-bit environment for frontend printing
using SAPLPD and R/3 Release 4.x. There are
five steps:

1. Getting the required kernel patch level.

2. Applying the required Hot Packages.

3. Defining a frontend output device using
transaction SPAD.

43No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

4. Setting the required R/3 configuration
parameters.

5. Establishing the required frontend configuration.

Step 1: Getting the Required Kernel Patch Level

After deciding which kernel patch level you need,
you should follow note 19466 on how to upgrade
your system with that patch level.

Step 2: Applying the Required Hot Packages

Follow note 37617 on how to apply Hot Packages
to your system. You can get Hot Packages
either online from SAP or on a special Hot
Package CD.

Step 3: Defining a Frontend Output Device
Using Transaction SPAD

Figure 13 shows you a screen capture of the defini-
tion screen in a 4.0B R/3 System.13 Here, you do the
following:

1. In the Access method to host spool field, choose
access method “F.”

2. In the Output device field, choose a name for
your frontend output device. SAP suggests the
name “LOCL,” but you can select any name.

Figure 13 Defining a Frontend Output Device in 4.0B

13 Transaction SPAD changed a bit from release to release. In newer
releases, to simplify things and make sure that there was no room for
error (e.g., misconfigurations), we did away with some fields. Were
you to view this same screen in a 4.5A release, you would find that
some of the fields are no longer present.

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.44

3. In the Device type field, choose device type SWIN.

4. The Host printer field must not be left empty. If
you do not populate this field with an entry, you
will get an ABAP short dump with “Assign length
0” when using this device. This entry should
normally be “__DEFAULT” to access the default
printer of each user. It is, of course, possible to
enter any frontend printer name in that field.

5. The No longer ask for print requests in host
spool field (which you would find on the second
screen) must not be checked. If you check this
field, all frontend print jobs will go to an error state.

The Host printer field must not be left
empty. If you do not populate this field
with an entry, you will get an ABAP short
dump with “Assign length 0” when using
this device. This entry should normally
be “__DEFAULT” to access the default
printer of each user. It is, of course,
possible to enter any frontend printer
name in that field.

Step 4:
Setting the R/3 Configuration Parameters

1. Profile parameter abap/no_sapgui_rfc must not
be set to 1.

2. Profile parameter rspo/local_print/method
selects the kernel configuration method that is
used for printing (see Figure 9). If you do not set
this parameter at all, the newest available method
is selected automatically.

3. If you are using an SAProuter, the connection
from the frontend to the SAPgateway must be
enabled by entering the following line in the
routtab:

 P * <gateway computer> sapgw<SID>

<SID> refers to the SAP system number. Call
saprouter -n to activate this change.

4. Besides the normal access rights for output
devices, a user must have access rights to the
output device named “%LOC” in order to do
frontend printing, as follows:

Object: S_SPO_DEV
Field: SPODEVICE
Value: %LOC

This provides an easy way to disable frontend
printing for certain users.

Step 5:
Establishing the Frontend Configuration

1. SAPLPD (version 4.03 or newer; installing the
newest version is always recommended!) must be
installed in the SAPLPD subdirectory of the
SAPGUI.

2. The program LPRINT.EXE (at least version 20.40)
should be installed in the SAPGUI directory.

3. On each frontend, the entry

sapgw<Instancenumber>33<Instancenumber>/tcp

is required in

\WINNT\system32\drivers\etc\services

Defining a Frontend Output
Device in a 3.x System

In the preceding section, I gave you a sense of
what is needed to configure a R/3 Release 4.x
system for frontend printing. Here, I’ll walk you
through an extended configuration scenario —
defining a frontend output device in a 3.x system.
Rather than walk you through the entire 3.x
configuration routine, my focus here will be on
the differences between this configuration scenario
and the Release 4.x configuration scenario we
just reviewed:

45No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

• Difference #1: Choose access method “F”.
Note that in R/3 Releases 3.0D to 3.1I, this
access method may not be available directly.
You may have to run report RSPO0075
first.

• Difference #2: Enter an illegal value in
the field “Spool server” — a value that
corresponds to no active server. If you fail
to do this, frontend printing may not work or
you will get entries in the system log that say,
“Access method ‘F’ not supported on this
platform”.

• Difference #3: You can leave the “Destination
host” field empty, or enter any value you want.

• Difference #4: With R/3 Release 3.x, users
must have access rights for reading the temporary
spool files. (In Release 4.x, this is not required
because the access functions have become a
system program that can access those files.)
You need to add the following to object
S_DATASET:

Program: SAPLLPRF
Activity: 06, 33-34
File name: *

Note: Older versions (3.x releases not using the
recommended Hot Packages) require program
“SAPLSPOO” instead of “SAPLLPRF” in the
previous entry. This change will cause problems
if you already have frontend printing running
with the old access rights and now update it with
a Hot Package.

For object S_PATH, you need to follow these
steps:

1. Call transaction SM30, and select view
V_SPT. Define a new access group here —
e.g., “SPOF.”

2. Edit table SPTH using transaction SM30 and
enter the path

/usr/sap/<DB-Name>/<SID>/data14

for access group “SPOF.”

3. In object S_PATH, enter:

Activity: 03
Access group: SPOF

Configuring Non-Standard
Systems

You’ve just seen how to configure Win32 frontends
with SAPLPD. Let’s turn our attention now to
UNIX systems and the Windows Terminal Server
(WTS).

Command Execution Interface

As of LPRINT Release 21.03 and SAPGUI 4.6A, it
is possible to specify a print command that when
executed will send frontend jobs to the local spool
system on the frontend. This method then replaces
the local TCP/IP protocol. It is especially useful for
UNIX systems, since some LPDs refuse to accept
connections from non-secure IP ports.

The environment variable LP_CMD defines
which command is executed. Possible parameters
are:

• &C copies

• &F file name

• &P printer

In an HP UNIX environment, a print command
could thus be defined with:

setenv LP_CMD /bin/lp -d&P -n&C &F

14 Path part of profile parameter rspo/to_host/datafile.

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.46

Note that the special printer name __DEFAULT
is not recognized by the UNIX print commands or the
LPD. This means that if you want to use this name in
the output device definition, you have to create a
frontend printer with that name on the UNIX
frontends as well.

The same mechanism can be used when frontend
printing should be implemented in a Windows Termi-
nal Server environment. The normal configuration
does not work in this case since there can be only one
SAPLPD running on the WTS server at any given
time. If multiple users were to request a printout,
they would all get processed by that single SAPLPD.
The SAPLPD, of course, is running under exactly
one user account. This means all printouts that are
directed to the default printer would go to the
default printer of that particular user — probably
not the course of action that was intended.

In order to solve this problem, you have to install
SAPLPD 4.24 (required for Windows printer names
with spaces) and set the environment variable,
LP_CMD, to the following value for all clients on
the WTS server:

LP_CMD=<saplpd-path>/saplpd -f&F -c&C -P&P

What happens now is that the command line
interface of SAPLPD is executed for each frontend
print request. This means SAPLPD is not using
TCP/IP; the print data is transferred by a file (very
much like the old 3.0A local print function). This file
is written by SAPGUI or LPRINT if they determine
that the variable LP_CMD is set.

TCP/IP Port

As of LPRINT Release 21.01 and SAPGUI 4.6A, the
environment variable LPRINT_PORT can be used
to switch the port number used for the internal
TCP/IP connection to values that differ from the
standard number 515. If SAPLPD is not running, it

will start automatically with the new port. This is
useful if you ever want to run a second (standard)
LPD on that frontend.

As of LPRINT Release 21.03 and
SAPGUI 4.6A, it is possible to specify a
print command that when executed will
send frontend jobs to the local spool
system on the frontend. This method
then replaces the local TCP/IP protocol.
This is especially useful for UNIX
systems since some LPDs refuse to
accept connections from non-secure
IP ports.

Optional Configuration Parameters
for Table TSPOPTIONS

In the table TSPOPTIONS, several parameters can be
altered to configure frontend printing:15

• SAPLPD: Defines the start command on
Windows, which is used if no running LPD
is detected. The default is:

SAPLPD\SAPLPD.EXE -I

which means that the SAPLPD is started in
iconified mode. This requires SAPLPD version
4.03. If you use older versions of SAPLPD you
should remove the -I.

• LPRINT_DEST: Defines which destination is
first used for frontend printing. The default is
“SAPGUI.” If set to “LOCAL_PRINT,” the
destination “SAPGUI” will not be used, but
DOWNLOAD will be tried if “LOCAL_PRINT”
fails. If set to “DOWNLOAD,” only DOWN-
LOAD will be used.

15 In newer R/3 releases, these values can also be maintained from
transaction SPAD.

47No portion of this publication may be reproduced without written consent.

An Introduction to SAP’s New and Improved Frontend Printing

• LPRINT_NUM: This value is the number of
frontend print jobs done in the system so far. It
should not be changed as it is required internally
to generate unique numbers.

• FRONT_TRACE: Activates tracing for frontend
printing. The default is 0. If set to 1, entries in
the developer trace will be written. The trace
must not be enabled if you do not run at least a
3.1I patch level 142 kernel, otherwise you will get
an ABAP runtime exception.

• LPRINT_EXEC (as of Release 4.6A): Defines
the command that is executed for the download
method. The default is “LPRINT.”

Troubleshooting

✔ As of Release 4.0A, you can determine which
destination is actually used for frontend printing.
Just go to the “Output Request,” double-click on the
“Status,” and click the “Events” button. One of those
events will describe the destination that was used for
printing. The destination used will determine which
of the log files (described next) is actually used.

✔ Setting the environment variable DPTRACE to 3
on the frontend (which can also be done with
SAPlogon→ SAPgui trace level 3) results in the
following frontend printing related files being written:

• lprint.log — if LOCAL_PRINT is used. If a
second process runs in parallel, a file lprint2.log
will also be written.

• lprintg.log — if SAPGUI is used as the
destination.

✔ Creating a FRONT_TRACE entry in the
TSPOPTIONS table with a value of 1 will activate the
logging of R/3 actions concerning frontend printing in
the developer trace. Here, you can see, for example,
which return codes are received from the frontend.

✔ If you encounter problems with frontend printing,
the first thing you should always do is check to see if
normal printing with access methods “U” and “S” (or
“L” and “C”) still works (with the known limitations
concerning IP addresses, routers, etc.) The system
should have at least one output device defined that is
not using access method “F” and that can always be
used as a reference if printing problems occur. If this
output device encounters the same problems as the
frontend output device, it is clearly not a frontend
printing problem, but rather a general printing
problem.

✔ The known problem that exists today is that the
Novell TCP/IP 16-bit client is not able to print using
local TCP/IP. The 32-bit version of this product,
however, was tested successfully. The command
execution interface of LPRINT could also be a
solution in this case.

The system should have at least one
output device defined that is not using
access method “F” and that can always
be used as a reference if printing
problems occur. If this output device
encounters the same problems as the
frontend output device, it is clearly not a
frontend printing problem, but rather a
general printing problem.

Conclusion

Frontend printing has become very mature as of
Release 4.6A. In older releases, there are some
limitations concerning ease of use for the user (e.g.,
no interactive selection of frontend printers) and load
problems imposed on the system (e.g., processing of
print requests in dialogs). Nevertheless, I think that

SAP Professional Journal November/December 1999

www.SAPpro.com ©1999 Wellesley Information Services. All rights reserved.48

many R/3 environments would benefit from this new
printing method, even those running older releases of
R/3, provided that they upgrade their systems with the
necessary kernel patches and Hot Packages.

Just recently, frontend printing was extended so
that it now can also be used in Windows Terminal
Server environments. We think WTS technology will
become very successful given the fact that it allows
you to couple older frontends, which do not have
enough computing power for today’s GUI require-
ments, with powerful WTSs that do have the power to
support those requirements.

Looking toward the future, we’re considering
improvements in the area of status feedback to allow
a more accurate trace of frontend print request status.
We are also examining ways to save the extra
session (or at least raise the number of concurrent
sessions).

Lastly, we want to get rid of the distinction
between frontend printers and output devices.

In the 4.6A solution, the user first enters the name of
the frontend output device, then selects the name of
the frontend printer from an additional dropdown
box. We hope to handle this in a more transparent
way in the next (4.6C) release. Note 114426 in SAPnet
informs you about any new developments and how to
solve problems that occur with frontend printing.

Dr. Stefan Fuchs studied Computer Science at the
Technical University of Karlsruhe, Germany from
1984 to 1990. Since 1987, he has worked for the
Chair for Operating Systems at the University,
developing new operating system concepts. In
1996, he received his doctorate in Computer
Science from the Technical University of Karlsruhe,
Germany, for his thesis in the field of Real-Time
Systems. Since 1995, Stefan has been working for
SAP Germany, in the Basis Department, on the
development of the R/3 Spool System.

